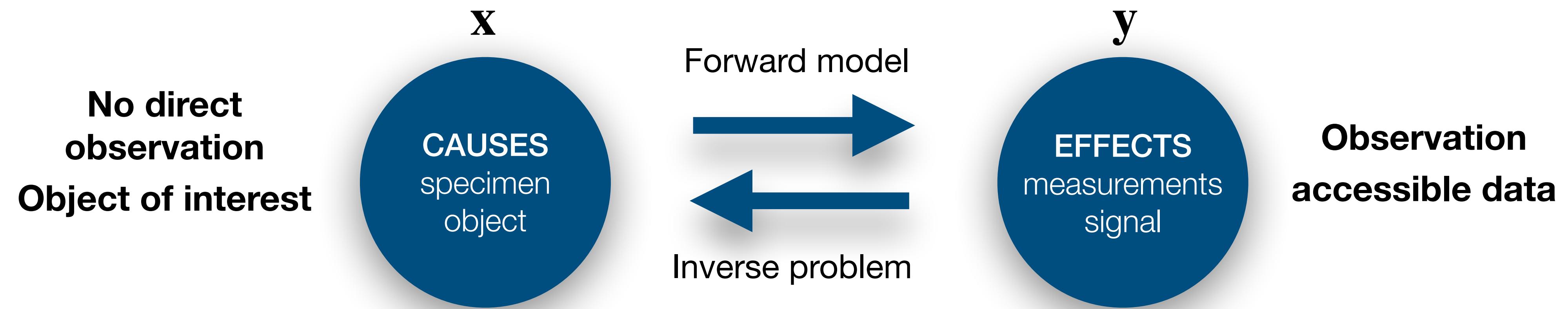
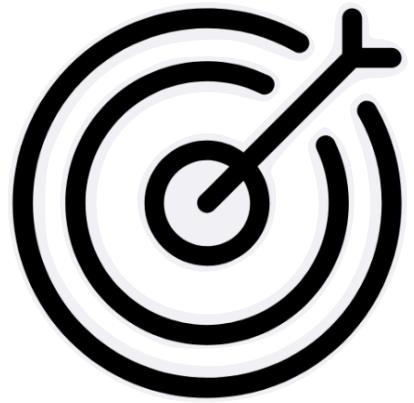


Course

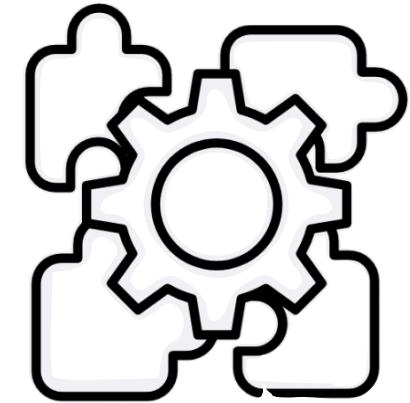
Introduction to Inverse Problems

Inverse Problems



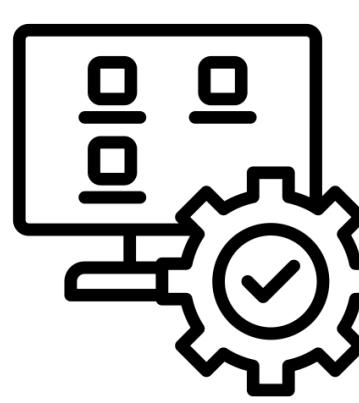
Objective

Find a cause from a consequence
Infer hidden quantities from indirect data
Translate measurements into physics



Reconstruction

Numerically recovering signal
Make use of physical model
Optimization for large data



Applications

Medical Imaging: CT, MRI, EEG
Seismology - Nondestructive testing
Microscopy for life science - Depth

Eye Unknowns vs. Measurements

Sufficient measurements

$$\begin{aligned} x_0 + x_1 &= 7 \\ x_0 - x_1 &= 1 \end{aligned} \quad \Rightarrow \quad \text{[Redacted]}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$

$$\mathbf{H} \mathbf{x} = \mathbf{y}$$

Existence
Uniqueness
Continuous dependency
on data

What if we had less?

$$\begin{aligned} x_0 + x_1 &= 7 \\ x_0 - x_1 &= \text{unknown} \end{aligned}$$

$$(-1,8) \dots (3,4), (4,3) \dots (10,17) \dots$$

→ Add prior knowledge
e.g. difference of A and B is small

→ Add hard constraint
e.g. A is larger than B

→ Learn from previous experiences

noisy me? model mismatch?

$$\begin{aligned} x_0 + (1 \pm \epsilon)x_1 &= 7 \pm \alpha \\ x_0 - (1 \pm \epsilon)x_1 &= 1 \pm \alpha \end{aligned}$$

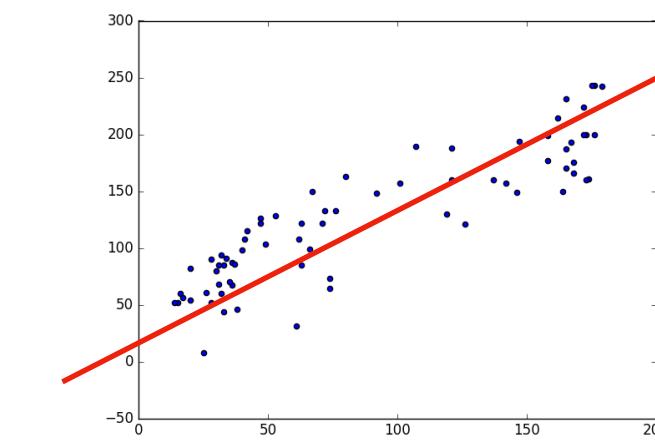
Real life: physical world

measures << # unknowns
Degraded measures, noise
 \mathbf{H} approximation of a
physical device

Eye High-Dimensional Inverse Problem

Overdetermined Problem

Close-form solution



Observation $(y_1, x_1) (y_2, x_2) \dots (y_N, x_N)$

Forward Model $\mathbf{y} = \mathbf{a} \mathbf{x} + \mathbf{b}$

Least-square solver

$$\xi = \sum (y_i - a x_i - b)^2$$

Underdetermined Problem

Variational Optimizer

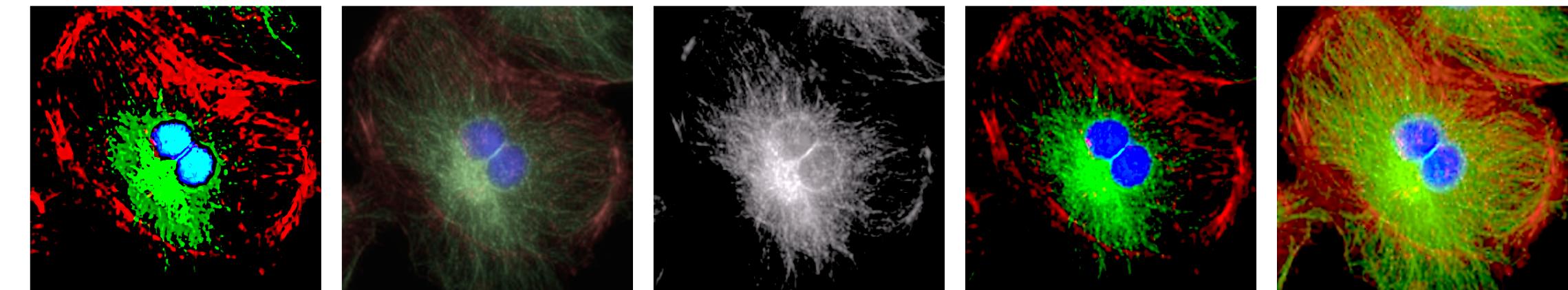
Gradient descent optimization

ξ to minimize $\tilde{x} = \operatorname{argmin}(\xi)$

Objective: Energy, criteria, loss, error, cost

Variational solvers may converge to local minima

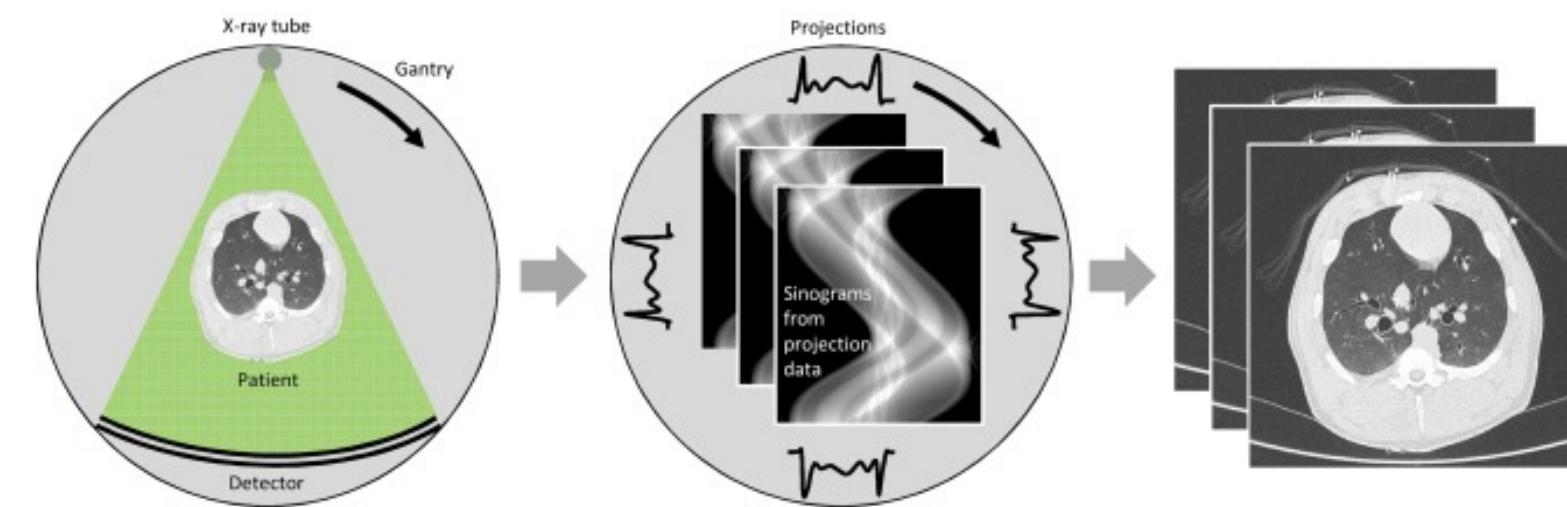
$\hat{\mathbf{x}}$



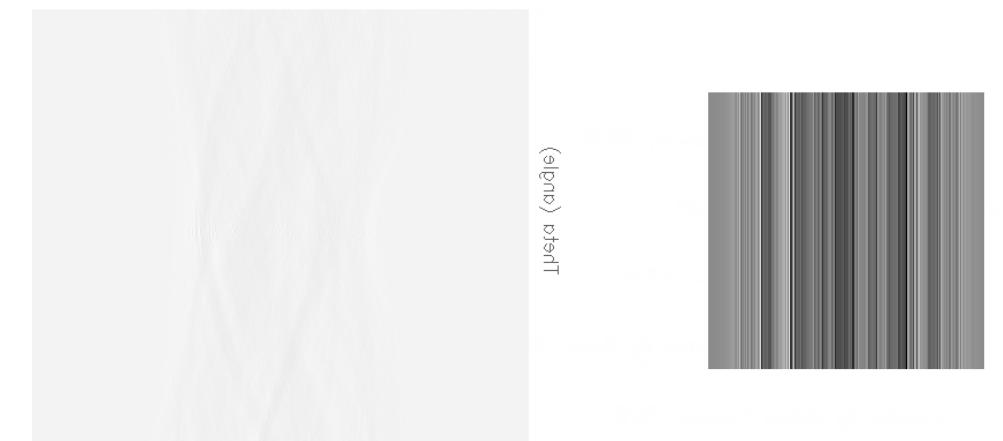
Unified Framework Across Imaging Modalities

Computed Tomography

Filter-back projection

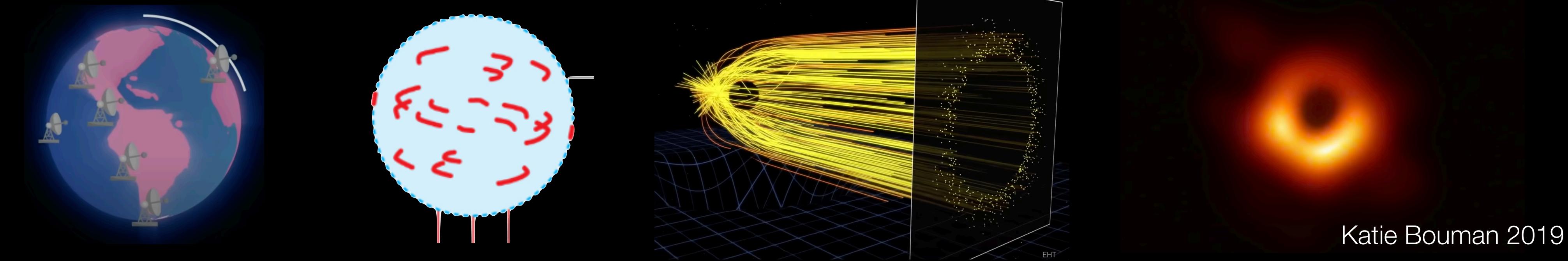


Sinogram



Event Horizon Telescope

Black Hole Imaging



Katie Bouman 2019

Single Particle Analysis

TEM
Cryo EM

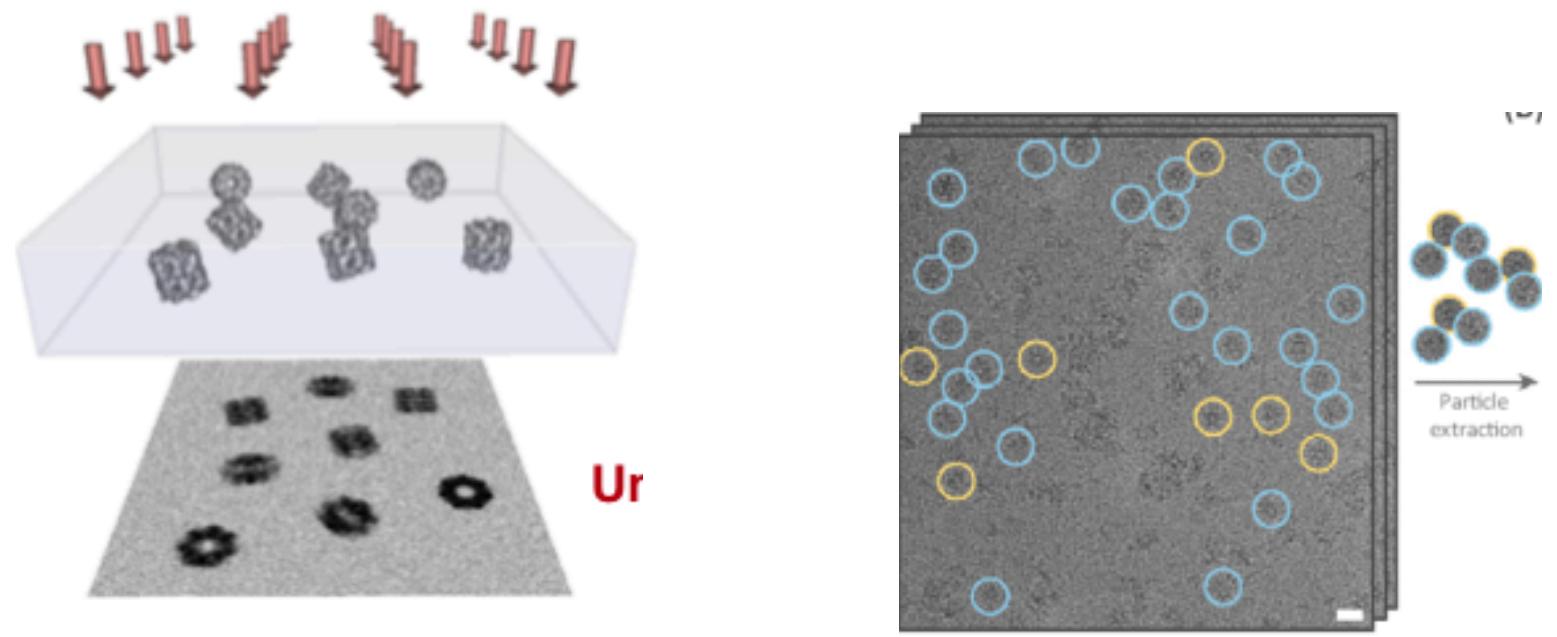
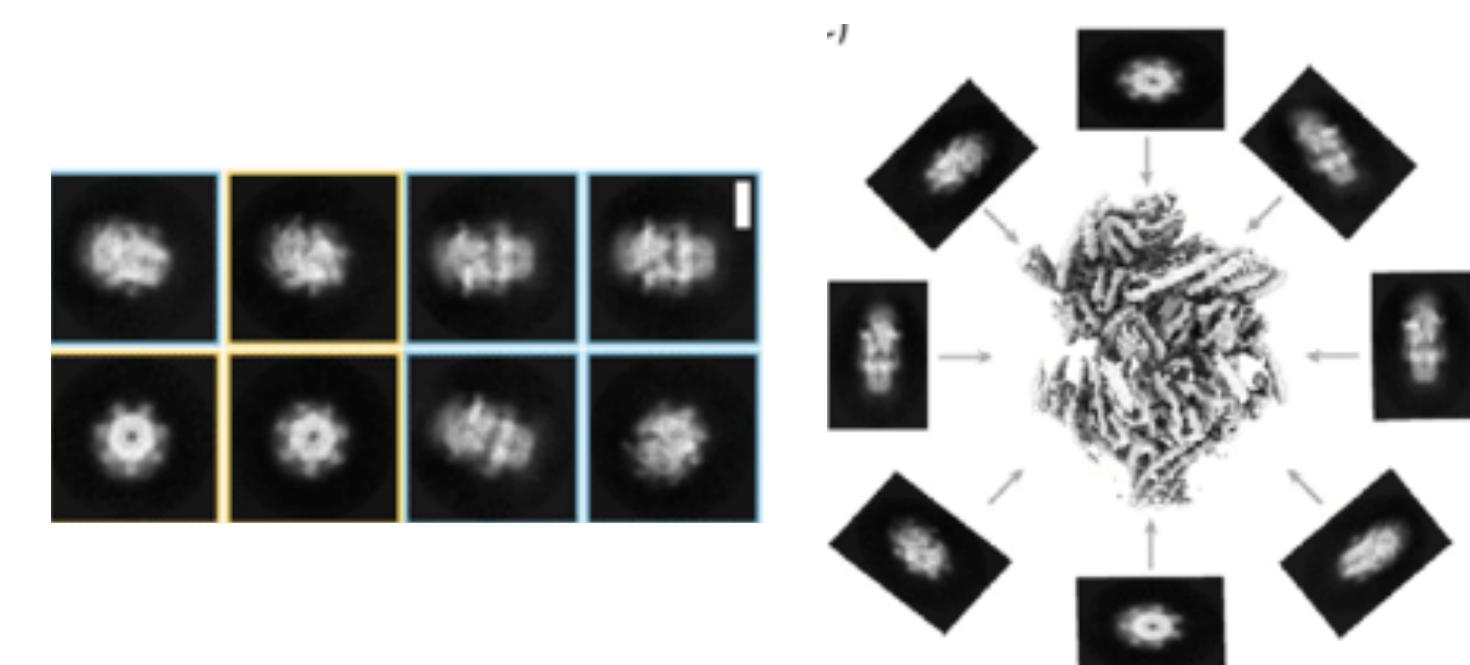
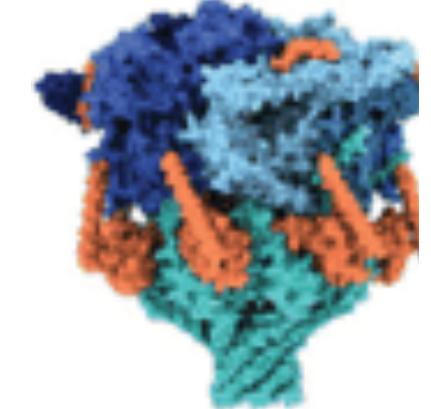
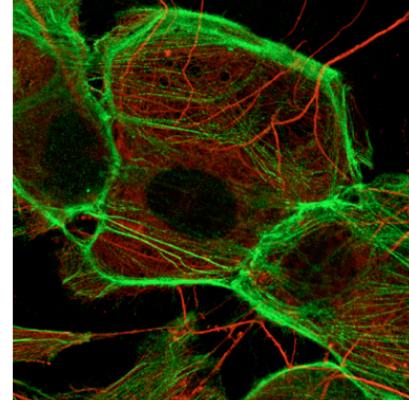
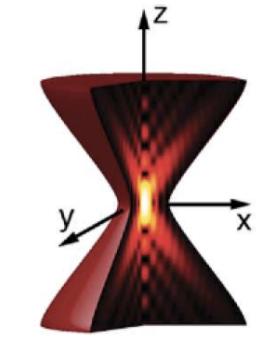
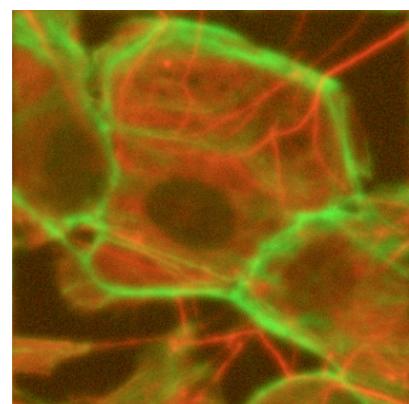


Image Formation Operators

Convolution



Simplified example of matrix representation

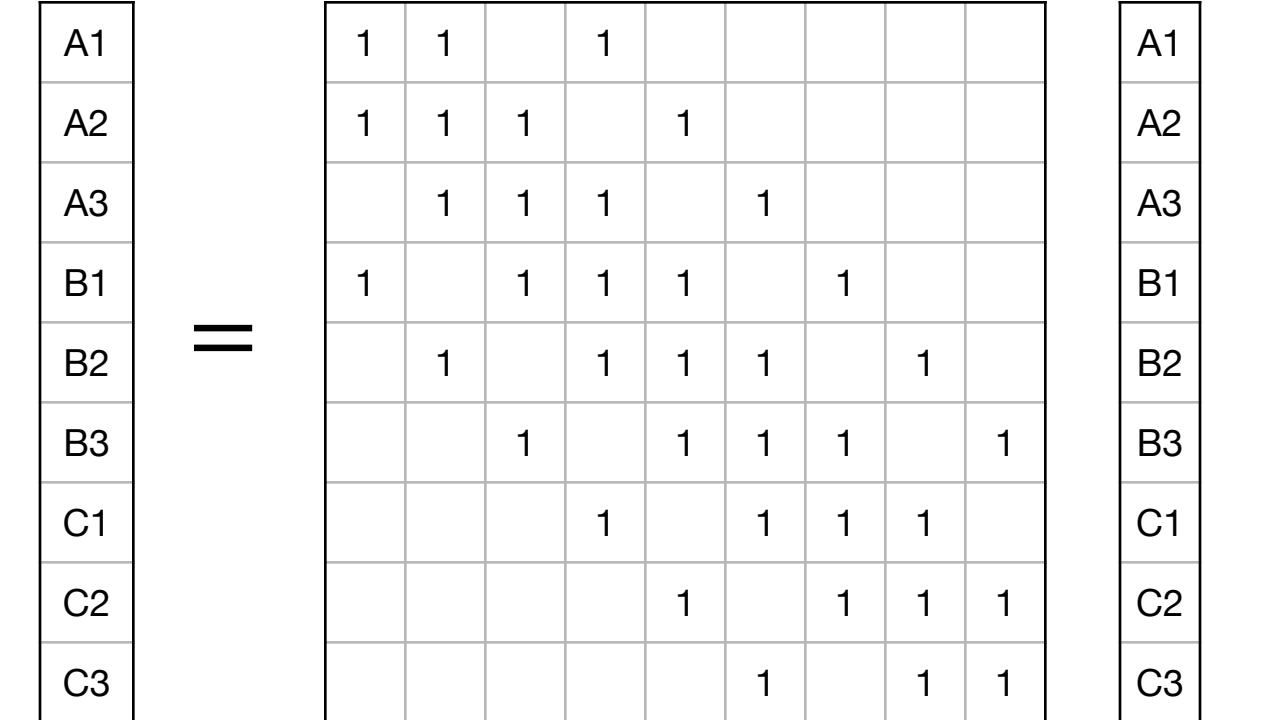
A1	A2	A3
B1	B2	B3
C1	C2	C3

1	1	
1	1	1
1	1	1

Toeplitz matrix

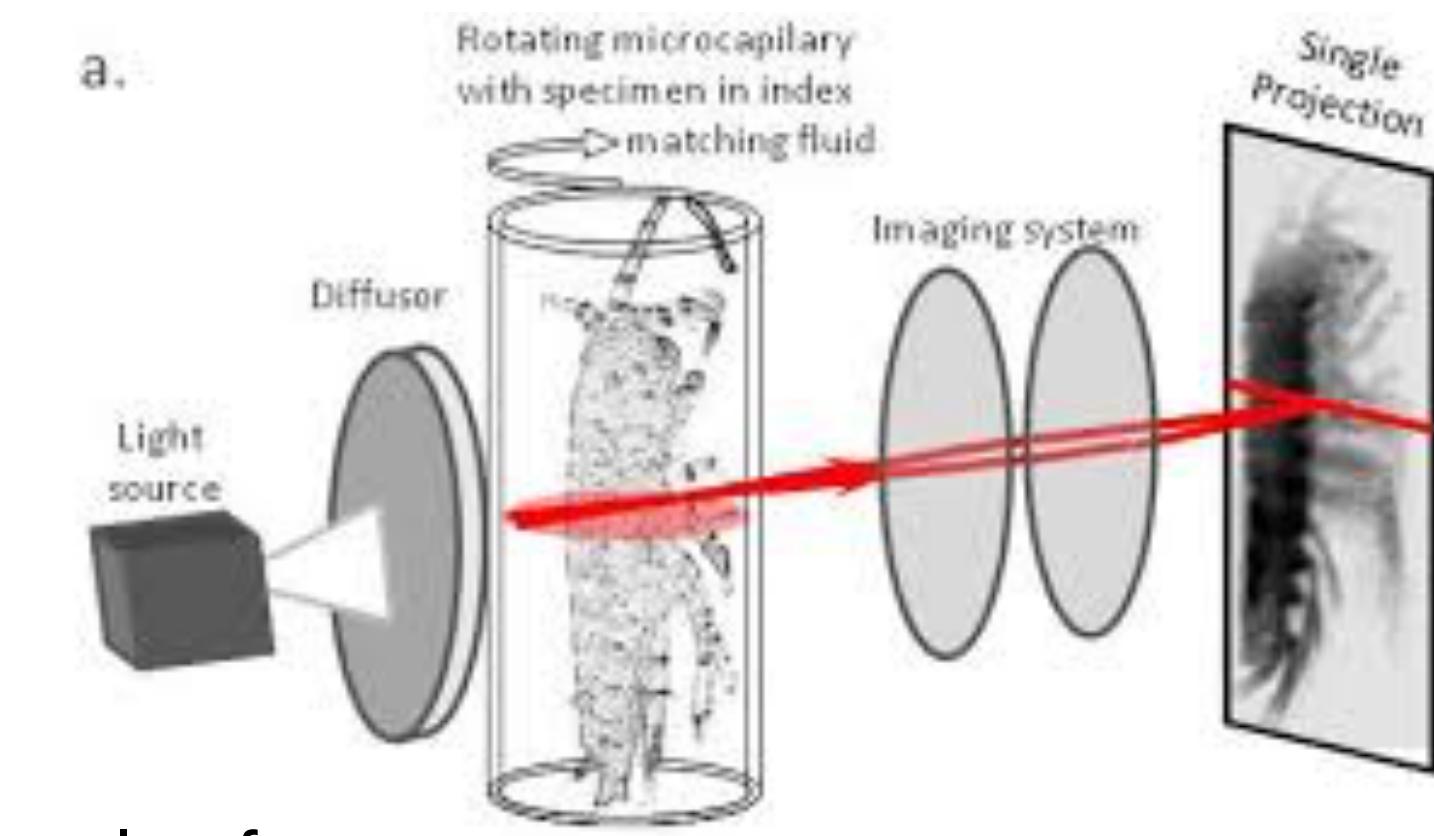
A1							
A2	1	1	1	1	1	1	1
A3	1	1	1	1	1	1	1
B1	1	1	1	1	1	1	1
B2	1	1	1	1	1	1	1
B3	1	1	1	1	1	1	1
C1		1	1	1	1	1	1
C2		1	1	1	1	1	1
C3			1	1	1	1	1

$=$



- Usually the matrix is very large
- The operator is a circular convolution

Projection



Rotating microcapillary with specimen in index matching fluid

Diffuser

Light source

Imaging system

Single projection

Simplified example of matrix representation

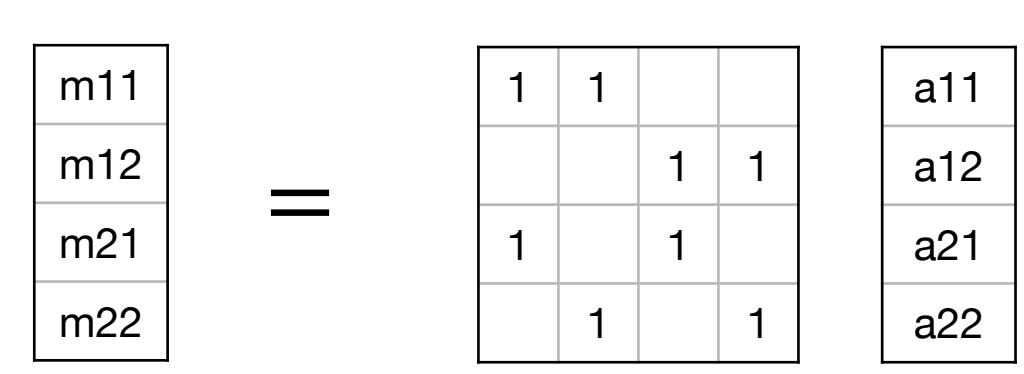
a11	a12
a21	a22

m11
m12
m21
m22

1	1		
1	1	1	1
1	1	1	1

a11			
a12			
a21			
a22			

$=$



- Usually the matrix is very large
- The operator is the Radon transform

Image Formation in Microscopy

3D Deconvolution

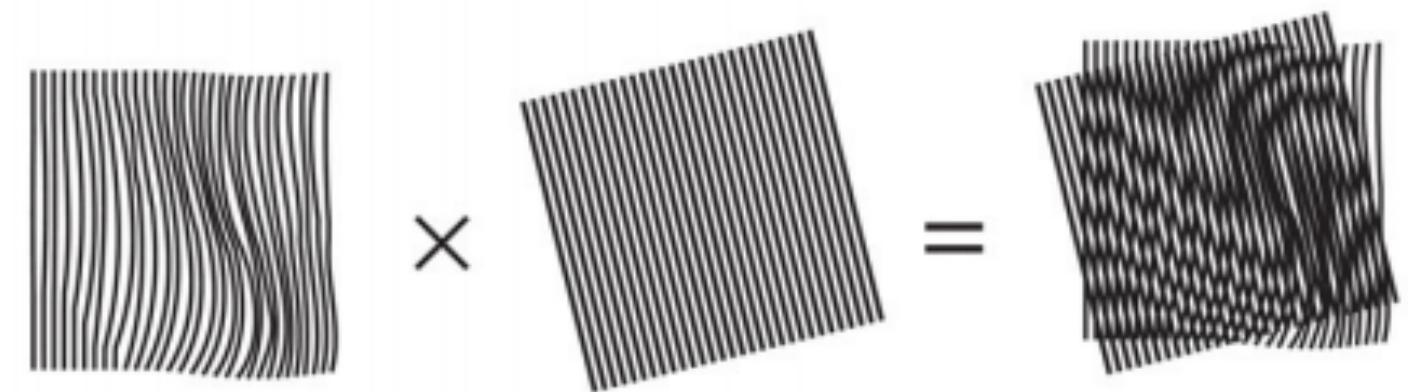
H is a circulant matrix (PSF)

Structured Illumination Microscopy

SIM

$$\mathbf{H} = \mathbf{C} \circ \mathbf{M}$$

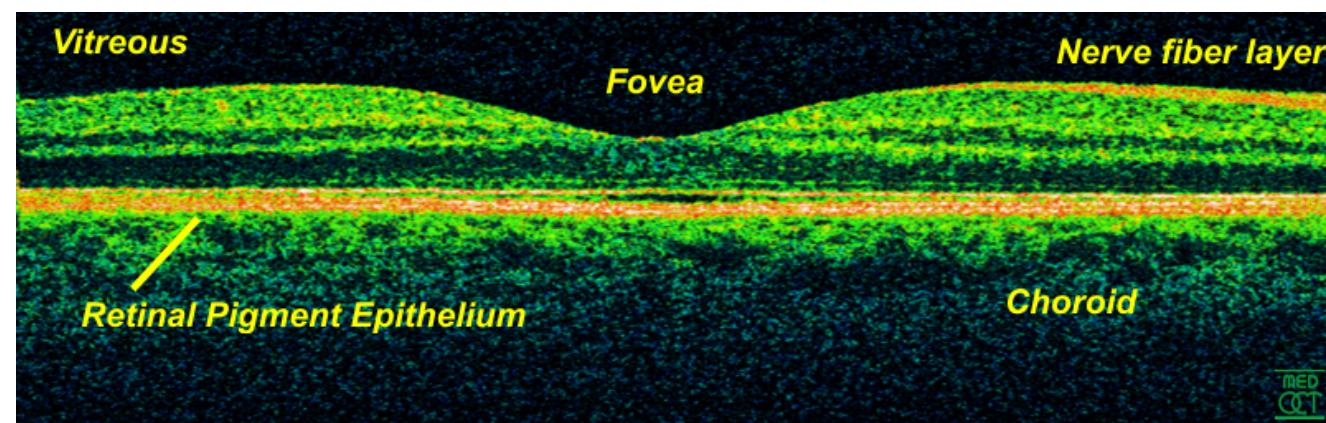
- **C** is a convolution (PSF)



Optical Coherence Tomography

OCT

Measures intensity of back-reflected light



Denoising

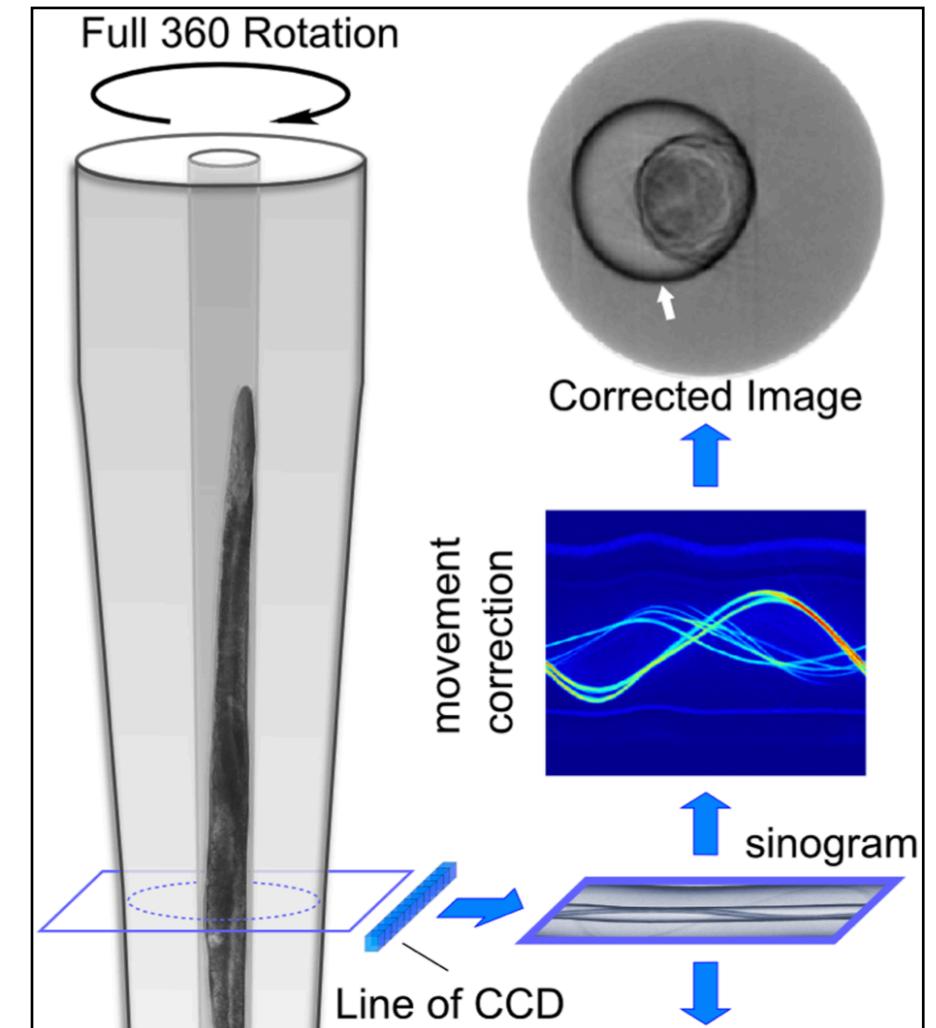
H is an identity

Optical Projection Tomography

OPT

$$\mathbf{H} = \Sigma \circ \mathbf{R}_\theta$$

- Σ is an integration
- \mathbf{R}_θ is a rotation

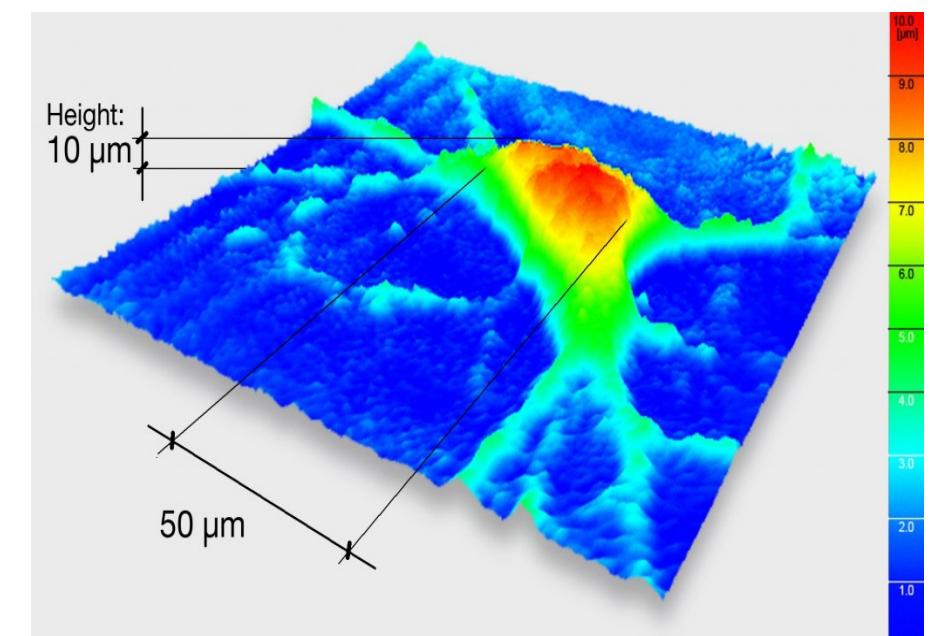


M. Rieckher, PLOS one 2017

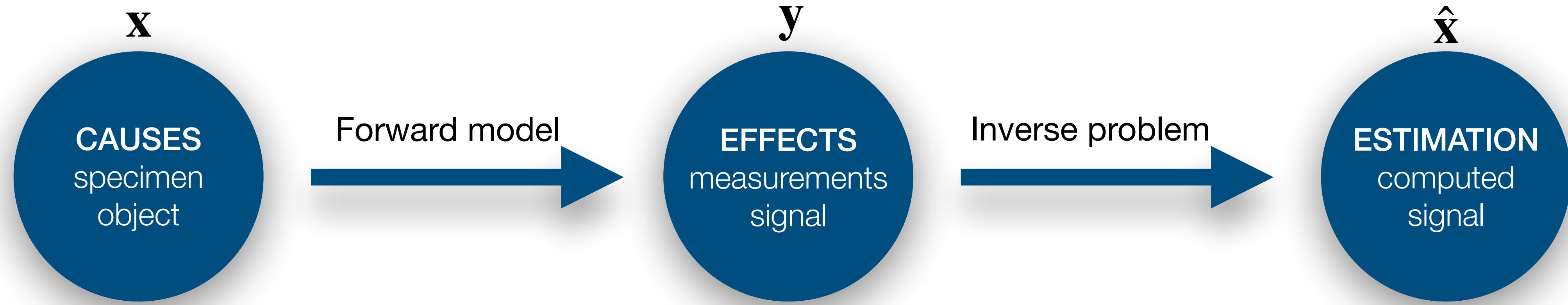
Digital Holographic Microscopy

DHM

- Phase interference registered on a hologram
- Forward model: propagation of coherent light



Inverse Problems in Imaging



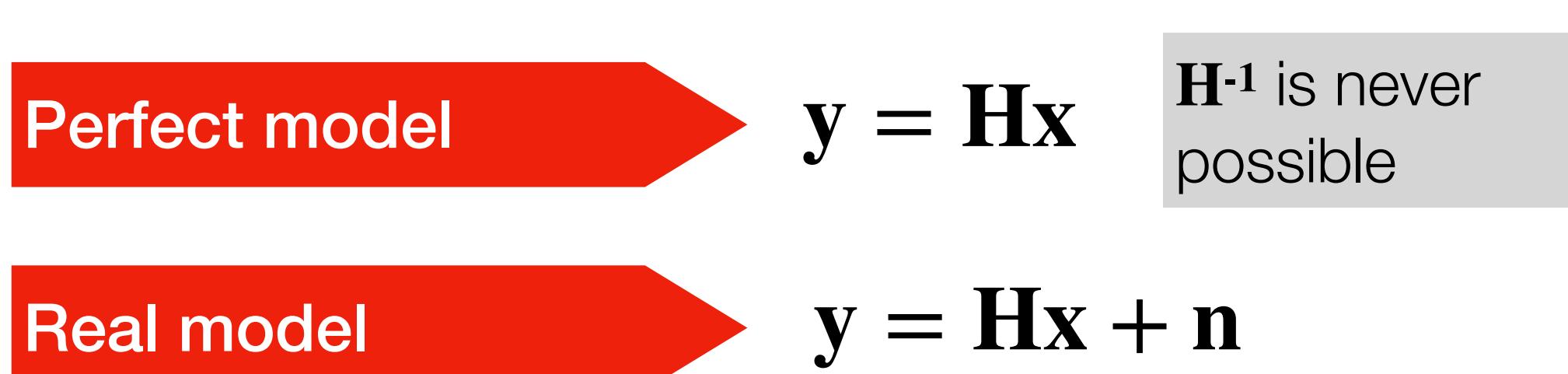
Real measures

degraded, noise
partial measurements
non-directly interpretable
non-usable as image

Numerical solving

approximative forward model
estimation noise model
prior on the solution
many unknowns

H Forward Model



$$\hat{x} = \underset{x}{\operatorname{argmin}} \left\{ \frac{1}{2} \|Hx - y\|^2 \right\}$$

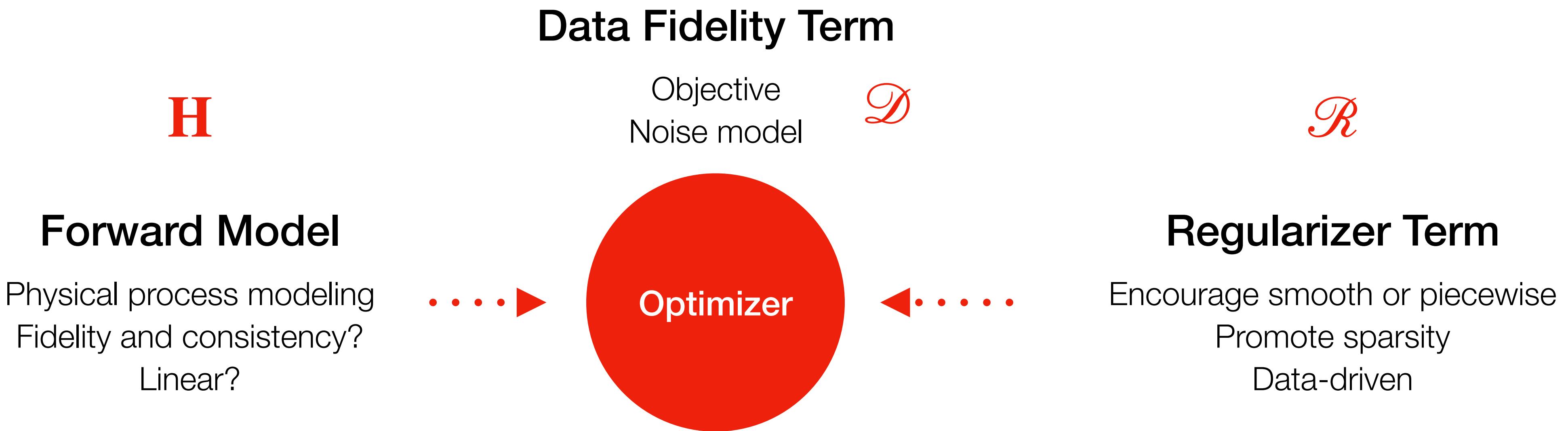
$$\|Hx - y\|^2 + \lambda R(x)$$

No regularization

With regularization

👁 Inverse Problem in Practice

$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ \mathcal{D}(\mathbf{Hx}, \mathbf{y}) + \lambda \mathcal{R}(\mathbf{x}) \right\}$$

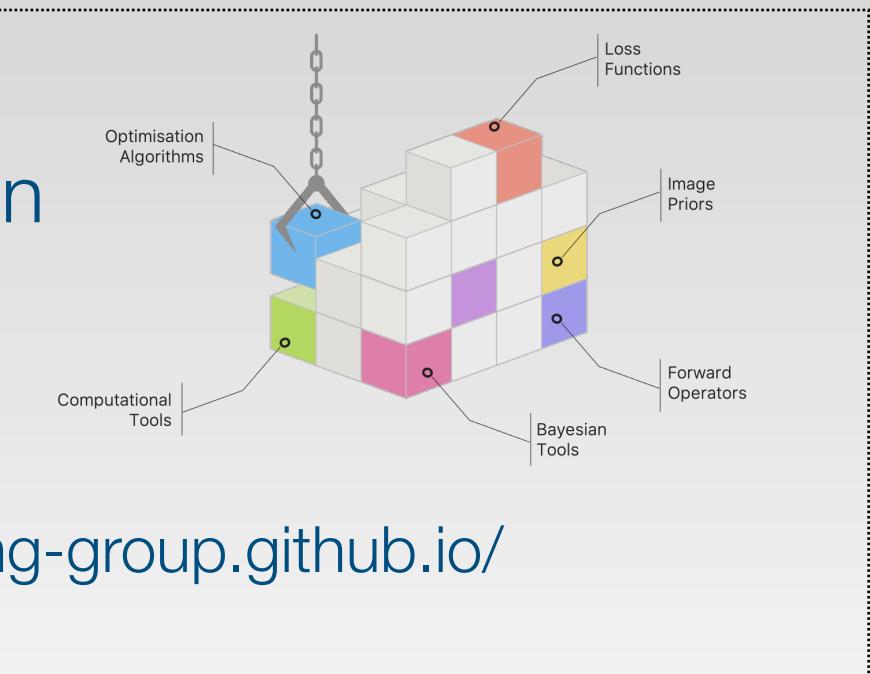


Computational challenges

- Large memory required
- Iterative algorithms are generally slow
- How to stop the iterative algorithms
- How to set up the hyper parameter?

Software toolbox

- Decoupling forward model, optimizer, cost, regularisation
- Unifying the algorithms for any modality
- **EPFL** Pyxu (Python) <https://pyxu-org.github.io/>
- **EPFL** GlobalBiolm Library (Matlab) <https://biomedical-imaging-group.github.io/>



Least-square Solution

Without regularization

$$\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \left\{ \frac{1}{2} \|\mathbf{Hx} - \mathbf{y}\|^2 \right\}$$

Don't work when it is ill-posed

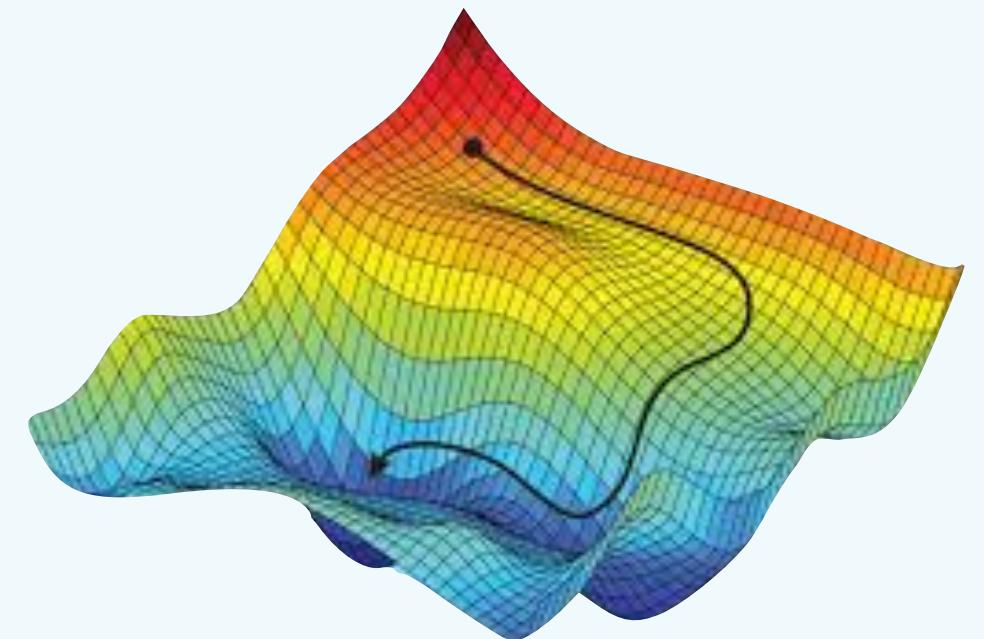
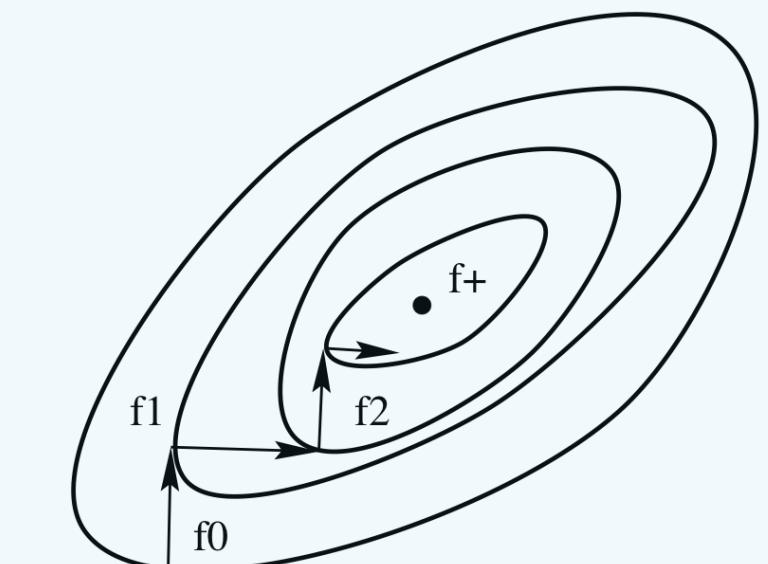
Iteration of Landweber $\nabla_{\mathbf{x}} \left\{ \|\mathbf{Hx} - \mathbf{y}\|^2 \right\} = \mathbf{H}^T \mathbf{Hx} - \mathbf{H}^T \mathbf{y}$

Gradient descent:

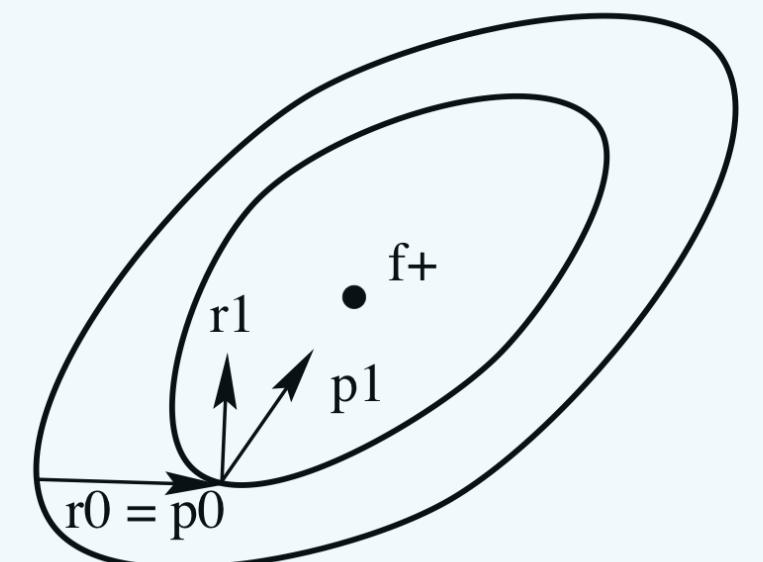
$$\mathbf{r}_k = \mathbf{H}^T(\mathbf{Hx} - \mathbf{y})$$

Update rule:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \gamma_k \mathbf{r}_k$$



Steepest gradient



Conjugate gradient

With regularization

$$\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \left\{ \frac{1}{2} \|\mathbf{Hx} - \mathbf{y}\|^2 + \frac{\lambda}{2} R(\mathbf{x}) \right\}$$

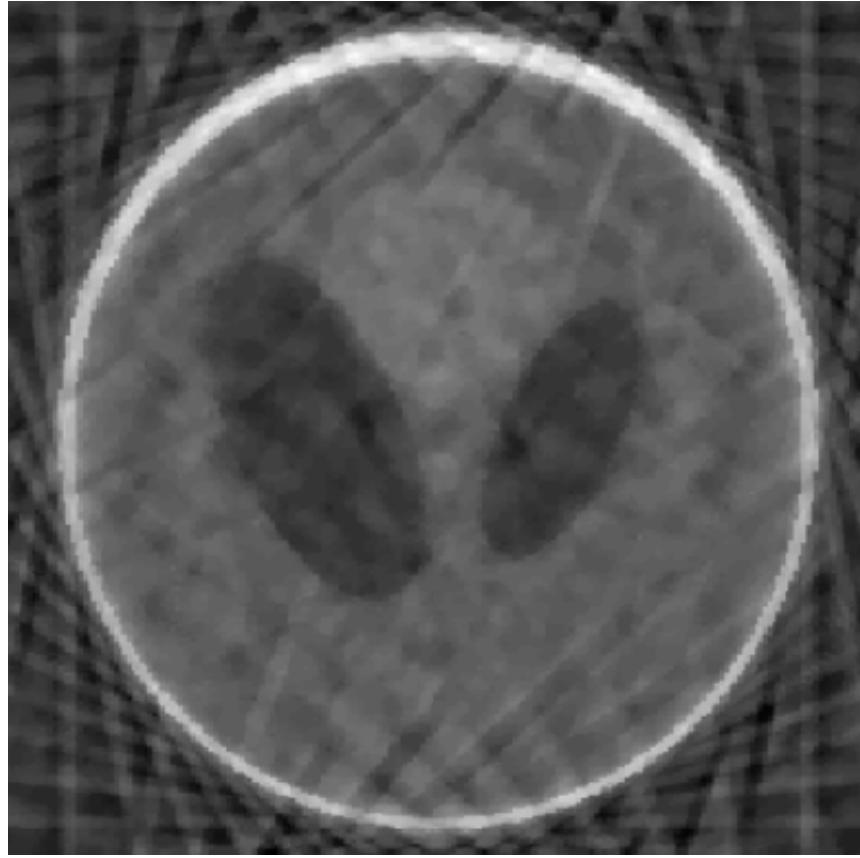
ADMM Alternating Direction Method of Multipliers [Boyd]

Powerful optimization strategy to solve a large problem under a given constraint.

Regularization

$$\tilde{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \left\{ \mathcal{D}(\mathbf{Hx}, \mathbf{y}) + \lambda \mathcal{R}(\mathbf{x}) \right\}$$

Ground-truth



Non regularized

Ground-truth

Non regularized

Regularized solutions

Classic: Image Prior

Learning: Data-Driven

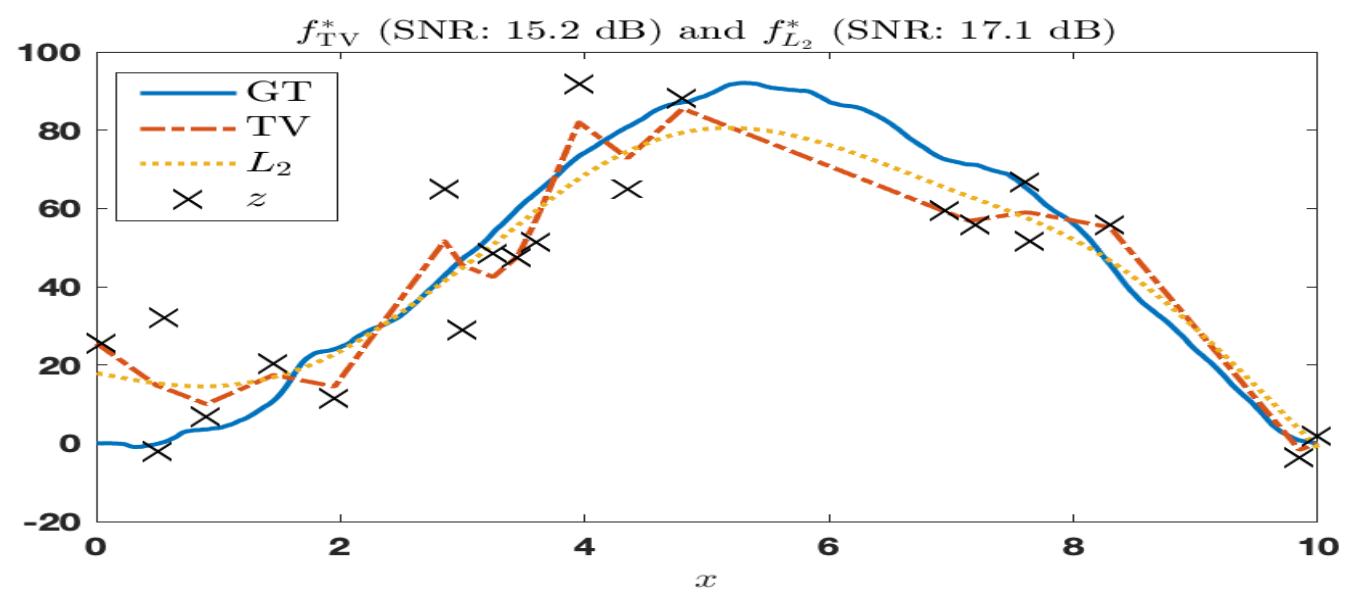
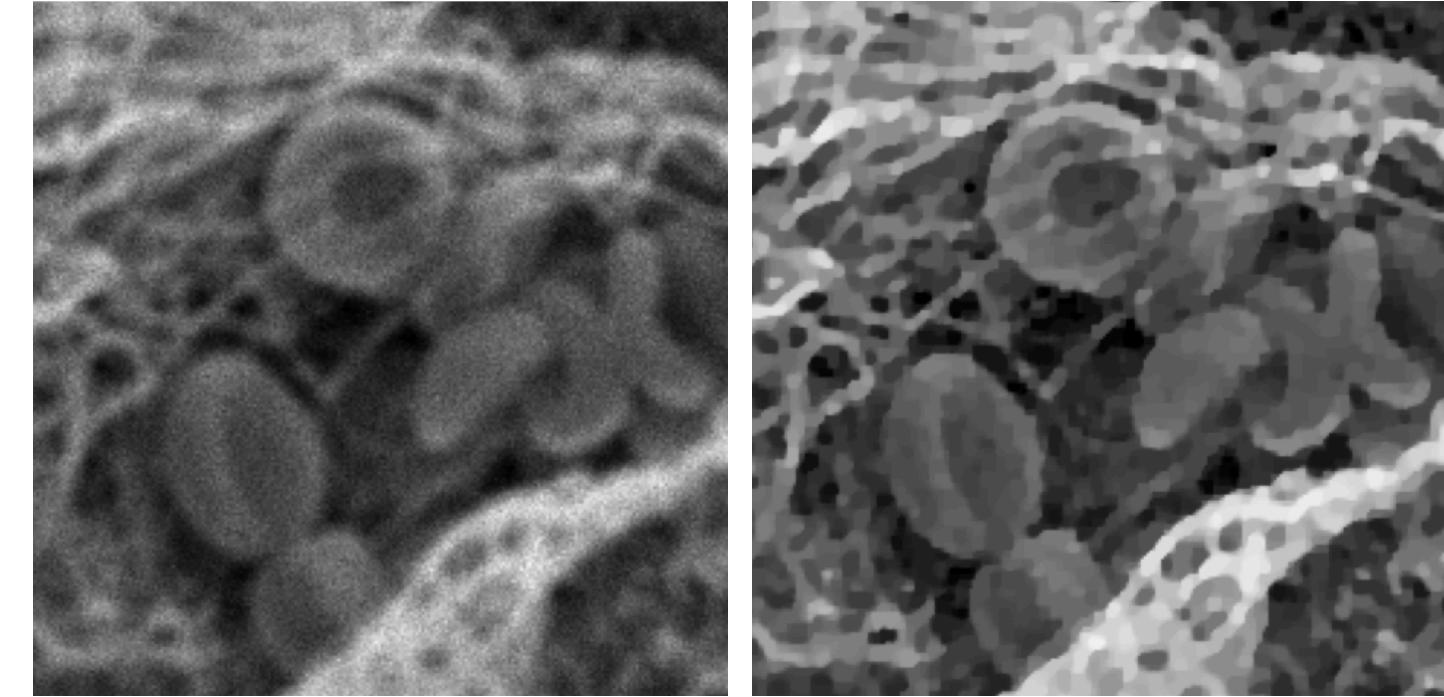
Regularization

Tikhonov (L2)

$$\mathcal{R}(\mathbf{x}) = \|\nabla \mathbf{x}\|^2$$

$$\mathcal{R}(f) = \|\mathbf{x}\|^2$$

Favorize smooth solutions

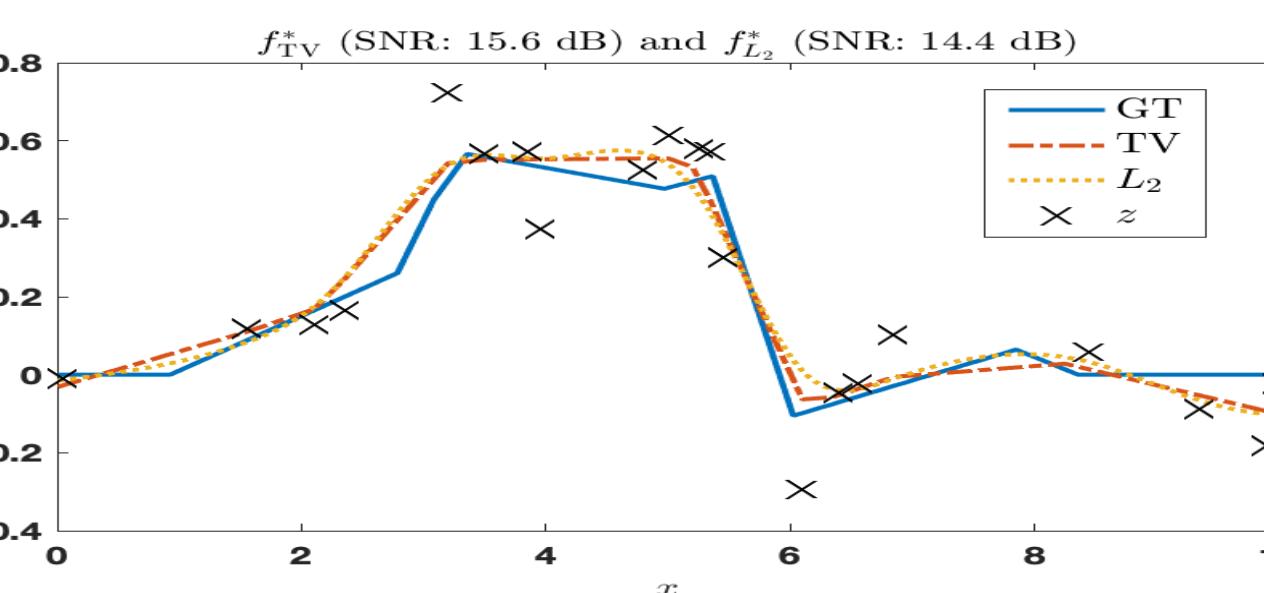
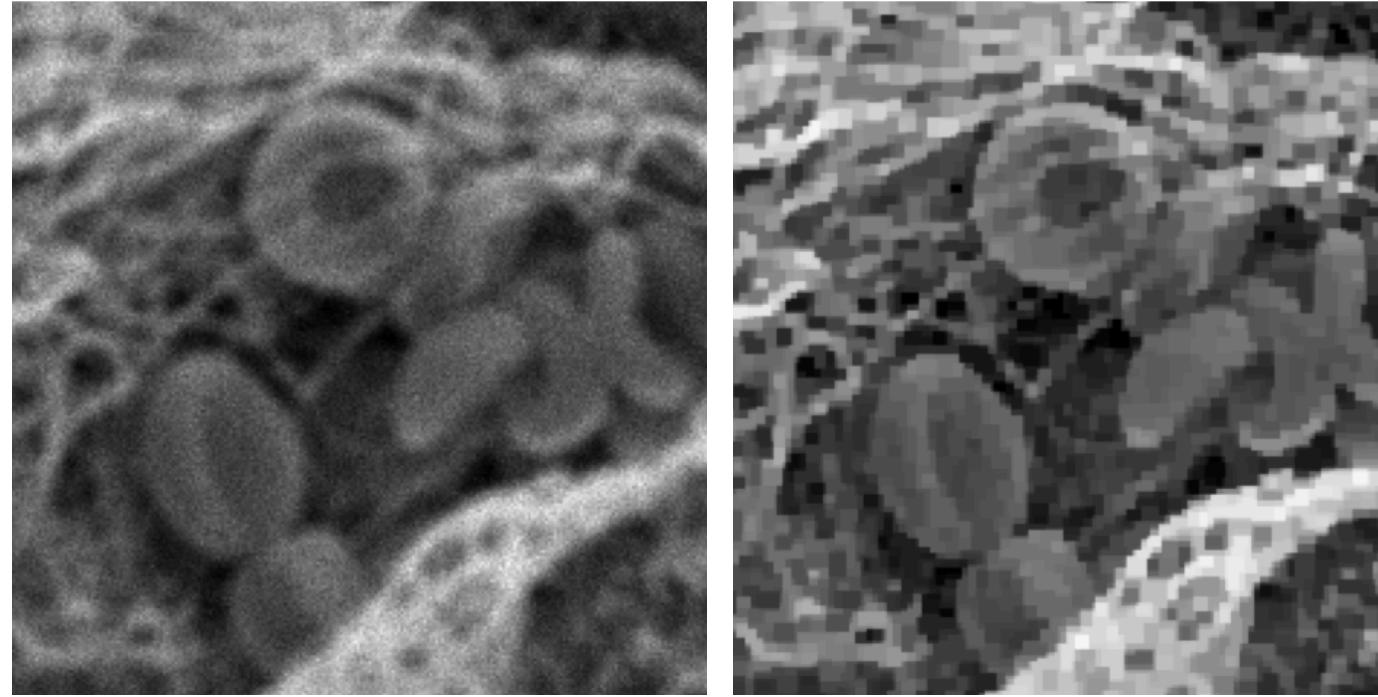


Total Variation (L1)

$$\mathcal{R}(\mathbf{x}) = \|\nabla \mathbf{x}\|_1$$

$$\mathcal{R}(\mathbf{x}) = |\nabla_x \mathbf{x}| + |\nabla_y \mathbf{x}|$$

Favorize piecewise constant solutions



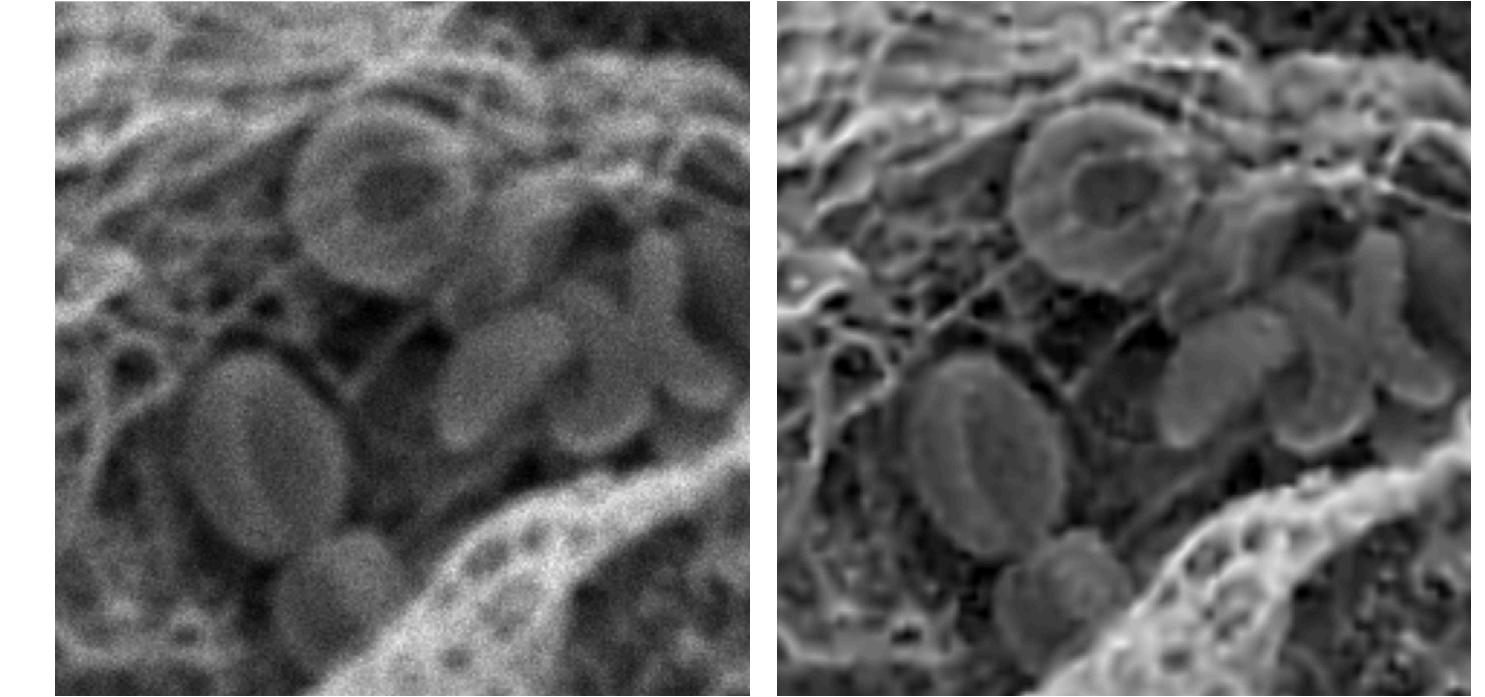
Hessian Schatten-Norm

$$H = \begin{bmatrix} \frac{\partial f^2}{\partial x} & \frac{\partial f^2}{\partial x \partial y} \\ \frac{\partial f^2}{\partial x \partial y} & \frac{\partial f^2}{\partial y} \end{bmatrix}$$

Favorize thin structure solutions

$$T = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$R(f) = \|f\|_{\mathcal{S}} = \text{Tr}(T)$$

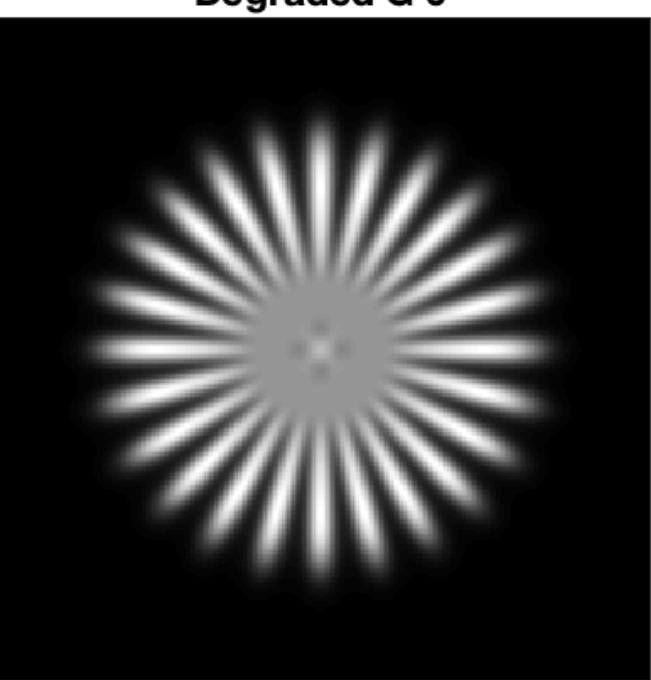


Regularization

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ \frac{1}{2} \|\mathbf{Hx} - \mathbf{y}\|^2 + \frac{\lambda}{2} R(\mathbf{x}) \right\}$$

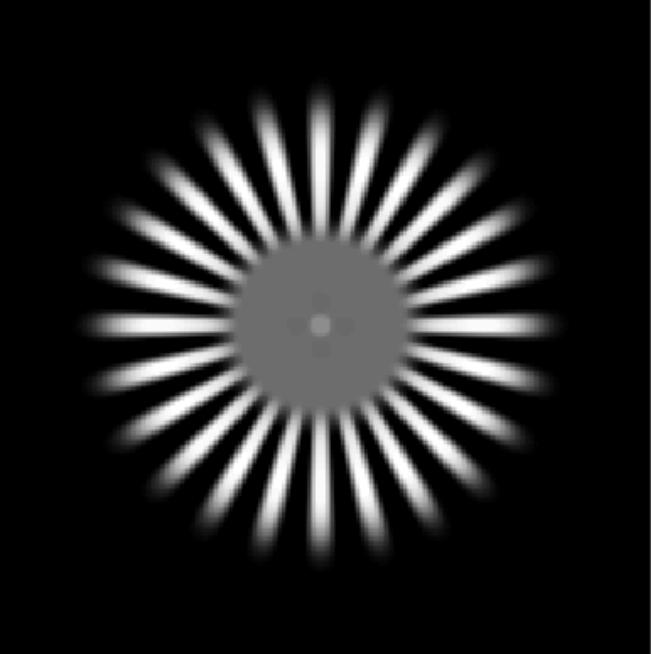
Tune the regularization to the noise level

Input



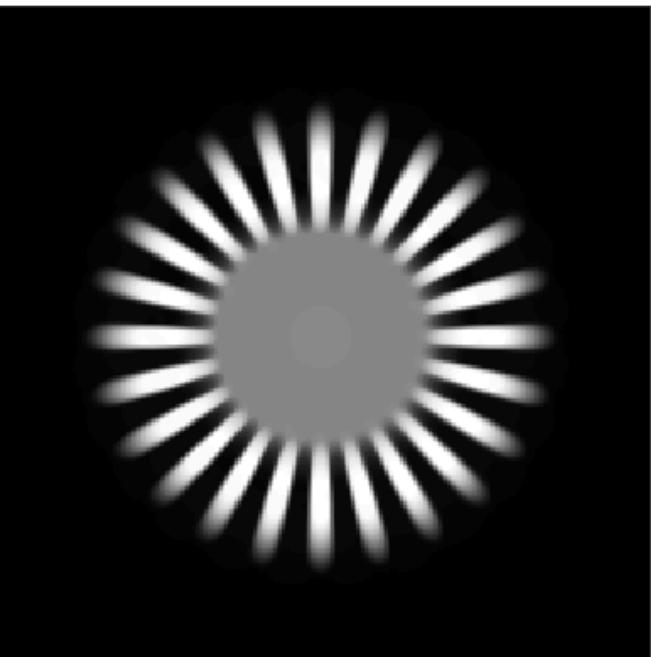
no free input image

ADMM TV NN



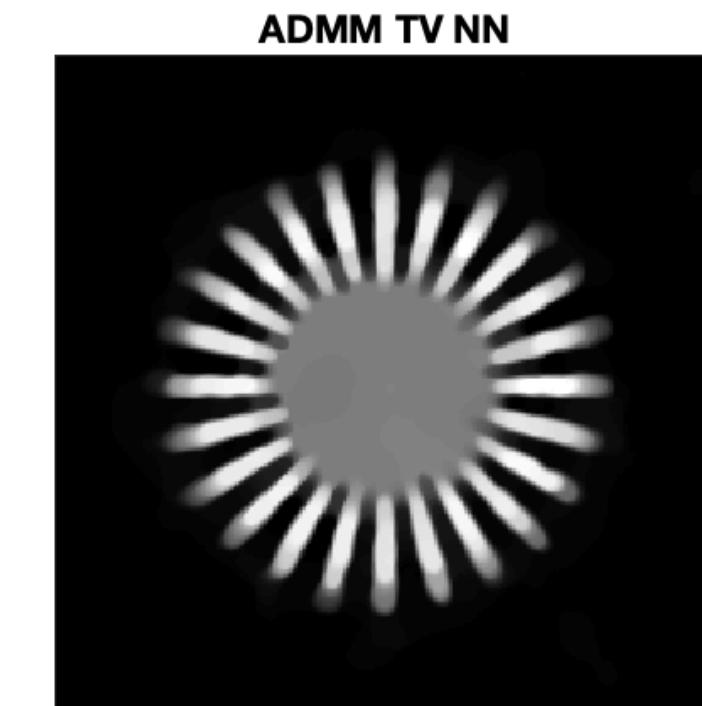
SNR: 7.51 dB

ADMM TV NN 0.05



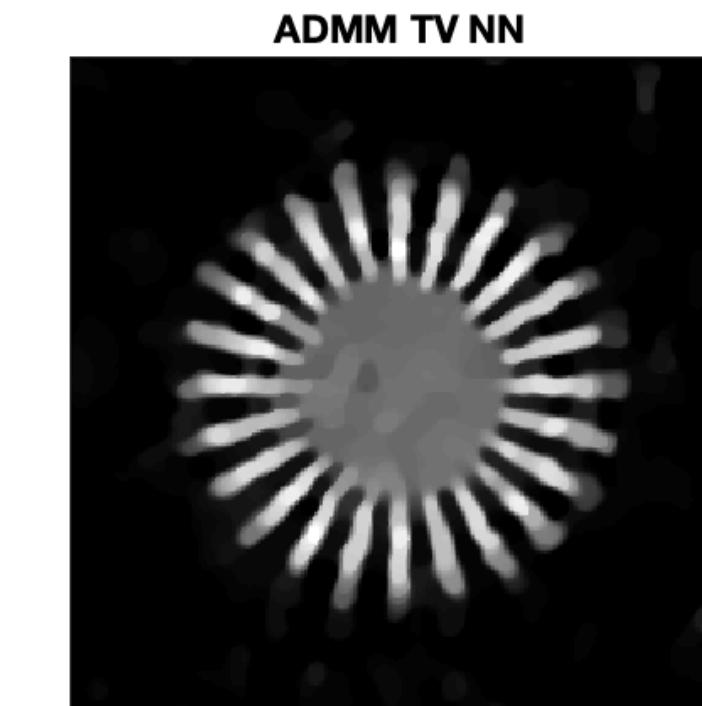
SNR: 5.67 dB

ADMM TV NN



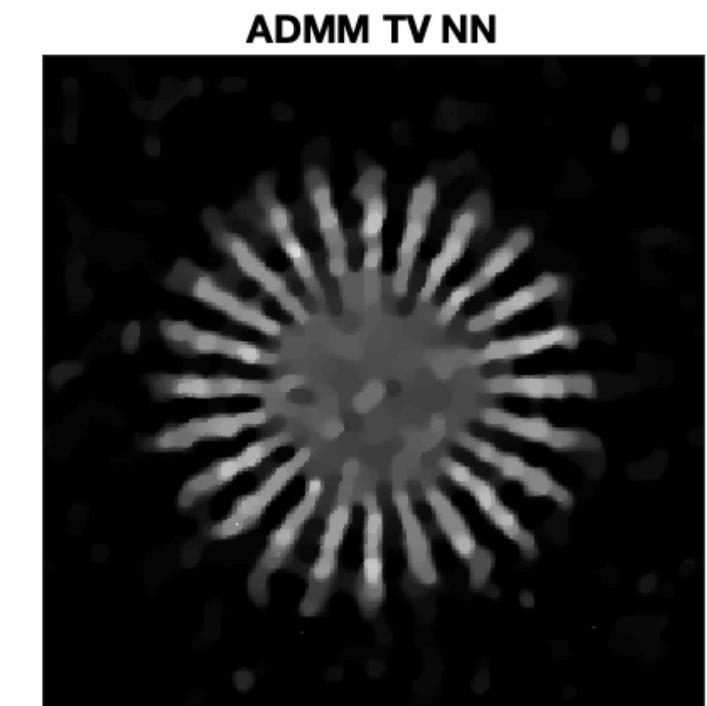
SNR: 5.72 dB

ADMM TV NN



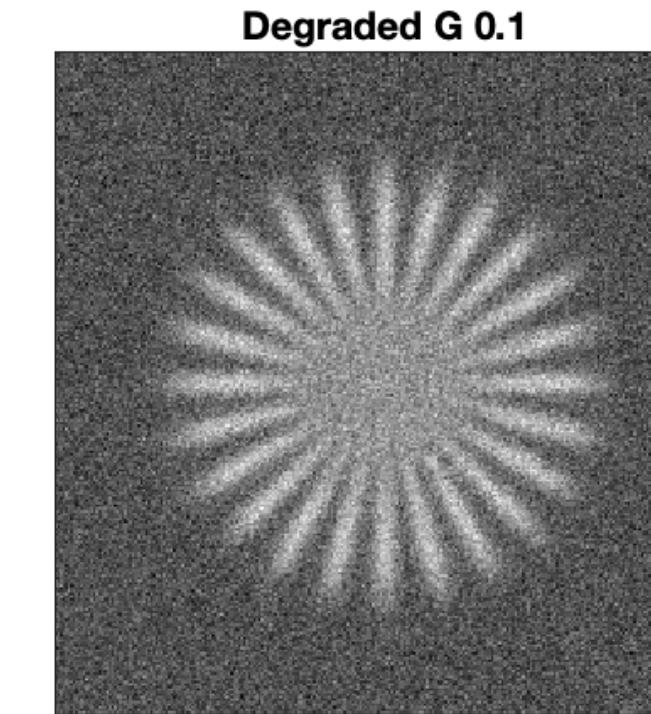
SNR: 5.77 dB

ADMM TV NN



SNR: 5.68 dB

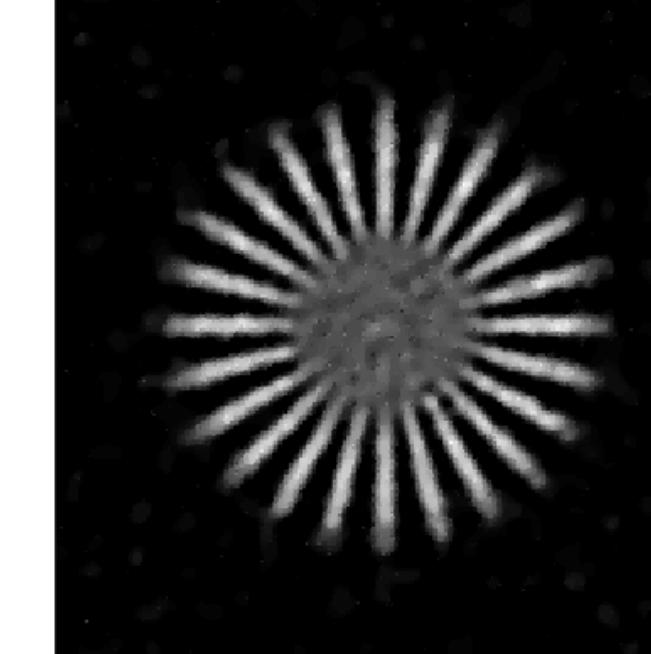
Degraded G 0



low level of additive Gaussian

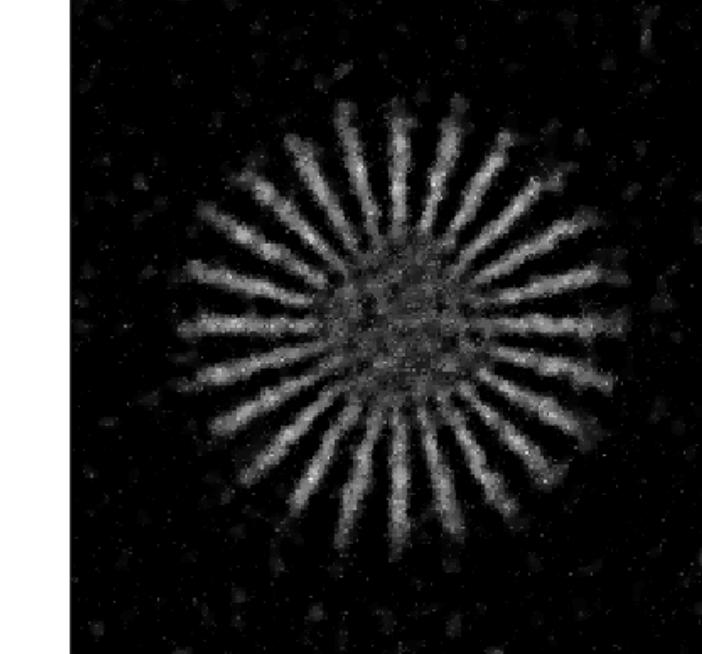
weak regularization

ADMM TV NN



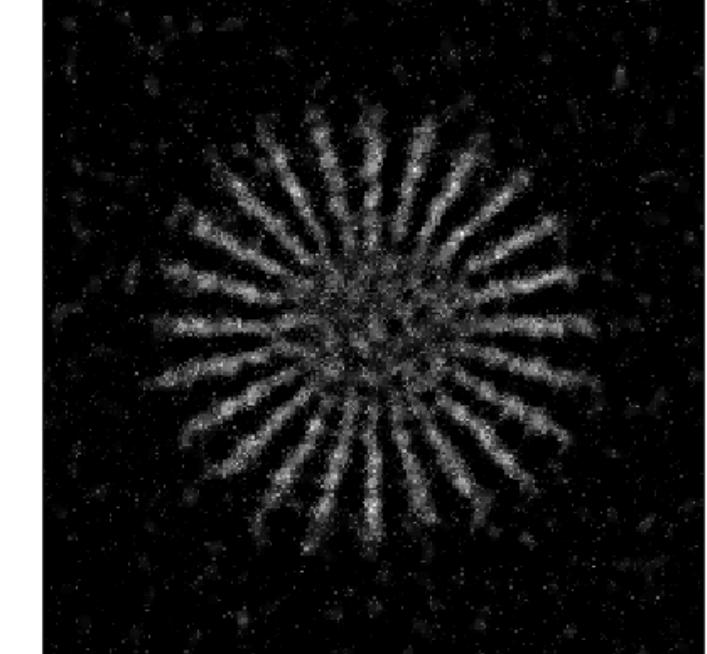
SNR: 7.55 dB

ADMM TV NN



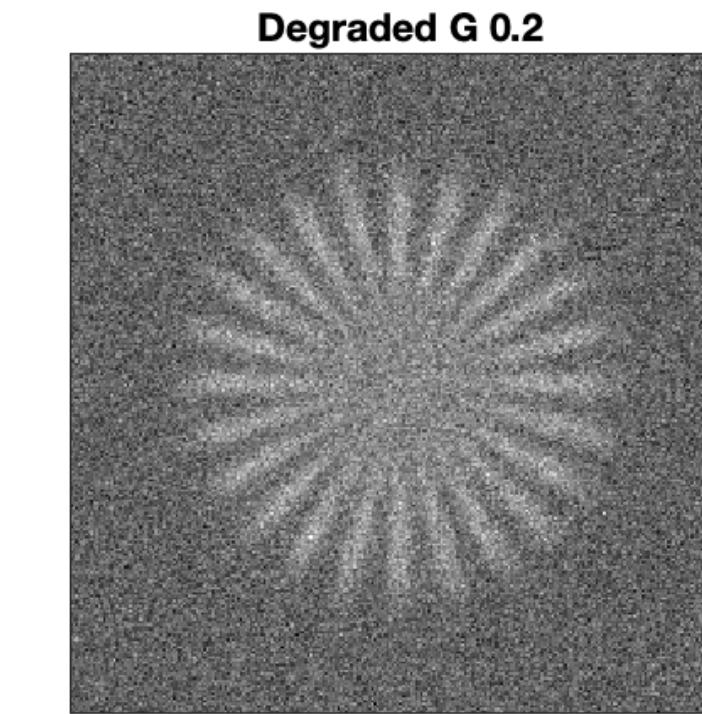
SNR: 6.14 dB

ADMM TV NN



SNR: 4.03 dB

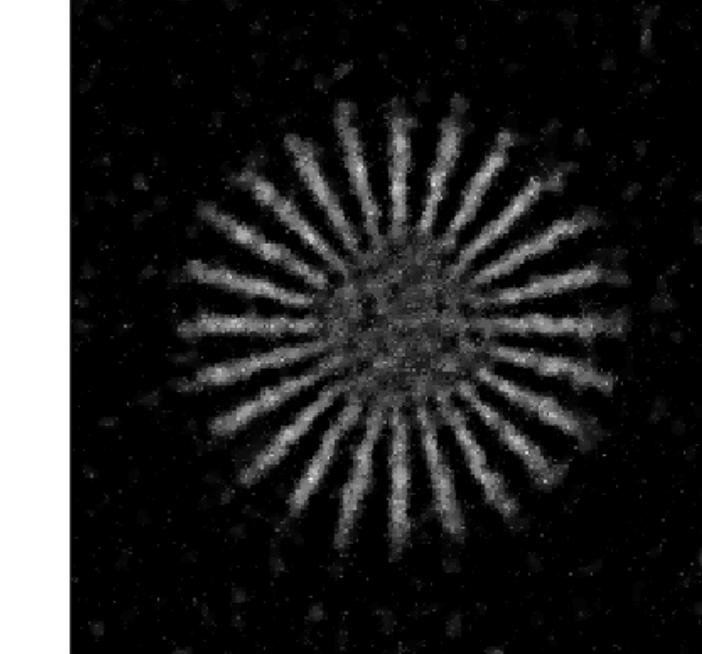
Degraded G 0.1



med. level of additive Gaussian

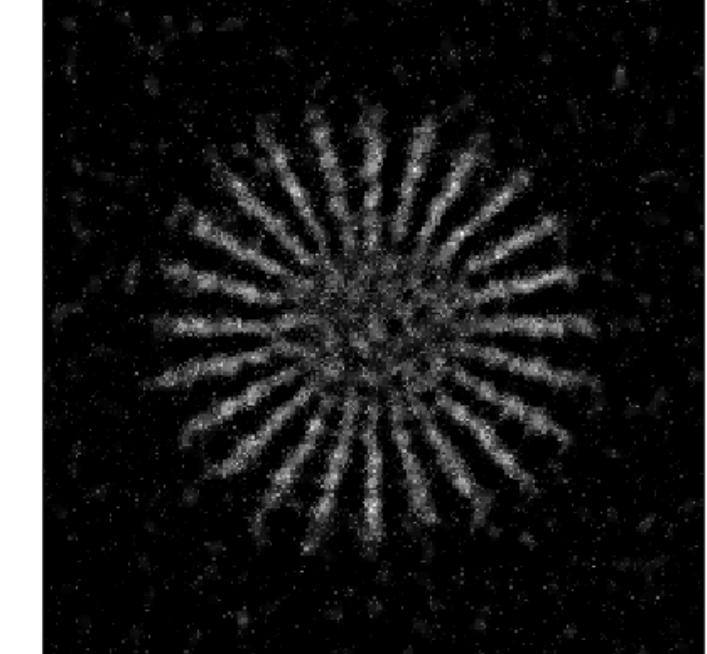
strong regularization

ADMM TV NN



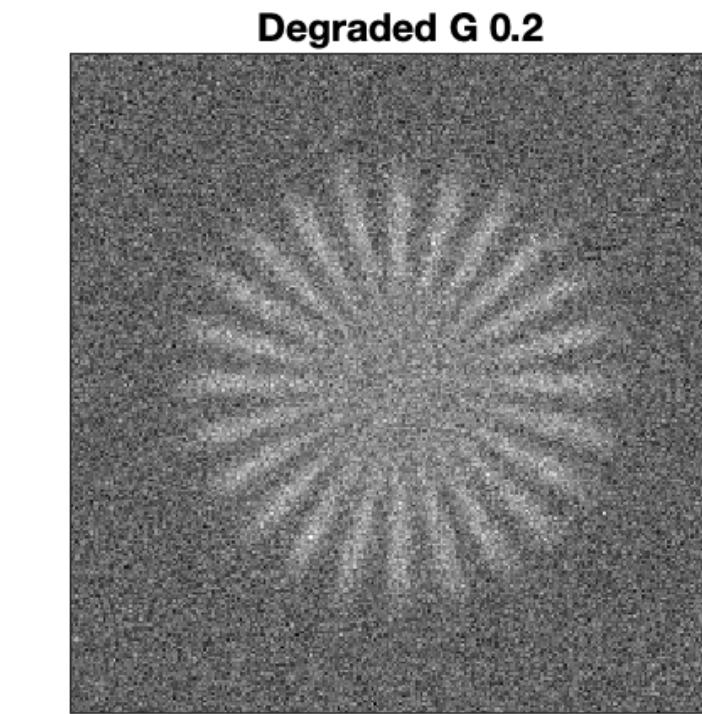
SNR: 5.77 dB

ADMM TV NN



SNR: 5.68 dB

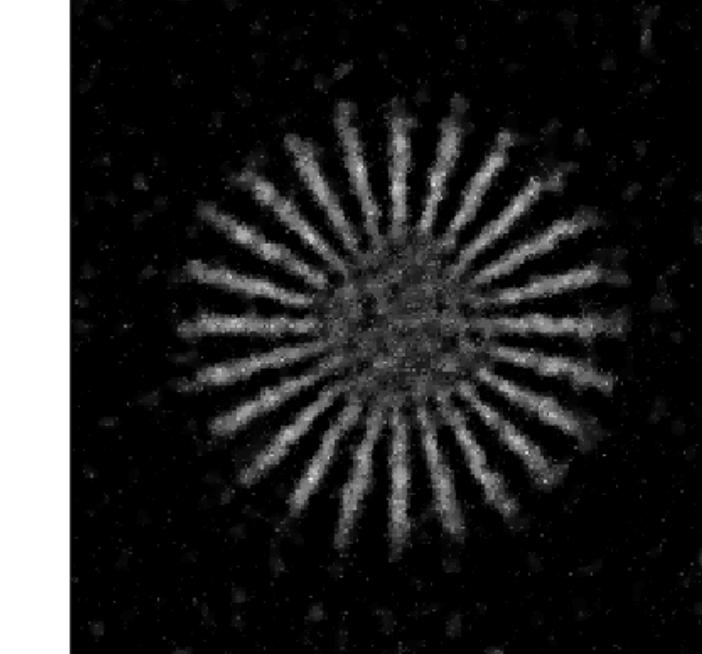
Degraded G 0.2



high level of additive Gaussian

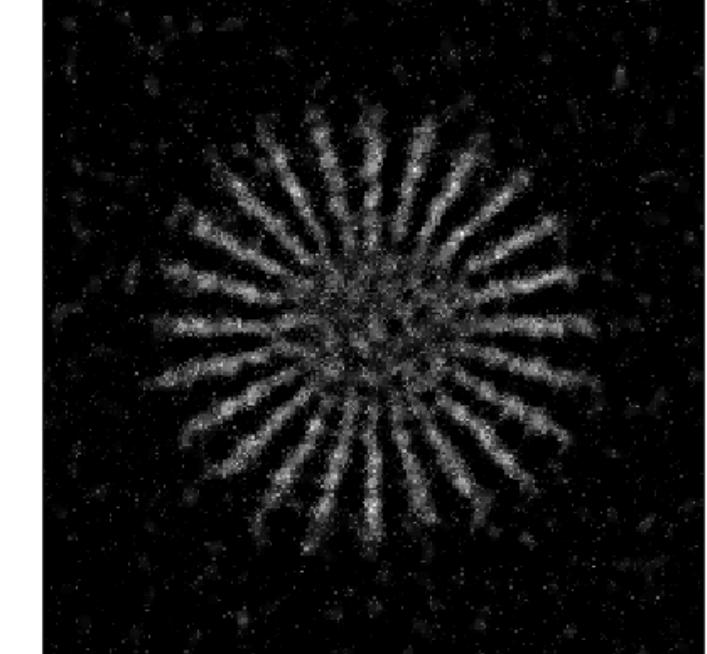
strong regularization

ADMM TV NN



SNR: 5.77 dB

ADMM TV NN

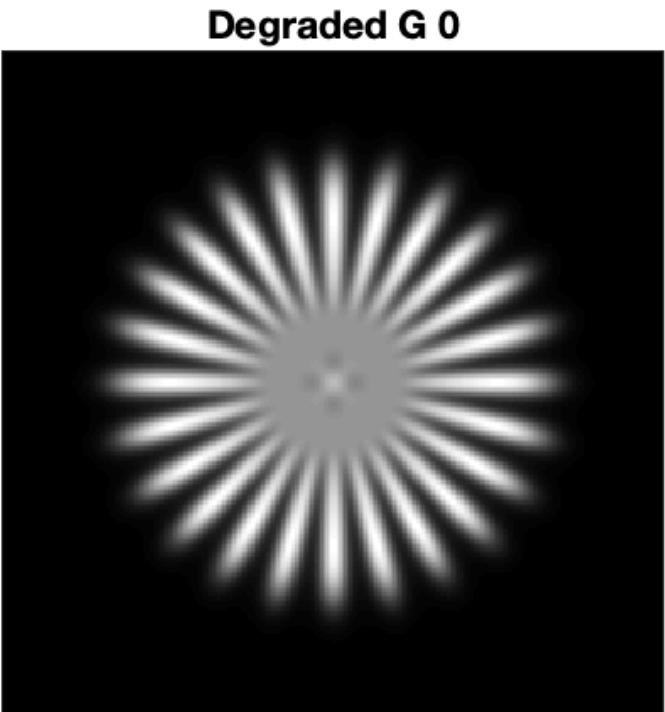


SNR: 5.68 dB

strong regularization

Regularization

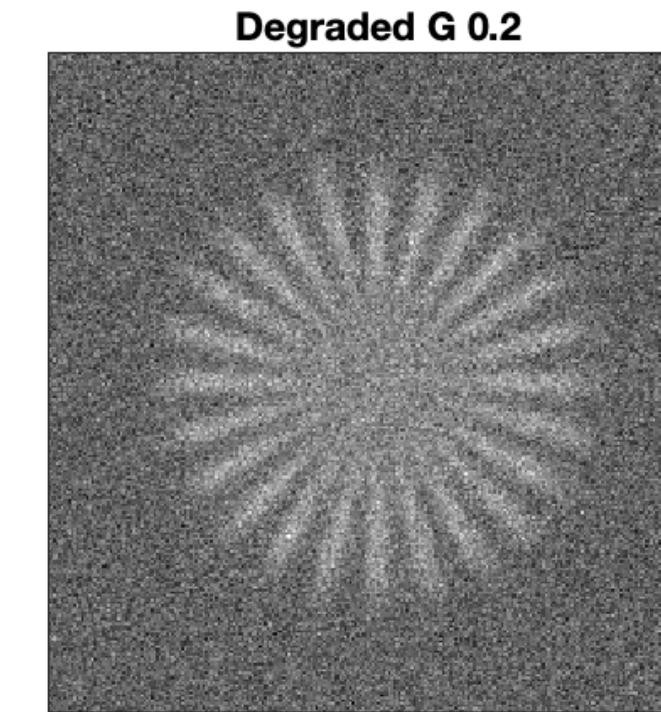
Implicit regularization



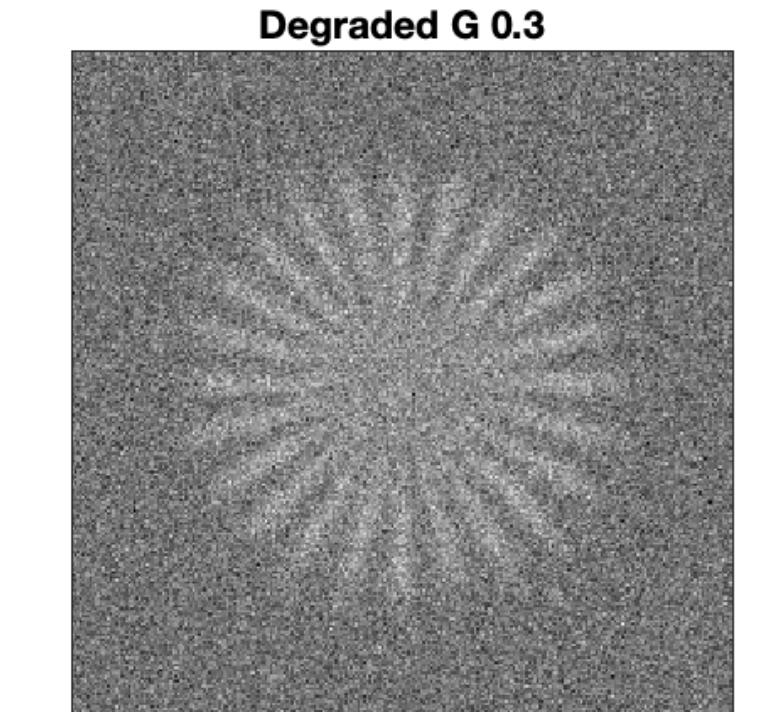
no free input image



low level of additive Gaussian



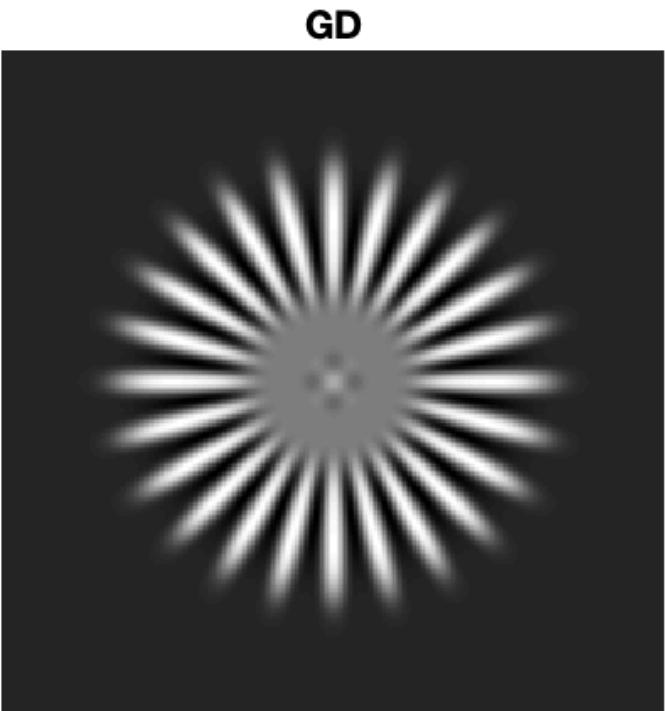
med. level of additive Gaussian



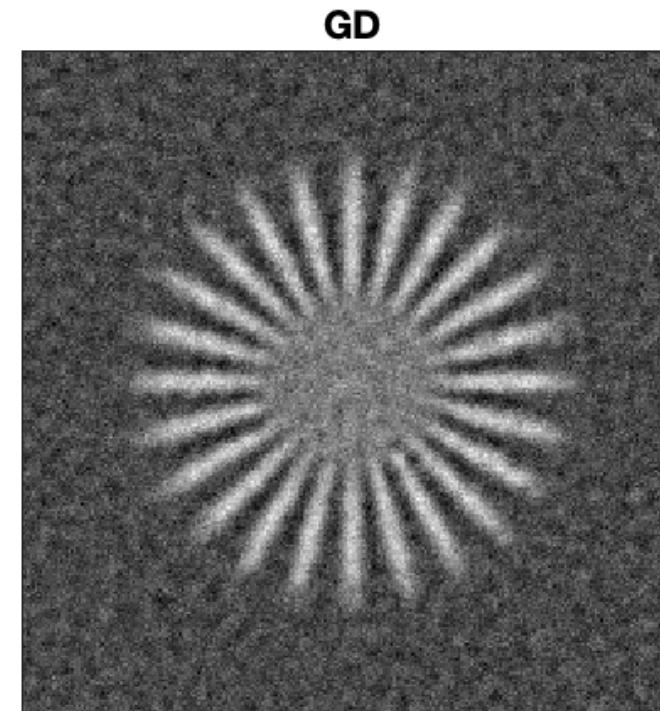
high level of additive Gaussian

Non-negativity (positivity)

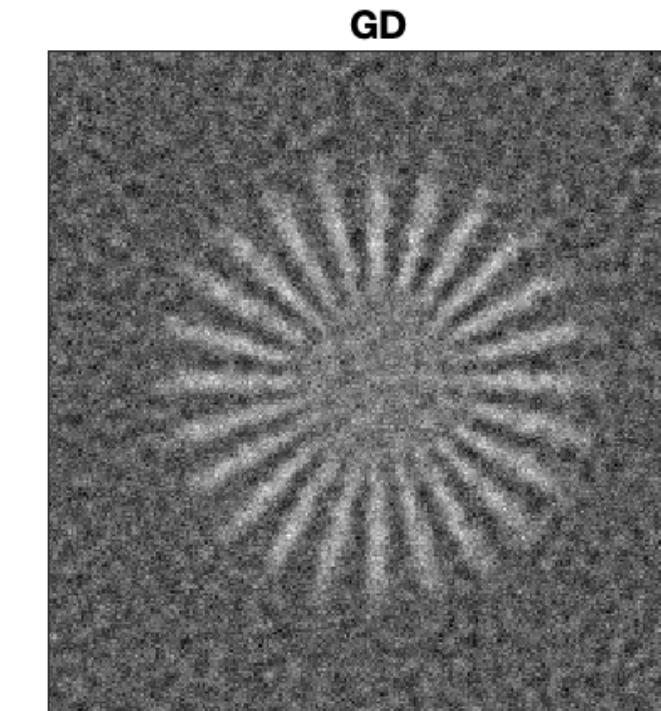
$$\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \left\{ \|\mathbf{Hx} - \mathbf{y}\|^2 + \lambda R(\mathbf{x}) + i_{\geq 0}(\mathbf{x}) \right\}$$



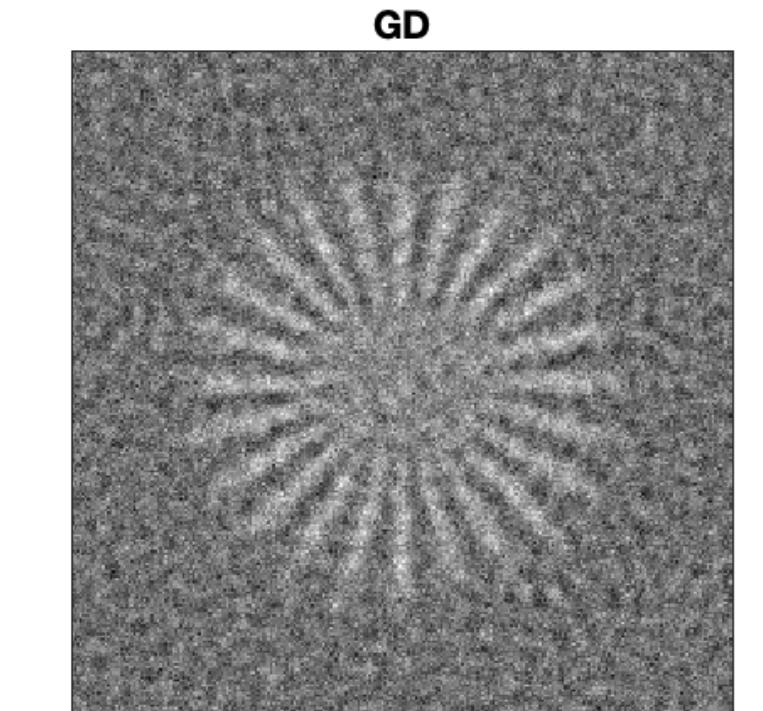
SNR: 7.93 dB



SNR: 4.39 dB



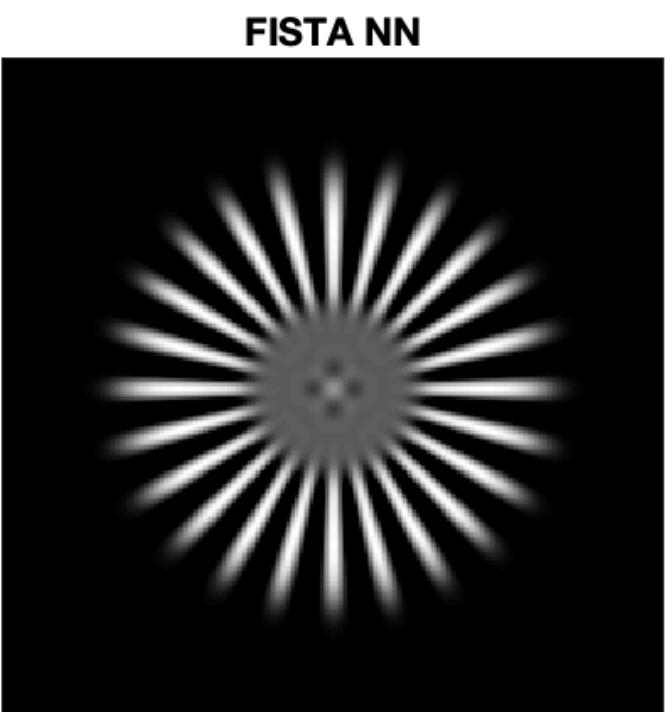
SNR: 0.16 dB



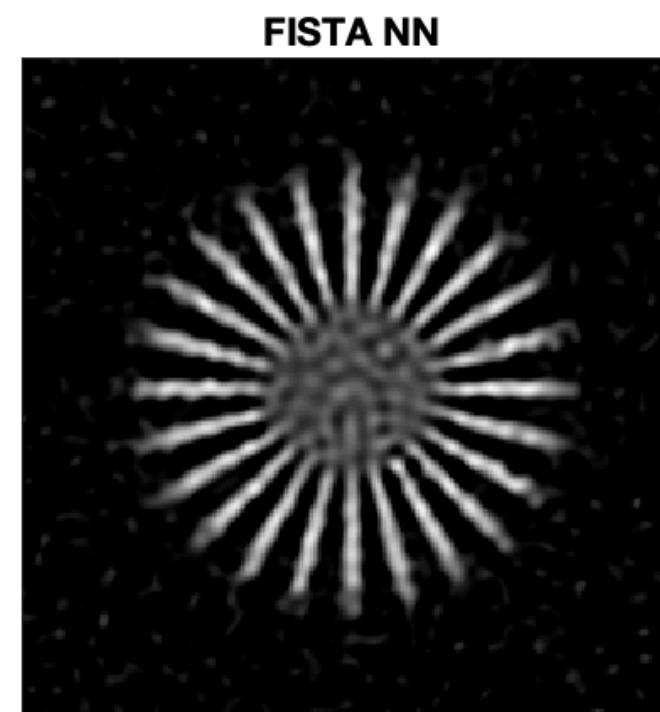
SNR: -2.97 dB

Early stop

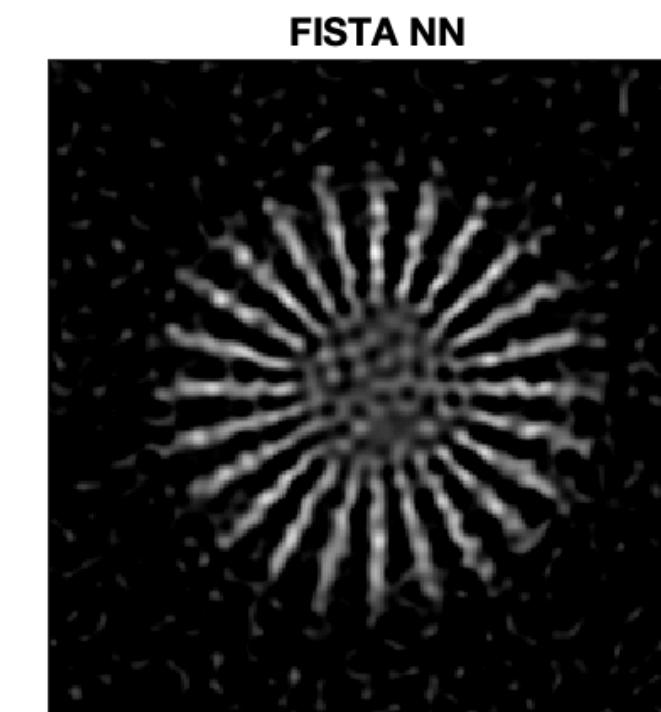
- Stop the iterations before convergence
- Tricky regularization: complicated to controlled



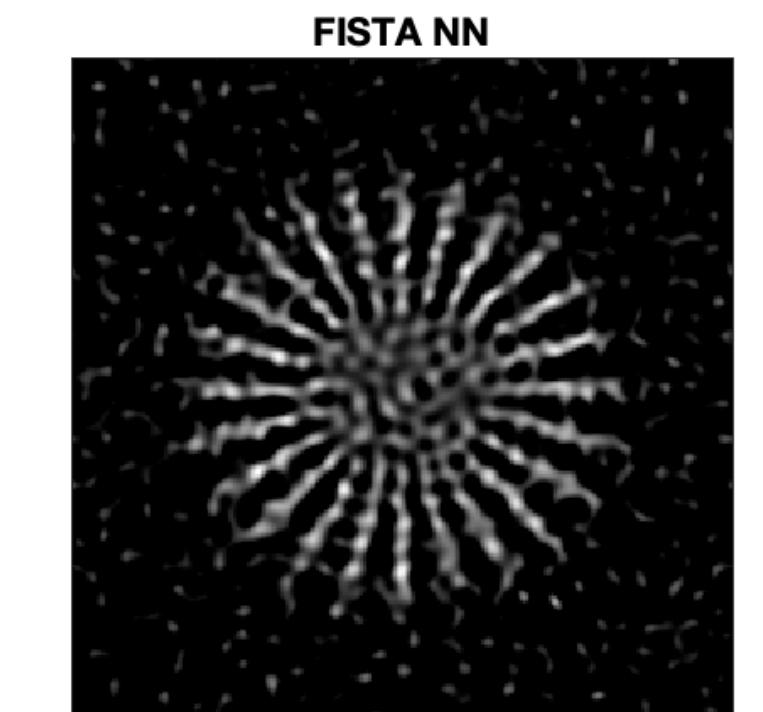
SNR: 9.19 dB



SNR: 8.26 dB



SNR: 6.42 dB



SNR: 4.61 dB

Solving Inverse Problem with Deep Learning

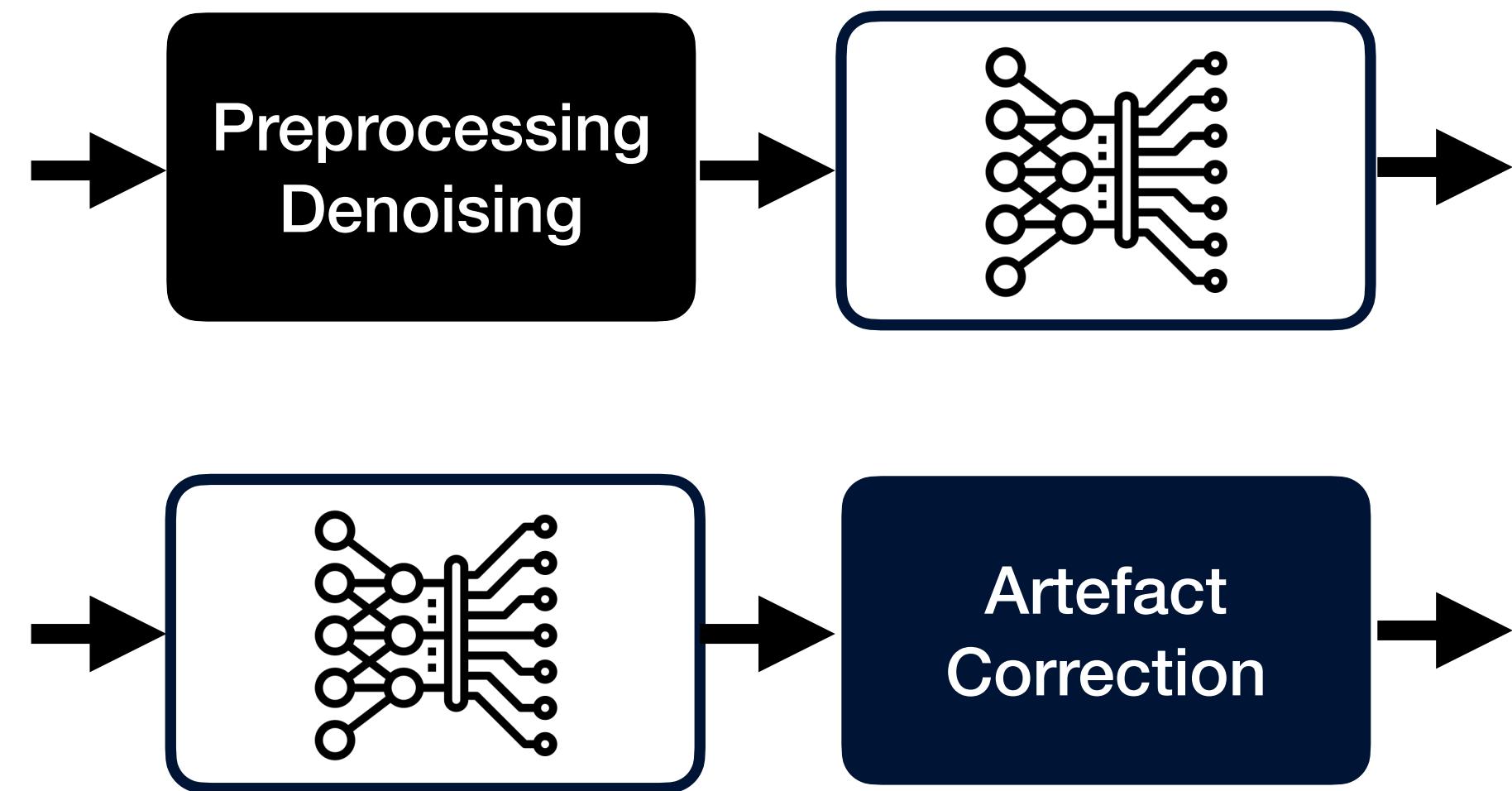
Motivation

- DL can learn complex priors from data
- Handles noise, incomplete data, nonlinearities
- Once it is trained → fast reconstruction (non iterative)

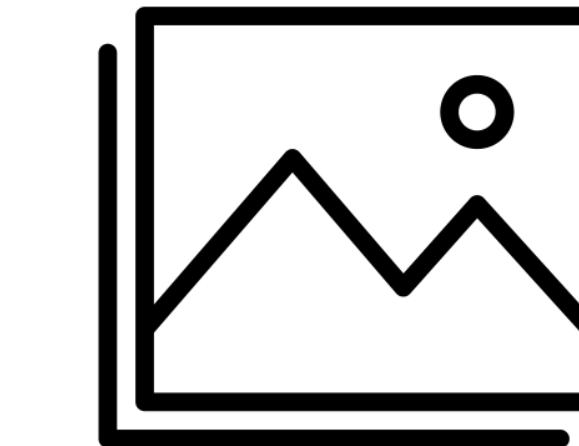
Learn

- PSF
- Hyper-parameter
- Image transform

Image-to-image



End-to-end Mapping



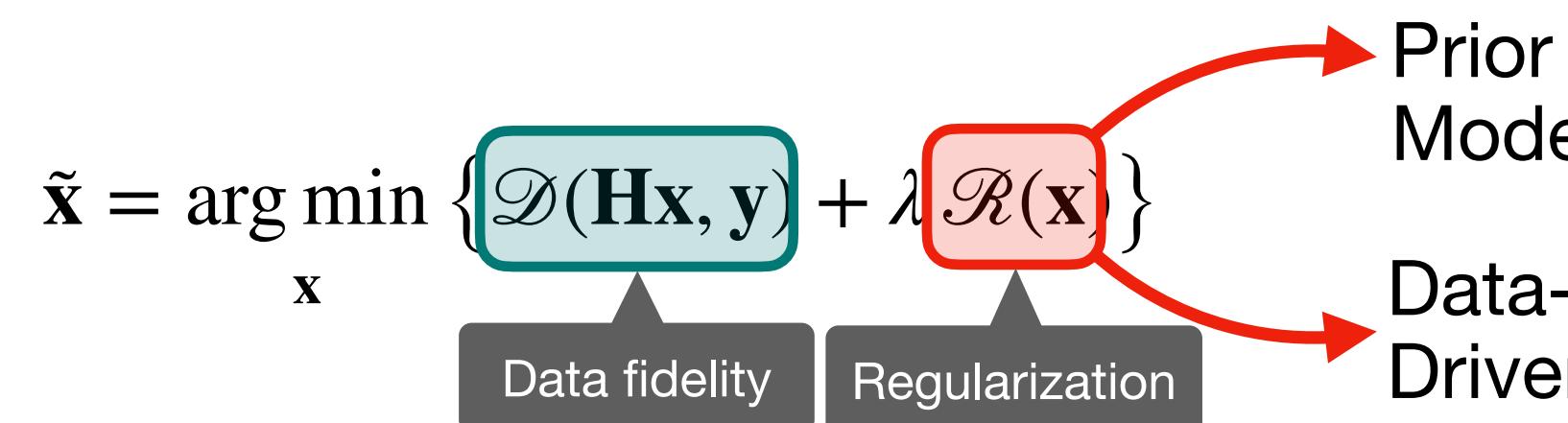
Train a neural network to directly map measurements to images (e.g. Unet)

No ground-truth data
Don't rely on the physical model

Physics-Informed Learning

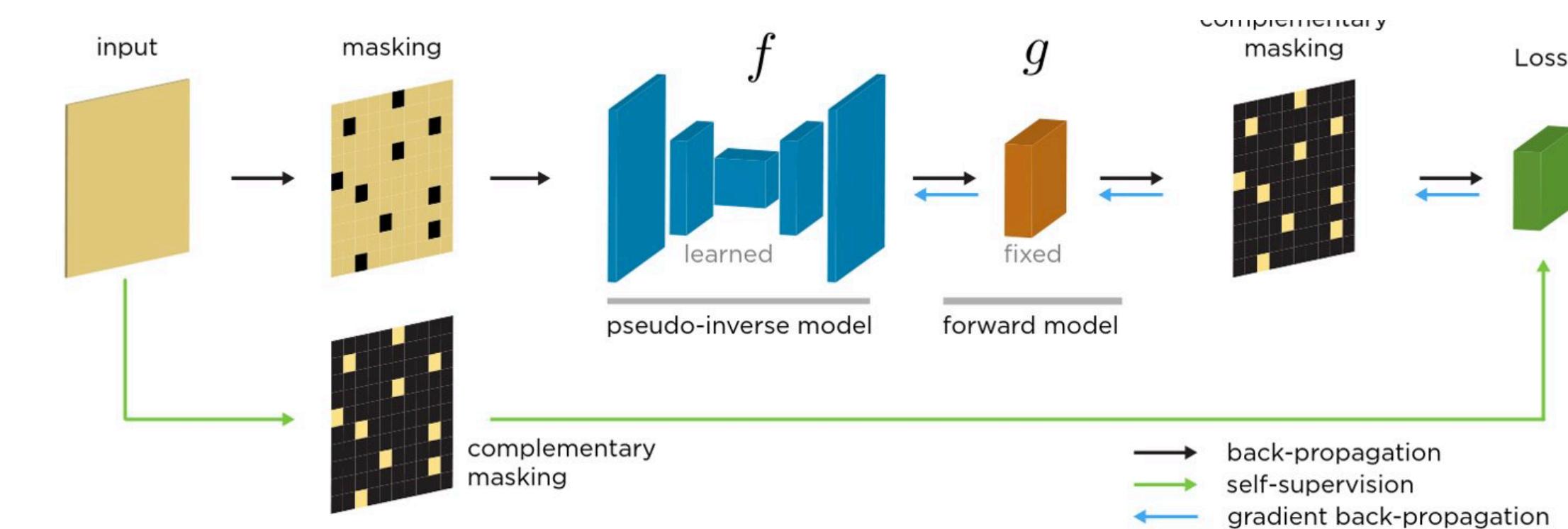
Plug-and-Plug Priors (PnP)

Plug in a learned denoiser in the optimizer
[Venkatakrishnan 2013, Hurault 2022, Goujon 2024]

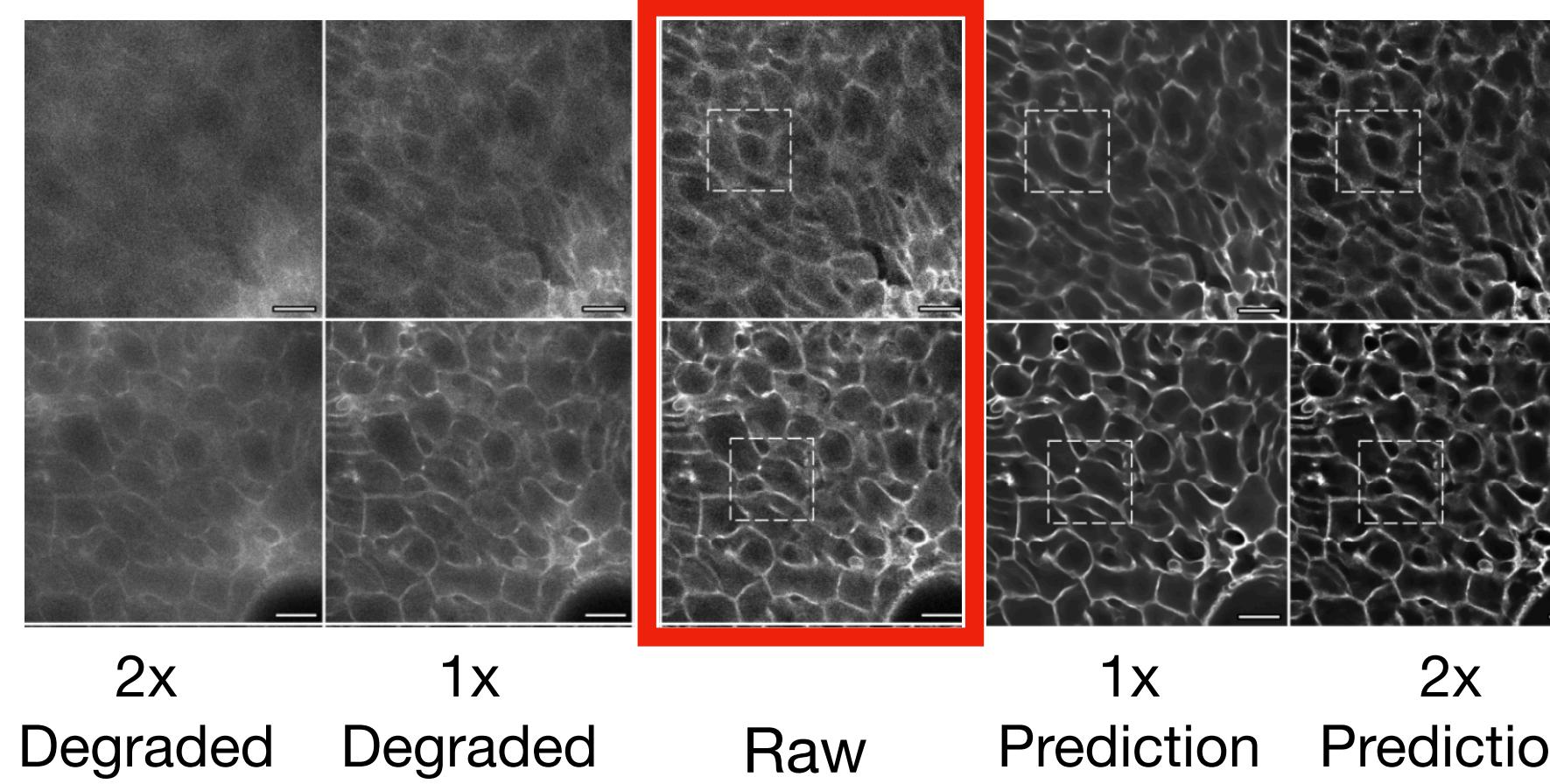


Self-Supervised Inversion [Kobayashi 2020]

Know forward model - Assumes statistical independence of noise



Learn from Degradation [N. Pimpão Martins, 2023]



Deep Unrolling / Unfolding [Gregor & LeCun 2010, Monga 2021]



More interpretable (e.g. ADMM-Net)

Unroll an iterative algorithm into a NN with each layer corresponding to an iteration.