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Inverse Problems
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No direct 
observation 

Object of interest
Observation 

accessible data

yx
Forward model

Inverse problem

Objective 
Find a cause from a consequence 

Infer hidden quantities from indirect data 
Translate measurements into physics

Applications 
Medical Imaging:  CT, MRI, EEG 

Seismology - Nondestructive testing 
Microscopy for life science - Depth

Reconstruction 
Numerically recovering signal  
Make use of physical model 
Optimization for large data

CAUSES 
specimen 

object

EFFECTS 
measurements 

signal
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➡ Learn from previous experiences

Unknowns vs. Measurements
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Sufficient measurements

⟹ (4,3)
x0 + x1 = 7
x0 − x1 = 1

⟹ (3,4), (4,3)

➡ Add hard constraint 
e.g. A is larger than B

➡ Add prior knowledge 
e.g difference of A and B is small

⟹ (4,3)

}

[1 1
1 −1] [x0

x1] = [y0
y1]

Ill 
posed 

problem

# measures << # unknowns 

Degraded measures, noise

H approximation of a 

physical device

Well 
posed 

problem

Existence

Uniqueness


Continuous dependency 
on data

x0 + x1 = 7

x0 − x1 = unknown

(−1,8) . . . (3,4), (4,3) . . . (10,17) . . .

What if we had less?

x0 + (1 ± ϵ)x1 = 7 ± α
x0 − (1 ± ϵ)x1 = 1 ± α

noisy me? model mismatch?

Real life: physical world

H x = y
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High-Dimensional Inverse Problem
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Forward Model  y = a x + b

Observation (y1, x1) (y2, x2) ... (yN, xN) 

Least-square solver

ξ = ∑ (yi − axi − b)2

Close-
form 

solution

Overdetermined Problem Underdetermined Problem

Variational 
Optimizerξ to minimize x̃ = argmin(ξ) Gradient descent 

optimization

Objective: Energy, criteria, loss, error, cost

Variational solvers may converge to local minima

yx

x̂
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Unified Framework Across Imaging Modalities
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Event Horizon 
Telescope 
Black Hole Imaging

Katie Bouman 2019

Computed 
Tomography 
Filter-back 
projection

Sinogram

Single Particle 
Analysis 
TEM 
Cryo EM
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Image Formation Operators
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Convolution

Simplified example of 
matrix representation

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1
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=

1

1 1 1

1

A1 A2 A3

B1 B2 B3

C1 C2 C3

Toeplitz 
matrix

• Usually the matrix is very large

• The operator is a circular convolution

Projection

m11

m12

m21 m22

a11 a12

a21 a22

a11

a12

a21

a22

1 1

1 1

1 1

1 1

m11

m12

m21

m22

Simplified example of 
matrix representation

a11 a12

a21 a22

=

• Usually the matrix is very large

• The operator is the Radon transform
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Image Formation in Microscopy
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3D Deconvolution 
H is a circulant matrix (PSF)

Denoising 
H is an identity

Structured Illumination Microscopy 
SIM 
H = C ⚪ ︎M 
• C is a convolution (PSF) 

Digital Holographic Microscopy 
DHM 
• Phase interference registered on a 

holologram 
• Forward model: propagation of 

coherent light

Optical Coherence Tomography 
OCT 
Measures intensity of back-reflected light

Optical Projection Tomography 
OPT 
H = ∑ ⚪ ︎ Rθ 
• ∑ is an integration 
• Rθ is a rotation 

M. Rieckher, PLOS one 2017
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CAUSES 
specimen 

object

EFFECTS 
measurements 

signal

Inverse Problems in Imaging
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Forward model Inverse problem

Real measures 
degraded, noise 

partial measurements 
non-directly interpretable 

non-usable as image

Forward ModelH

y = HxPerfect model 

Real model y = Hx + n

H-1 is never  
possible

Numerical solving 
approximative forward model 

estimation noise model 
prior on the solution 

many unknowns

x̂ = argmin
x

{ 1
2 ∥Hx − y∥2}

∥Hx − y∥2 + λR(x)

No regularization

With regularization

y x̂x

ESTIMATION 
computed 

signal
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Inverse Problem in Practice
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x̃ = argmin
x

{𝒟(Hx, y) + λℛ(x)}
Data Fidelity Term 

Objective 
Noise model 𝒟

Regularizer Term 
Encourage smooth or piecewise 

Promote sparsity 
Data-driven

ℛ

Forward Model  
Physical process modeling 
Fidelity and consistency? 

Linear?

H

Optimizer

Computational challenges 
• Large memory required 
• Iterative algorithms are generally slow 
• How to stop the iterative algorithms 
• How to set up the hyper parameter?

Software toolbox 
• Decoupling forward model, optimizer, cost, regularisation 
• Unifying the algorithms for any modality 
• EPFL Pyxu (Python) https://pyxu-org.github.io/ 
• EPFL GlobalBioIm Library (Matlab) https://biomedical-imaging-group.github.io/
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Least-square Solution 
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Steepest gradient Conjugate gradient

∇x{∥Hx − y∥2} = HTHx − HTy

rk = HT(Hx − y)

xk+1 = xk + γkrk

Iteration of Landweber

Gradient descent:

Update rule:

ADMM Alternating Direction Method of 
Multipliers [Boyd] 
Powerful optimization strategy to solve a 
large problem under a given constraint.

x̂ = argmin
x

{ 1
2 ∥Hx − y∥2}

x̂ = argmin
x

{ 1
2 ∥Hx − y∥2 + λ

2 R(x)}

Without regularization

With regularization

Don't work when it is ill-posed
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Regularization
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Non regularizedGround-truth

x̃ = argmin
x

{𝒟(Hx, y) + λℛ(x)}

Non regularizedGround-truth

Classic: Image Prior
 Learning: Data-Driven

Regularized solutions
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Regularization
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ℛ( f ) = x 2

ℛ(x) = ∇x 2

Tikhonov (L2)

Favorize smooth solutions

ℛ(x) = |∇xx | + |∇yx |

ℛ(x) = ∇x 1

Total Variation (L1)

Favorize piecewise constant solutions

H =

"
@f 2

@x
@f 2

@x@y
@f 2

@x@y
@f 2

@y

#

R( f ) = f
𝒮

= Tr(T )

T = [λ1 0
0 λ2]

Hessian Schatten-Norm

Favorize thin structure solutions
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Tune the regularization to the 
noise level

low level of additive Gaussian med. level of additive Gaussian high level of additive Gaussianno free input image

weak regularization

strong regularization

Input

Regularization

x̂ = argmin
x

{ 1
2 ∥Hx − y∥2 + λ

2 R(x)}
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low level of additive Gaussian med. level of additive Gaussian high level of additive Gaussianno free input image

No constraint

Non-negativity constraint

Regularization

Implicit regularization

Early stop 
• Stop the iterations before 

convergence 
• Tricky regularization: 

complicated to  controlled

Non-negativity (positivity)

x̂ = argmin
x

{∥Hx − y∥2 + λR(x) + i≥0(x)}
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Solving Inverse Problem with Deep Learning
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Motivation

• DL can learn complex priors from data 
• Handles noise, incomplete data, nonlinearities 
• Once it is trained ➜ fast reconstruction (non iterative)

End-to-end Mapping

No ground-truth data

Don't rely on the physical model

Train a neural network to directly map 
measurements to images (e.g. Unet)


Learn

• PSF 
• Hyper-parameter 
• Image transform

Preprocessing 
Denoising

Image-to-image

Artefact 
Correction
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Physics-Informed Learning
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Learn from Degradation [N. Pimpão Martins, 2023]

Raw
1x


Degraded
2x


Degraded
1x


Prediction
2x


Prediction

Self-Supervised Inversion [Kobayashi 2020]

Know forward model - Assumes statistical independence of noise

Plug-and-Plug Priors (PnP)

Plug in a learned denoiser in the optimizer 
[Venkatakrishnan 2013, Hurault 2022, Goujon 2024]

Deep Unrolling / Unfolding [Gregor &LeCun 2010, Monga 2021]

Unroll an iterative 
algorithm into a NN 
with each layer 
corresponding to an 
iteration.

More interpretable (e.g. ADMM-Net)

x̃ = arg min
x

{𝒟(Hx, y) + λ ℛ(x)}
Data fidelity Regularization

Prior 
Model

Data-
Driven


