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® Inverse Problems

No direct
observation CAUSES

Object of interest

specimen
object

©

Objective

FInd a cause from a consequence
Infer hidden quantities from indirect data
Translate measurements into physics
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Forward model

—
4—

Inverse problem

0¥
e
Reconstruction

Numerically recovering signal
Make use of physical model
Optimization for large data

EFFECTS

Observation

measurements accessible data

signal

Applications

Medical Imaging: CT, MRI, EEG
Seismology - Nondestructive testing
Microscopy for life science - Depth
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® Unknowns vs. Measurements

What if we had less?

Sufficient measurements

noisy me? model mismatch?

.XO+X1=7 XO+.X1=7 x0+(li€)x1=7ia

Xo— X| = Xo — X; = unknown Xo—(lxex;=1xa
11| %] _ [Y (~1.8)...(3,4),(4,3)...(10,17)... Real life: physical world
1 =1} [t N

B Add prior knowledge
e.g difference of A and B is small

Well 1l
posed posed
problem B Add hard constraint problem
e.g. Alis larger than B
Existence N f # measures << # unknowns
Uniqueness Degraded measures, noise
Continuous dependency B | earn from previous experiences H approximation of a
on data physical device
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® High-Dimensional Inverse Problem

Overdetermined Problem Underdetermined Problem

Close- o
form E to minimize X

solution

Variational Gradient descent
Optimizer optimization

argmin(&)

Objective: Energy, criteria, loss, error, cost

Variational solvers may converge to local minima

..
sof e
/» .
-50
0

Observation (y1, X1) (Y2, X2) ... (YN, XN)

X
Forward Model y=ax+ Db
Least-square solver
2 /\
&= ), = ax;—b) X
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® Unihed Framework Across Imaging Modalities

Computed
Tomography
Filter-back
projection

Event Horizon
Telescope

Black Hole Imaging

Single Particle gy Yy
Analysis @%’ «3“ r*m
TEM —
Cryo EM 0. Be .
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Sinogram

8

Katie Bouman 2019
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® Image Formation Operators

Al A2 A3
B1 B2 B3
C1 C2 C3

Al
A2
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B2
B3
C1
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Convolution

Simplified example of
matrix representation

Toeplitz

matrix

Al
A2
A3
B1
B2
B3
C1
C2

C3

e Usually the matrix is very large
 The operator is a circular convolution

Hotating microcapilary

Light

ouUrce

Simplified example of
“matrix representation

"

with specimen in index

=t matching Hluid

-

ali al2 mi1

a21 a22 mi2

m11 1 1
m12 . 1
m21 o 1 1
m22 1

1

all
al2
a21
a22

e Usually the matrix is very large

 The operator is the Radon transform

Imaging system
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® Image Formation in Microscopy

3D Deconvolution Denoising
: : : Full 360 Rotation
H is a circulant matrix (PSF) H is an identity D
Structured lllumination Microscopy Optical Projection Tomography Comeciec Image
SIM OPT -
H=CoM H=) o Ro 5 8
e (Cis aconvolution (PSF) e Y isan in’[egra’[ign = 9 1
| * Ry is a rotation S W ﬁmgmm
< . Lin;)f CCD |
| s M. Rieckher; PLOS one 2017
Optical Coherence Tomography Digital Holographic Microscopy
OCT DHM
Measures intensity of back-reflected light e Phase interference registered on a »

Vitreous nolologram
Rty e Forward model: propagation of
coherent light

Retinal Pigment Epithelium
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® Inverse Problems in Imaging

X
CAUSES Forward model EFEECTS Inverse problem ESTIMATION
specimen ﬂ measurements ﬂ computed
object signal signal

Real measures Numerical solving
degraded, noise approximative forward model
partial measurements estimation noise model
non-directly interpretable prior on the solution
non-usable as image many unknowns

H Forward Model

-1 1 A . 1
Perfect model y = Hx H s never X = argmin {—HHX — YHZ} No regularization
possible . 2
Real model y =Hx+n |Hx — y||* + AR(X) With regularization
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® Inverse Problem in Practice
X = argmin {Q(HX, y) + ﬂ%(x)}

Data Fidelity Term

Objective
H Noise model 9?

Forward Model Regularizer Term

Physical process modeling « « « « « p D R Encourage smooth or piecewise

Fidelity and consistency? Promote sparsity
Linear? Data-driven
Computational challenges Software toolbox . P
e | arge memory required e Decoupling forward model, optimizer, cost, regularisation oit&ff;;gwﬁ | s
e |terative algorithms are generally slow e Unifying the algorithms for any modality : .
e How to stop the iterative algorithms e EPFL Pyxu (Python) https://pyxu-org.github.io/ e \E%TS‘“ o
* How to set up the hyper parameter? e EPFL GlobalBiolm Library (Matlab) https://biomedical-imaging-group.github.io/
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® Least-square Solution

X

. . (1
Without regularization X = argmin {EHHX — sz} A Don't work when it is ill-posed

Iteration of Landweber VX{ I|Hx — y”z} — H'Hx — HTy

VIA. ' ‘ W‘Jf . "f '::\-“"
" .

Gradient descent: Ir, = H (Hx —y) "“Zv """" P, 4

S ,., ity
“ "g\\\\\\}}s\ ”. "”” ]””II; 0;;; / .; 2":'1*:” ?{/
\\\\ i& '( Q/ l: // 7

Update rule: X; 1 = X T 7Ly ~ ‘ Steepest gradient Conjugate gradient

i a ADMM Alternating Direction Method of
With regularization X = argmin {EHHX Al +5R(X)} Multipliers [Boyd]
X Powerful optimization strategy to solve a

large problem under a given constraint.
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® Regularization

X = argmin {QZ (Hx,y) + l%(x)}

Ground-truth Non regularized Ground-truth

Regmarized o O
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® Regularization

Tikhonov (L2) Total Variation (L1) Hessian Schatten-Norm

2 _ _ i,
2x) = || vx | Zx) = || Vx|, of>  af’
2 R(x) = |V,x| +|V,x] H = fg?fm2 agf%y
R()= | x|l = 1 Vx y Dzdy Oy
Favorize smooth solutions Favorize piecewise constant solutions Favorize thin structure solutions
100 Siyv (SNR: 15.2 dB) and f7, (SNR: 17.1 dB) o fiv (SNR: 15.6 dB) and ff, (SNR: 14.4 dB) — T [ﬂl O ‘|
| < = I O /12
\‘\}/:&‘>~< \-=.>?~\>z<
- R(f) = ||f] ,=Tr(T)

«

Course Introduction to Inverse Problems EPFL o BIO-410 o BIOIMAGE INFORMATICS o DS



Degraded G 0

Degaded G 0.1 Degraded G .2 - , ‘ -

® Regularization

Input
no free input image Iow level of additive aussia me. IveI of aitie usian
A . 1 2 A . .
X = argmin {3||HX -yl +3R(X)} weak regularization
X ADMM TV NN ADMM TV NN ADMM TV NN ADMM TV NN

Tune the regularization to the
hoise level

SNR: 7.51 dB SNR: 7.55 dB SNR: 6.14 dB SNR: 4.03 dB

strong regularization

ADMM TV NN 0.05 ADMM TV NN ADMM TV NN ADMM TV NN

SNR: 5.67 dB SNR: 5.72 dB SNR: 5.77 dB SNR: 5.68 dB
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® Regularization

Implicit regularization

Non-negativity (positivity)

X = argmin
X
{IHx = y|I* + AR(X) + iso(x) }
Early stop
e Stop the iterations before

convergence
* [ricky regularization:
complicated to controlled
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Degraded G 0 Degraded G 0.1

| Degaded G 0.2 )

low level of additive Gaussian med. level of additive Gaussian

no free input image

No constraint
GD

SNR: 7.93 dB SNR: 4.39 dB SNR: 0.16 dB

Non-negativity constraint

FISTA NN FISTA NN FISTA NN

_DegradedG03

high level of additive Gaussian

SNR: -2.97 dB

FISTA NN

SNR: 6.42 dB

SNR: 9.19 dB SNR: 8.26 dB

SNR: 4.61 dB



® Solving Inverse Problem with Deep Learning

Motivation Learn

e DL can learn complex priors from data e PSF

e Handles noise, incomplete data, nonlinearities e Hyper-parameter

e Once it is trained =¥ fast reconstruction (non iterative) e Image transform
Image-to-image End-to-end Mapping

Preprocessing .
Denoising

Artefact
No ground-truth data

Don't rely on the physical model

Correction

=l Train a neural network to directly map
measurements to images (e.g. Unet)
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® Physics-Informed Learning

Plug-and-Plug Priors (PnP) Self-Supervised Inversion [Kobayashi 2020]
Plug in a learned denoiser in the optimizer Know forward model - Assumes statistical independence of noise
[Venkatakrishnan 2013, Hurault 2022, Goujon 2024] ey
input masking f g masking e
Prior . : .
|V|Od6| — B, s '.' — ' . — '
ll : learned fixed <
Data- _
. pseudo-inverse model forward model
Data fidelity | Regularization Driven
complementary — back-propagation
masking —» self-supervision

«—— gradient back-propagation

Deep Unrolling / Unfolding [Gregor &LeCun 2010, Monga 2021]

. . Unroll an iterative
i - algorithm into a NN

L ! j \ Y with each layer

@ Unrolling Input —» —> —p -+ —p Qutput .
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Output

iteration.

Input
I
----- Interpretable Layers

2X 1X 1X 2X ,
Degraded Degraded Raw Prediction Prediction More interpretable (e.g. ADMM-Net)
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