

Course

Introduction to Graph Theory

Motivation

Graph theory

- Study mathematical structure and relationship

Applications

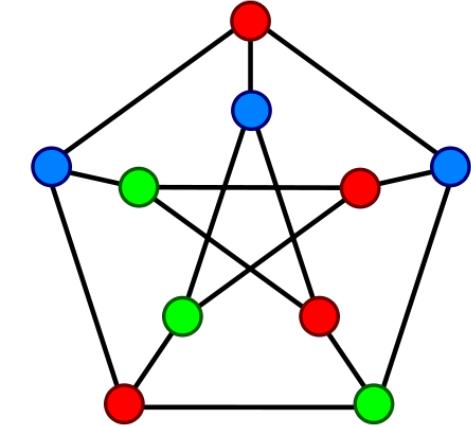
- Linguistic, computer, chemistry, biology, network

Identify the problem
Re-use existing algorithms

NP-hard problems

nondeterministic polynomial time

- Traveling salesman
- Color labelling



P problems

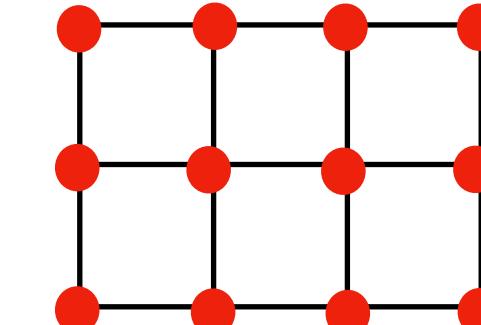
- Voronoi
- Minimum span tree
- Shortest path
- Assignment
- Max-flow / min-cut

Graph Neural Network

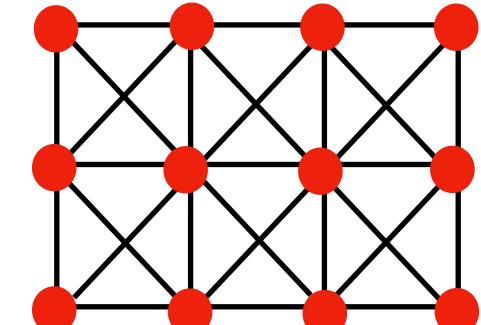
Graphs in Bioimage Analysis

Data modeling

- Representation of image at pixel level

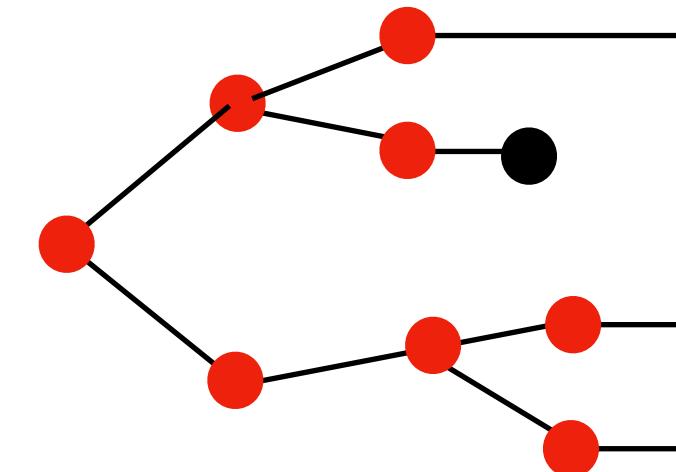


2D: 4-connected
3D: 6-connected

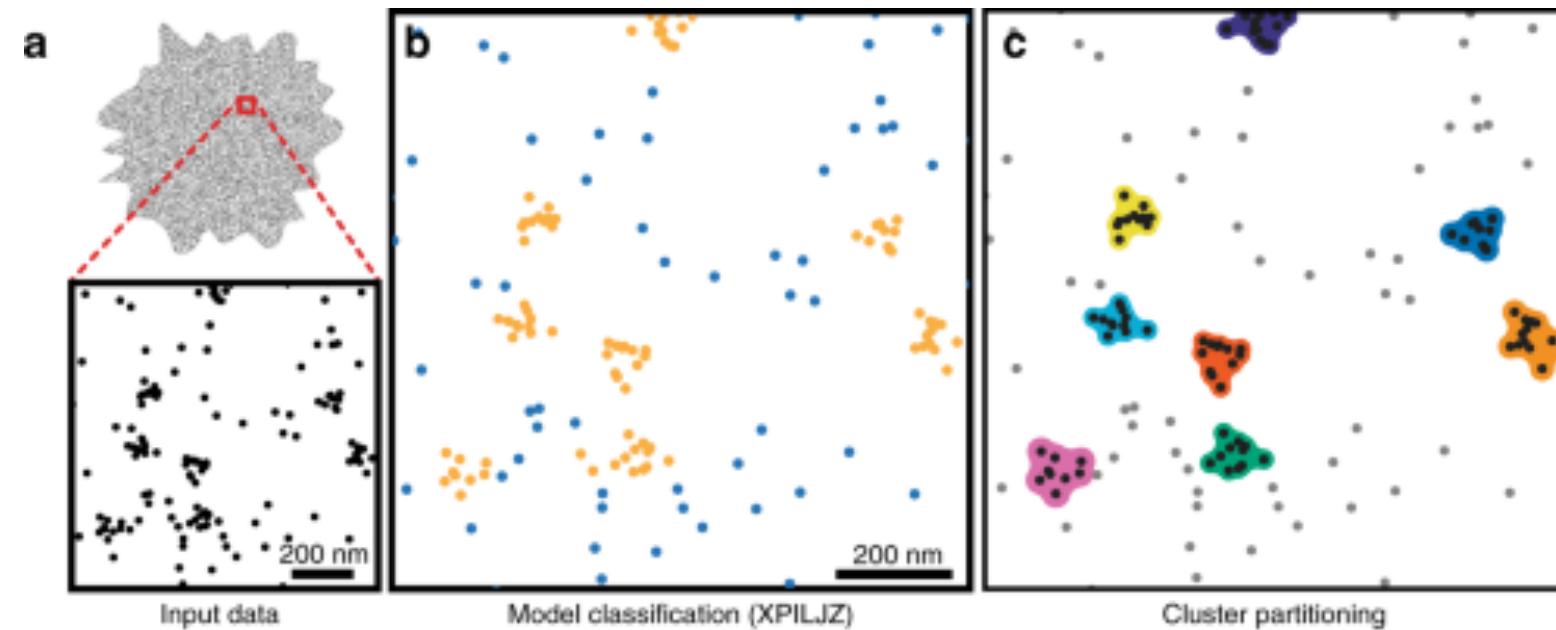


2D: 8-connected
3D: 26-connected

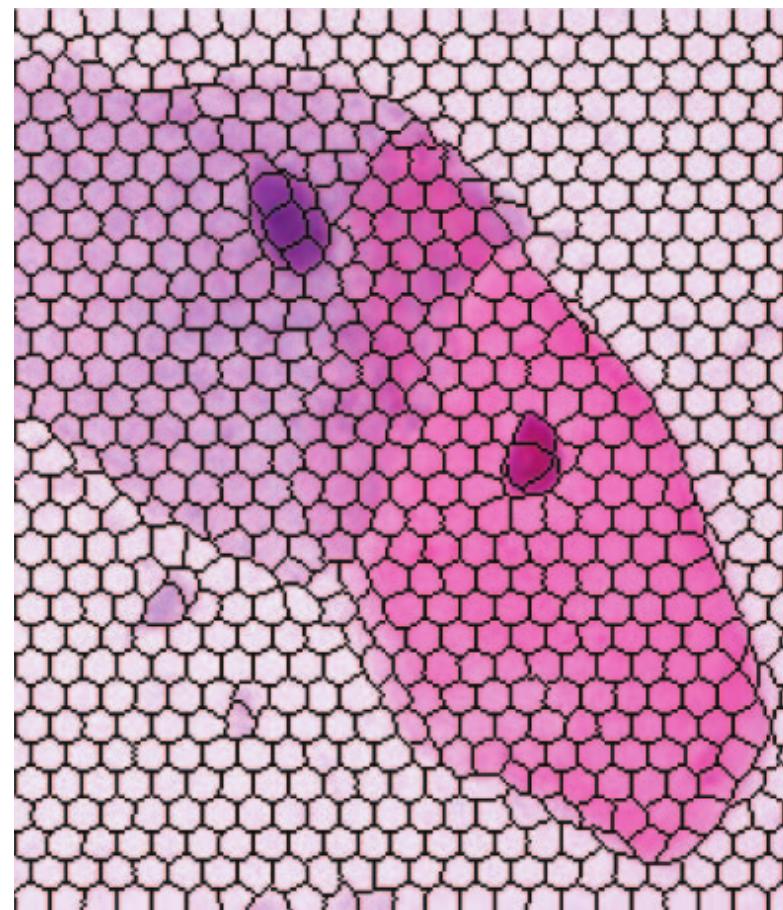
- Dimension: scale, space, time
- Object: particles, cell
- Spatial organization:
- Vascular structure: tree
- Relation: cell lineage, tracking, ...
- Mosaic of images



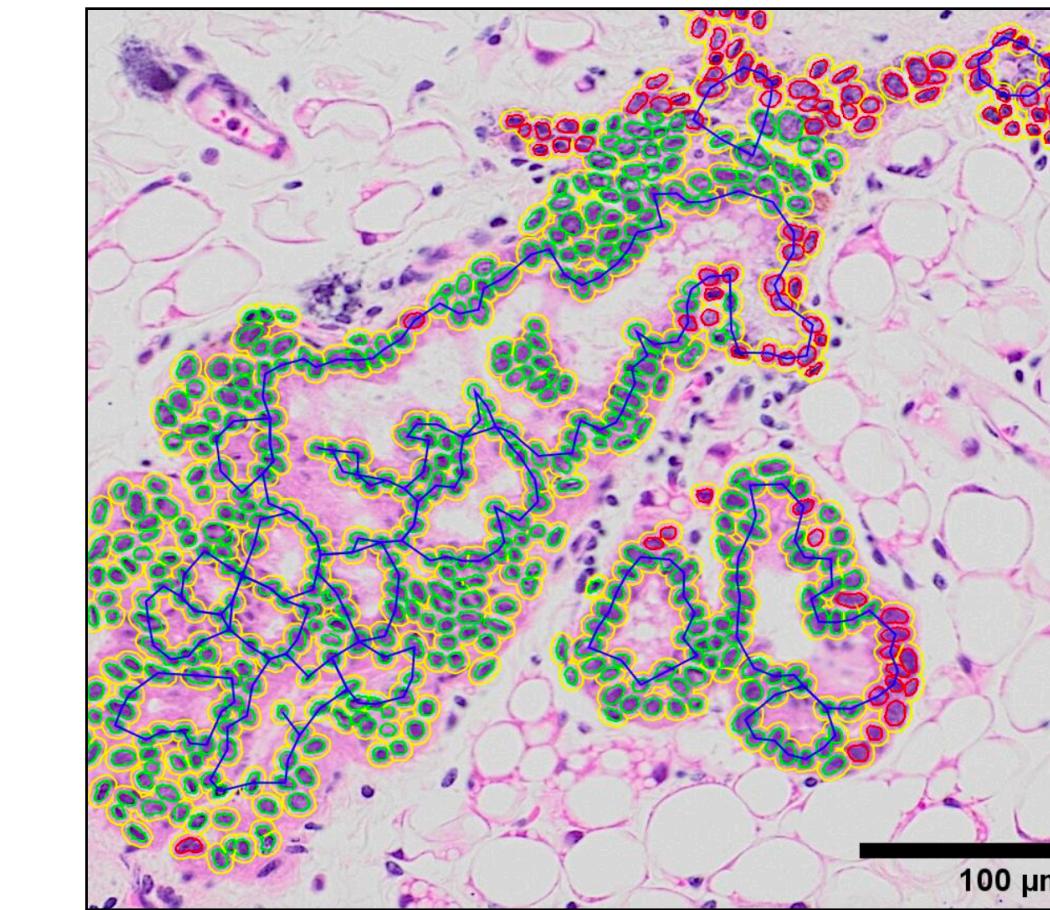
Graph Modelling



Molecules → Objects



Superpixel → Objects



Cell → Objects

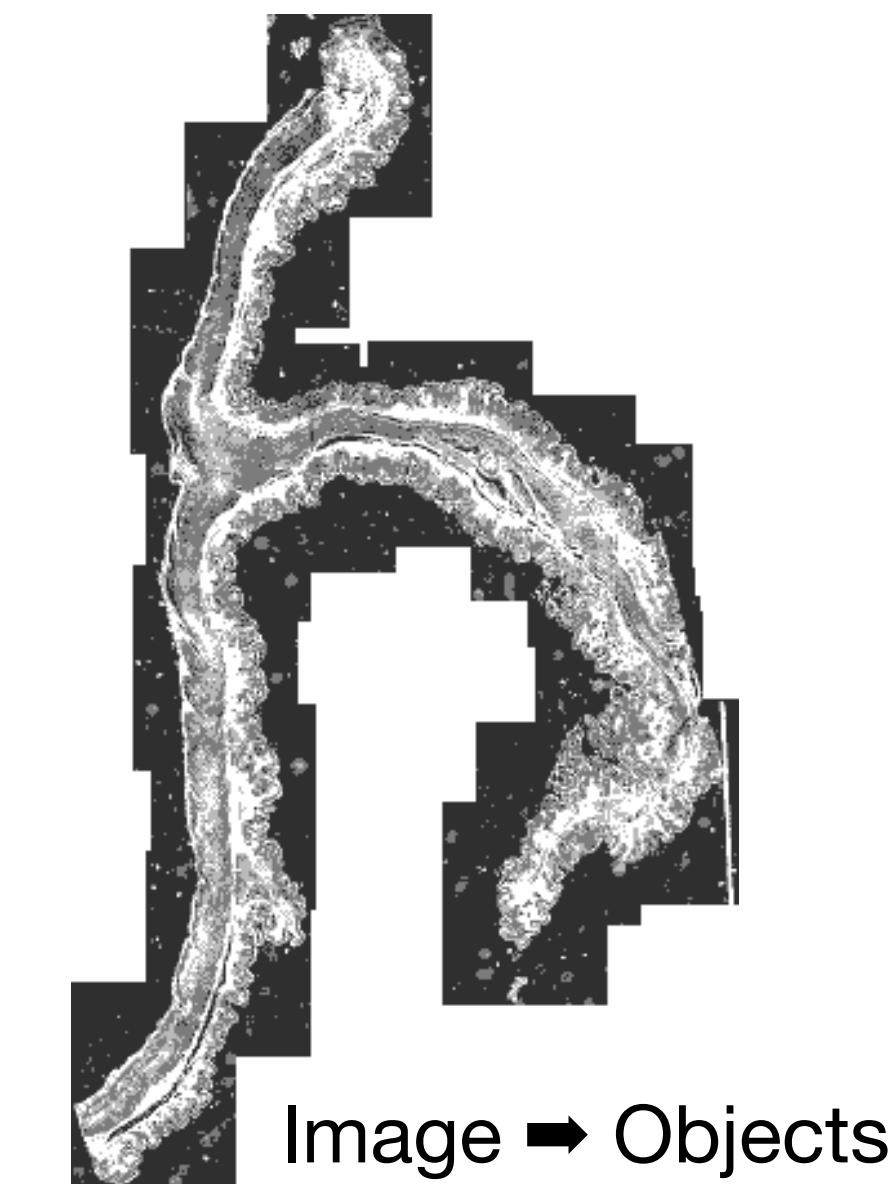
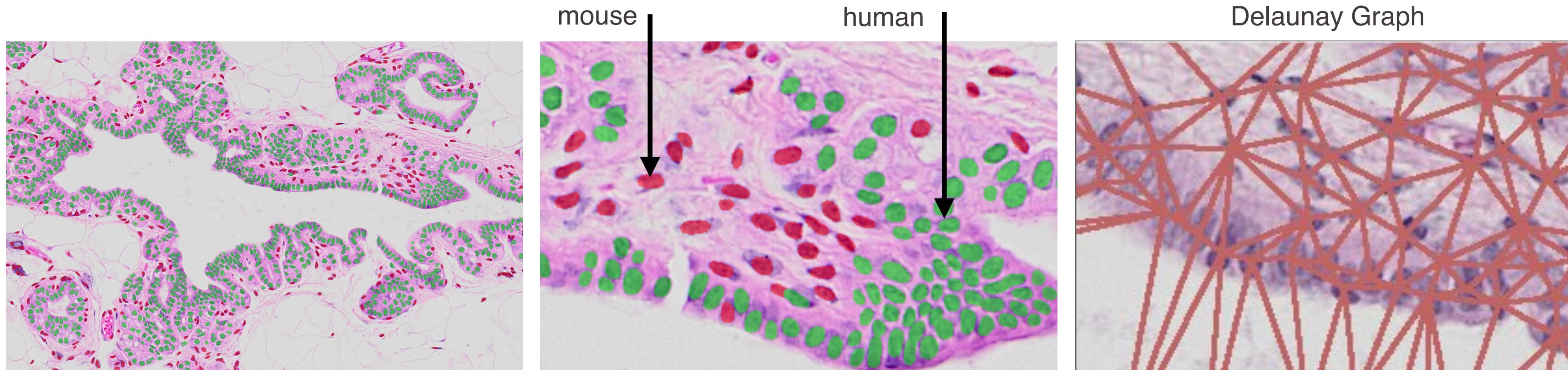


Image → Objects



Morphometric features: 68.8 %
Textural information: 85.7%
Contextual, connectivity: 96.4%

Q. Juppet, et al., Journal of
Mammary Gland Biology and
Neoplasia, 2021

Graph Structure

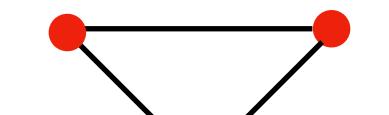
Graph

Vertex (nodes, points)

Edges (arc, line)

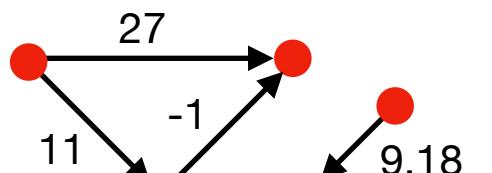
$$G = (V, E)$$

Type



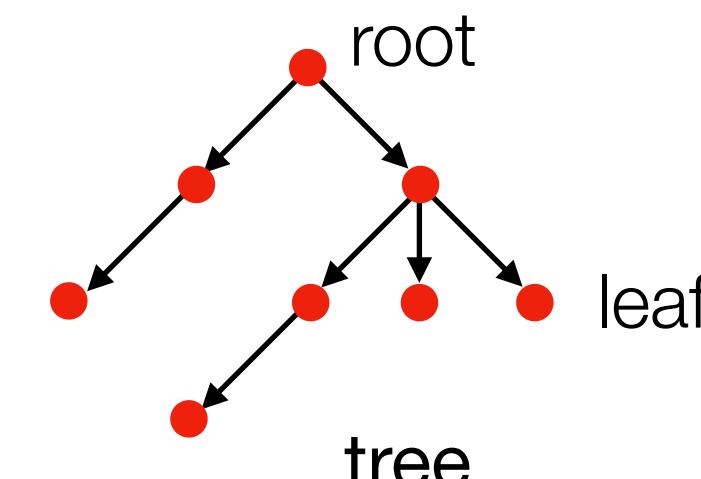
undirected

directed

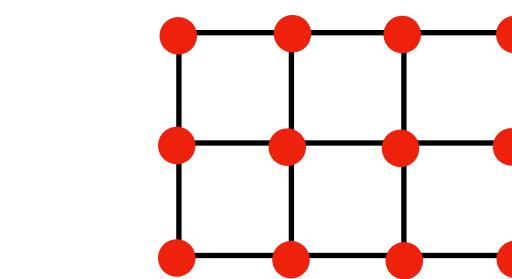


weighted

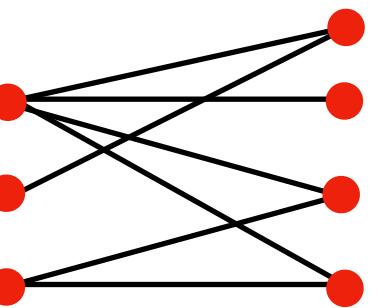
Structure



tree

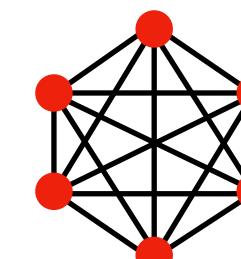


adjacency graph

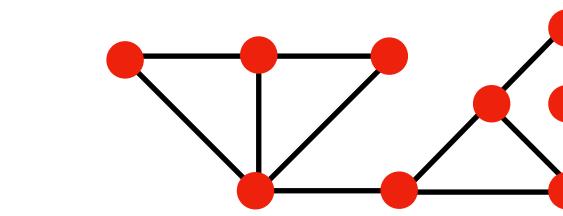


bipartite graph

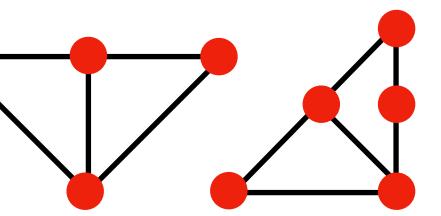
Connectivity



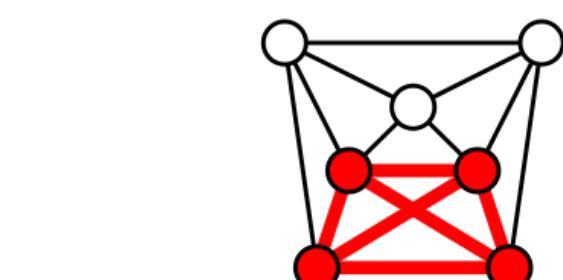
full



weak



disconnected



clique

subgraph fully connected

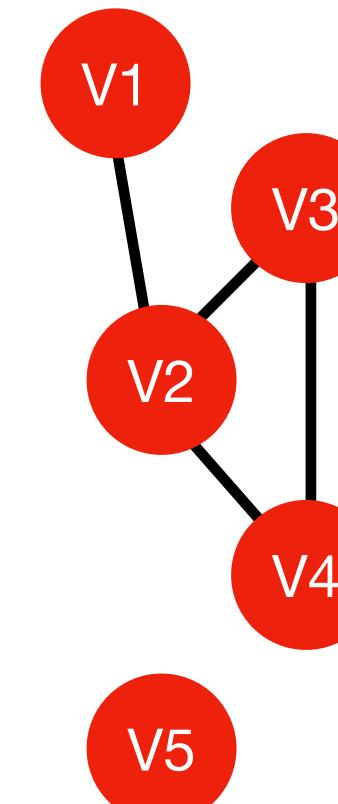
Find cliques is a
NP-hard problem

Graph Representation in Java

Data Structure

- e.g. Object, ArrayList, Linked List, Map

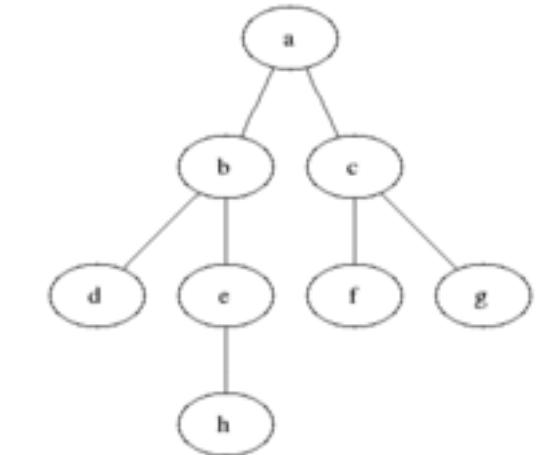
```
public class Vertex {  
    public String name;  
    public ArrayList<Vertex> vertices;  
    public Vertex(String name) {  
        vertices = new ArrayList<Vertex>();  
        this.name = name;  
    }  
}  
  
public GraphExample() {  
    List<Vertex> graph =  
        new ArrayList<Vertex>();  
    for(int i=1; i<5; i++)  
        graph.add(new Vertex("V" + i));  
    addEdge(graph, 1, 2);  
    addEdge(graph, 2, 3);  
    addEdge(graph, 3, 4);  
    addEdge(graph, 2, 4);  
}  
  
void addEdge(List<Vertex> g, int a, int b) {  
    g(a).vertices.add(g.get(b));  
    g(b).vertices.add(g.get(a));  
}
```



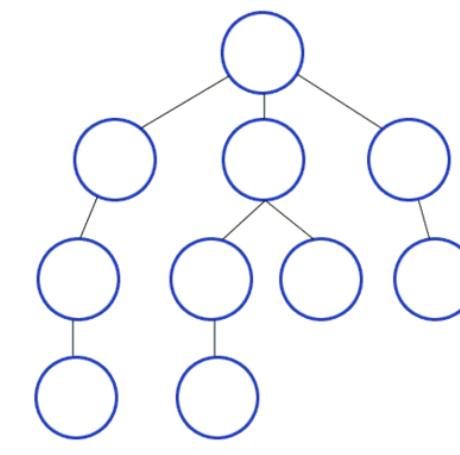
Recursive algorithm

- e.g. graph traversal

```
void dfs(int i, int[][] mat, boolean[] visited) {  
    if(!visited[i]) {  
        visited[i] = true;  
        System.out.print( i+1 + " ");  
        for (int j = 0; j < mat[i].length; j++)  
            if (mat[i][j] == 1 && !visited[j])  
                dfs(j, mat, visited); // Visit  
    }  
}
```



Breadth First Search



Depth First Search

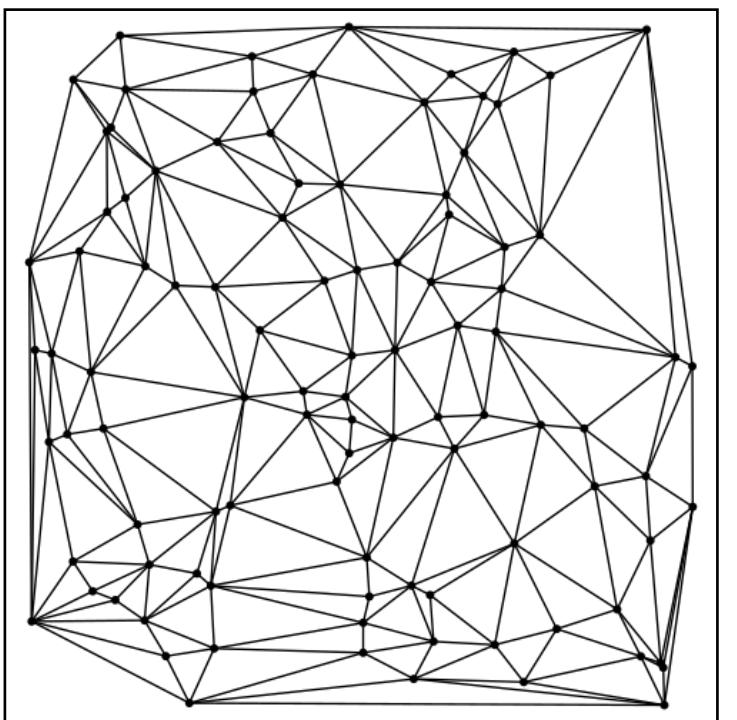
Third-party Java libraries: JGraphT

- e.g. Voronoi, Delaunay, Hungarian

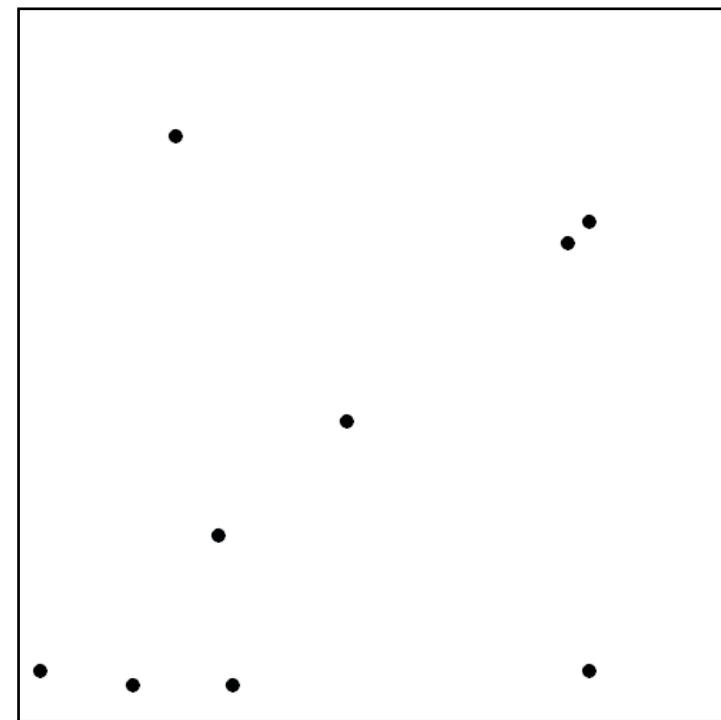
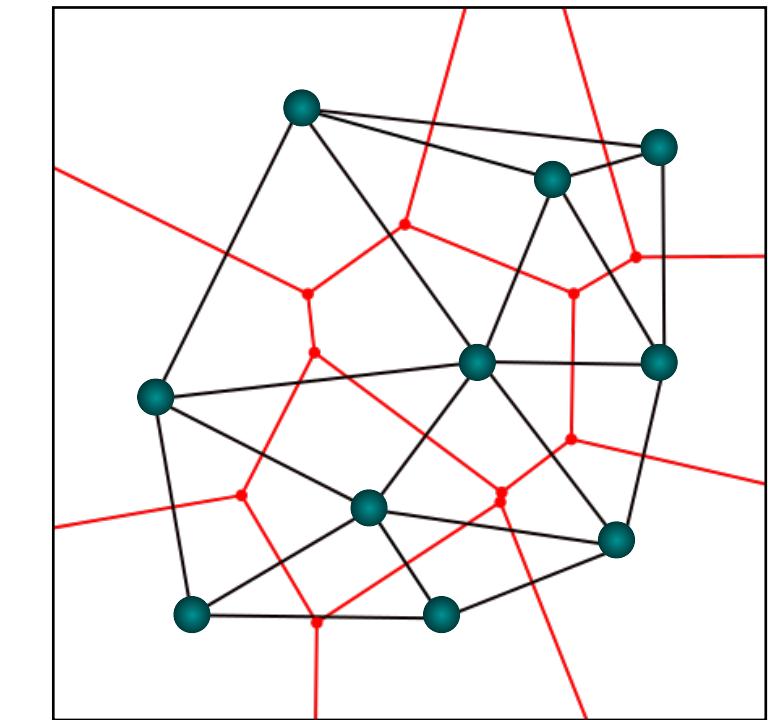
Planar Graph

A **planar graph** is drawn without edges crossing → the edges are defining regions (faces)

Delaunay triangulation
built from points

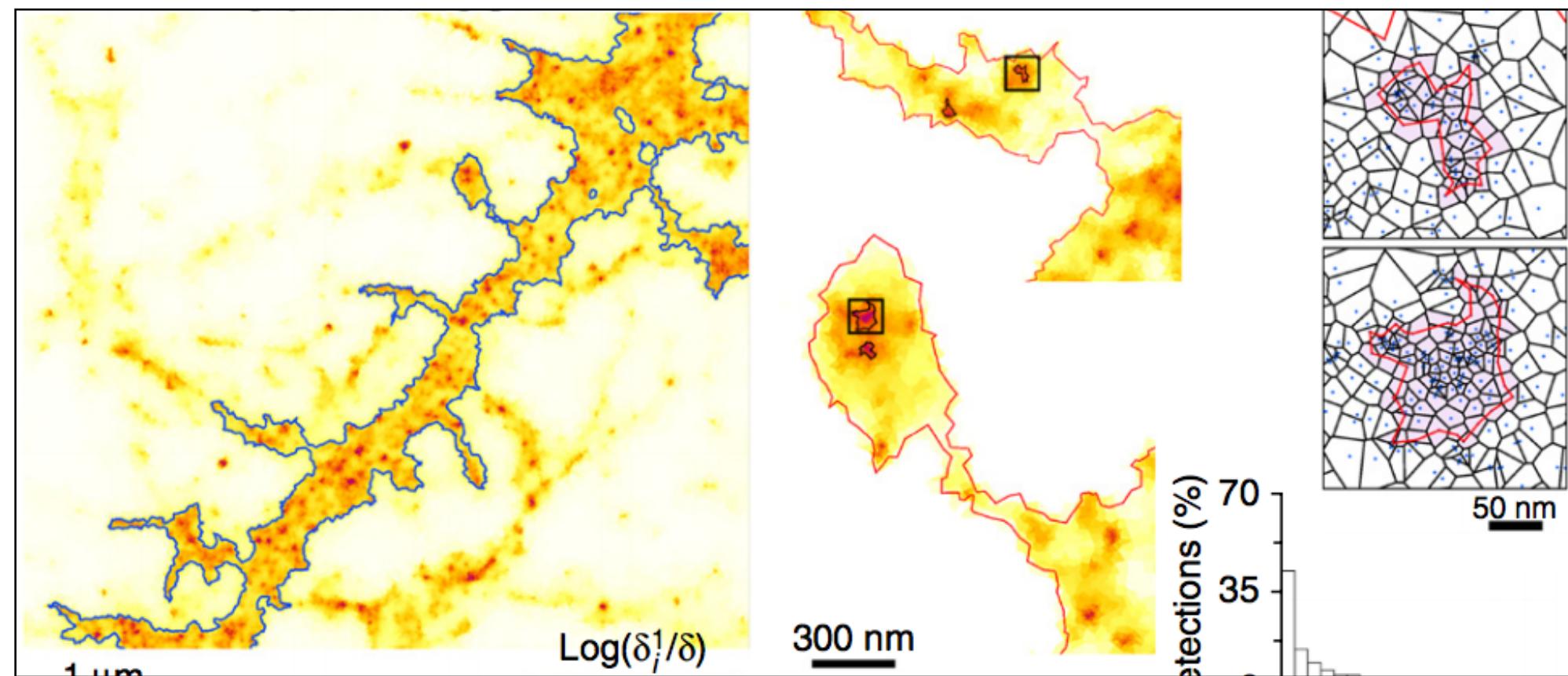


Voronoi
tessellation
from seed
points

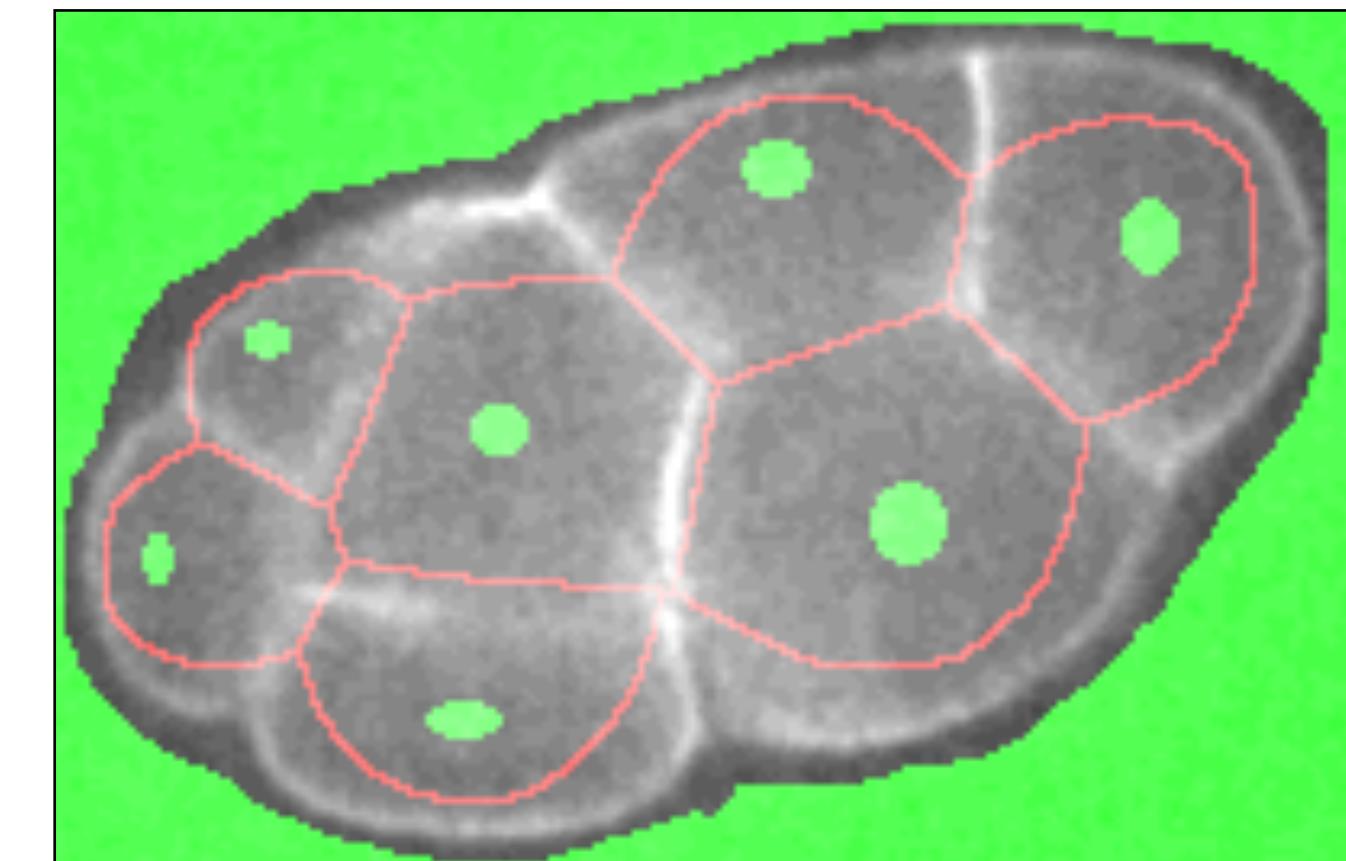


Dual graph

- Voronoi diagram
- Delaunay triangulation



Florian Levet. SR-Tesseler: segment and quantify localization-based super-resolution microscopy data, *Nature Method* 2015

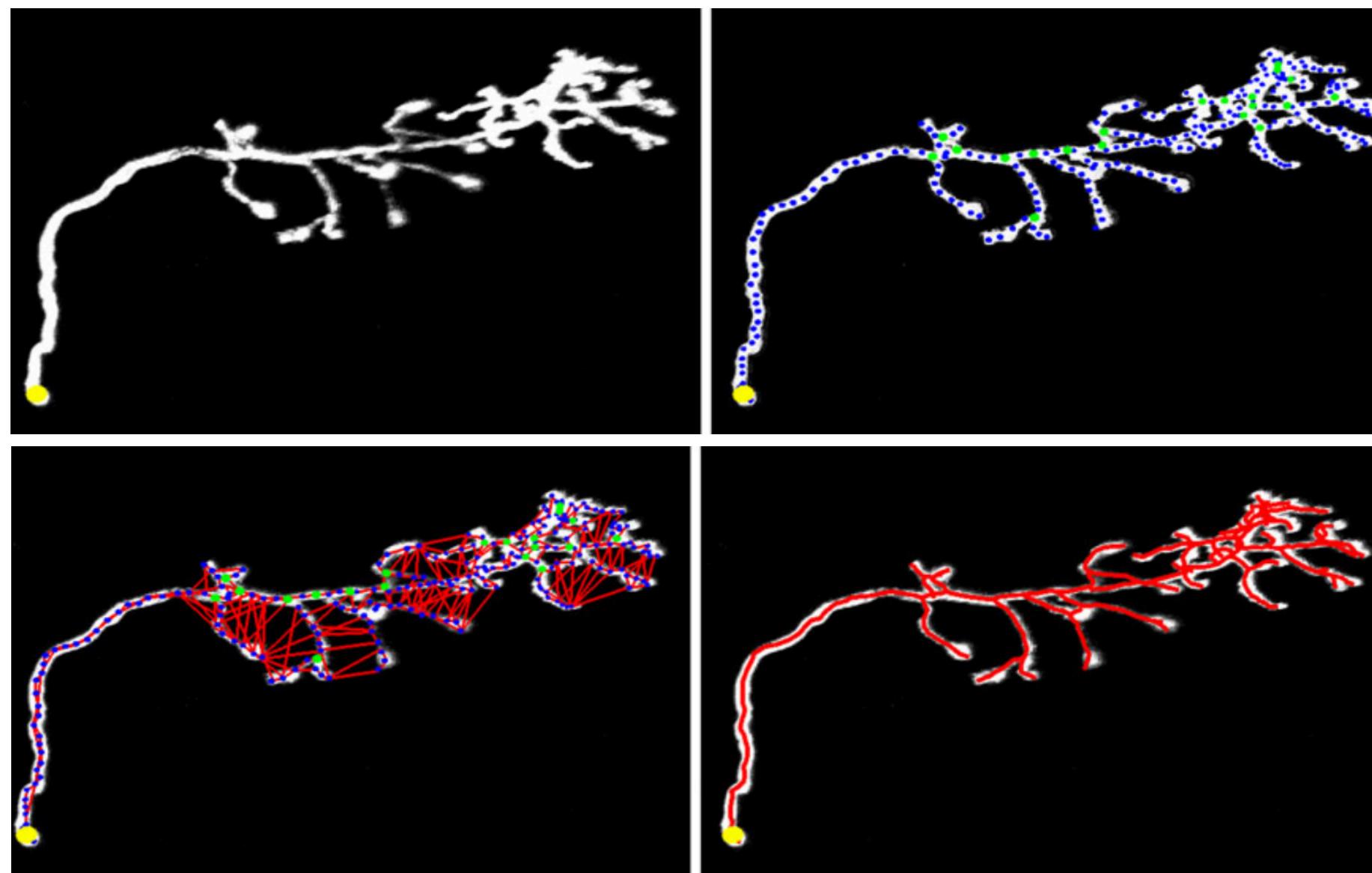


C. elegans embryo, cell membrane and nucleus. Courtesy of Radek Janeke, EPFL

Minimum Spanning Tree

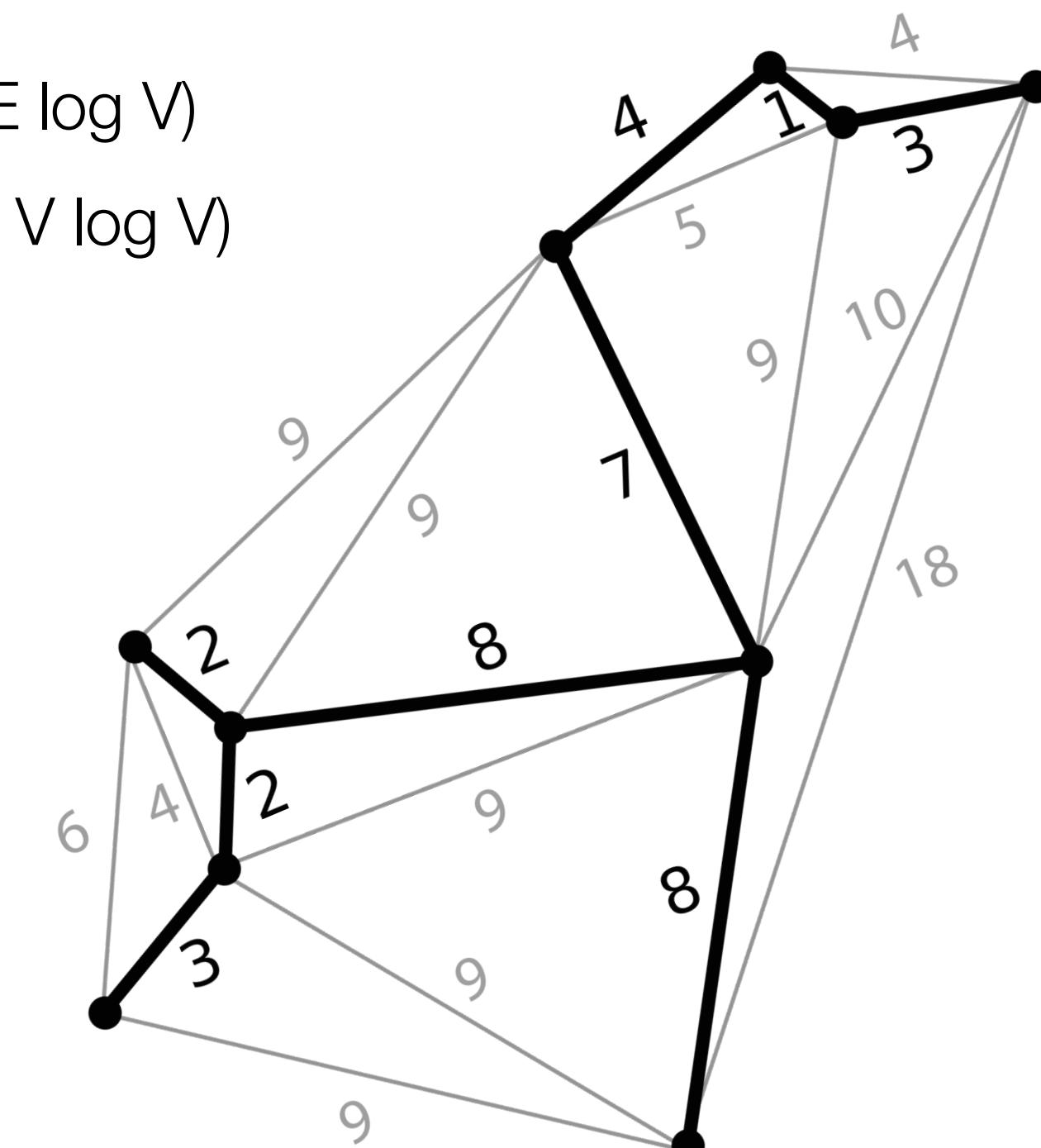
Tree-like structure

- Vascular network, dendrites, ...
- Space 2D or 3D
- Time: Cell lineage

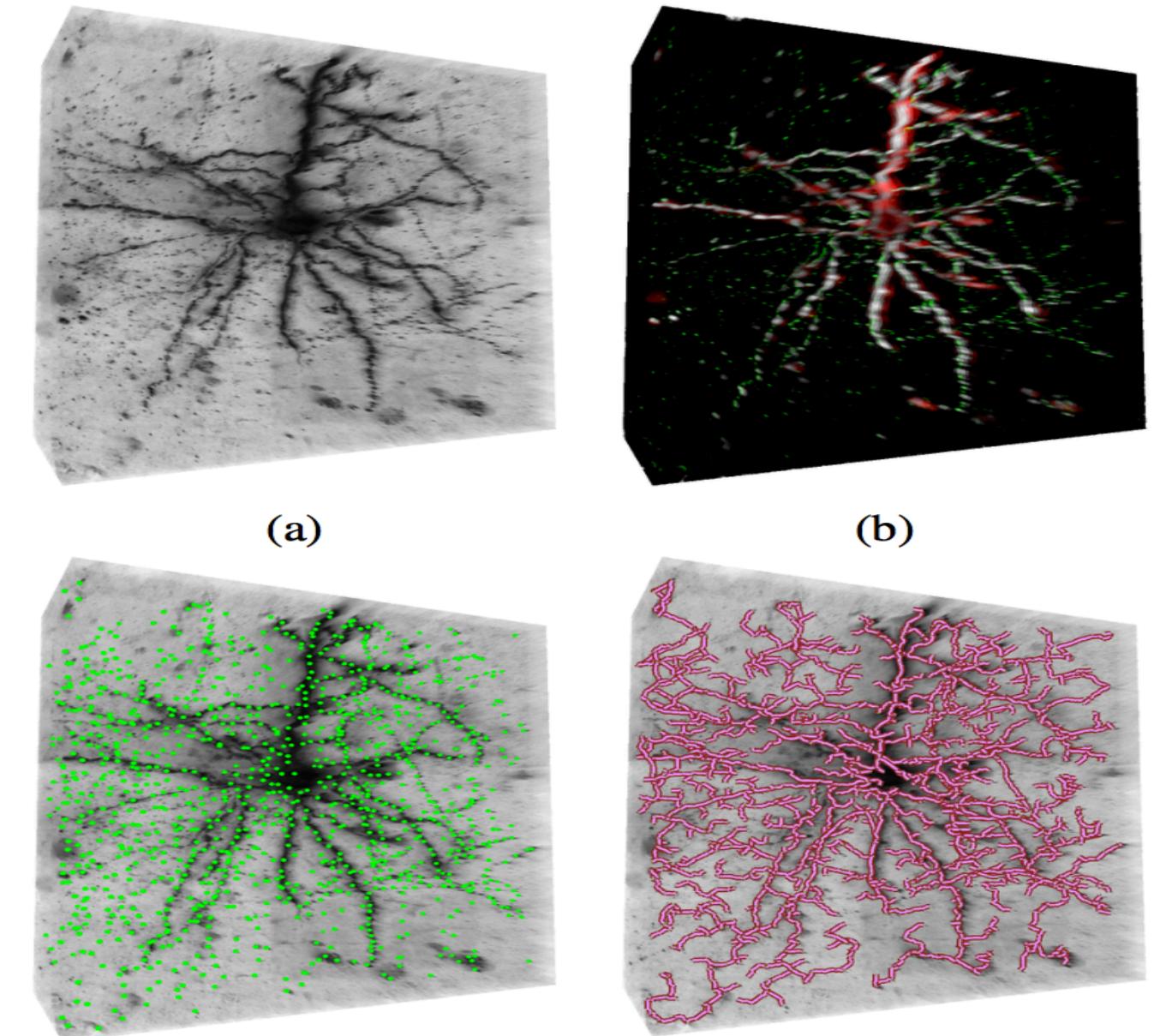


Solver

- Kruskal $\mathcal{O}(E \log V)$
- Prim $\mathcal{O}(E + V \log V)$



<https://visualgo.net/en/mst>



Olfactory projection fibers, E. Türetken, Neuroinform, 2011

Dendrites. German Gonzalez, ECCV 2008

Bipartite Graph Matching

$$G = (V, E)$$

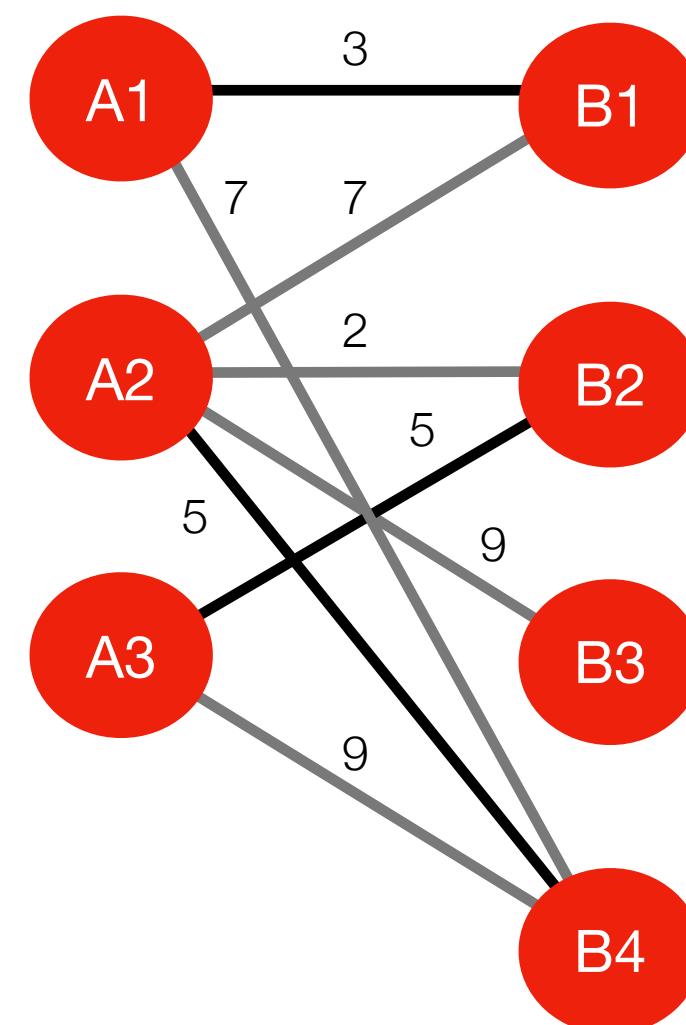
$$V = V_A \cup V_B$$

$$V_A \cap V_B = \emptyset$$

- Directed
- Weight (cost ξ_{ij})
- Balanced

Assignment Problem

- Minimum weight perfect matching
- Hungarian algorithm $O(E V^2)$



	A1	A2	A3	A4	A5
B1	5	9			6
B2	4	6			
B3	8	5	1		
B4			9	3	2
B5			6	5	3

	A1	A2	A3	A4	A5
B1	5	9			6
B2	4	6			
B3	8	5	1		
B4			9	3	2
B5			6	5	3

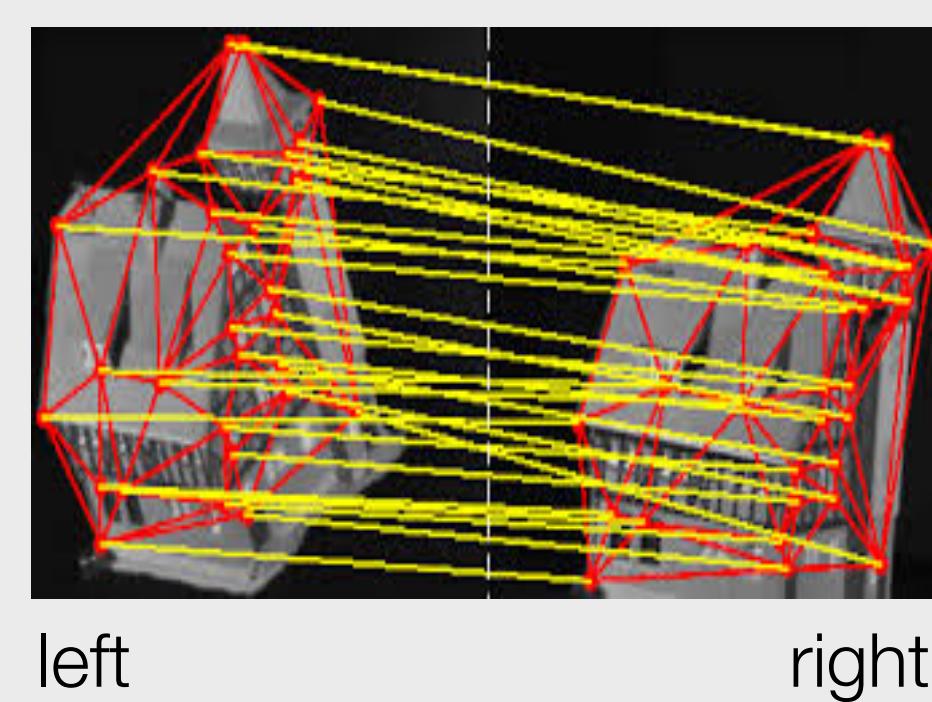
	A1	A2	A3	A4	A5
B1	5	9			6
B2	4	6			
B3	8	5	1		
B4			9	3	2
B5			6	5	3

First Minimum
 $4+5+6+3+6=24$

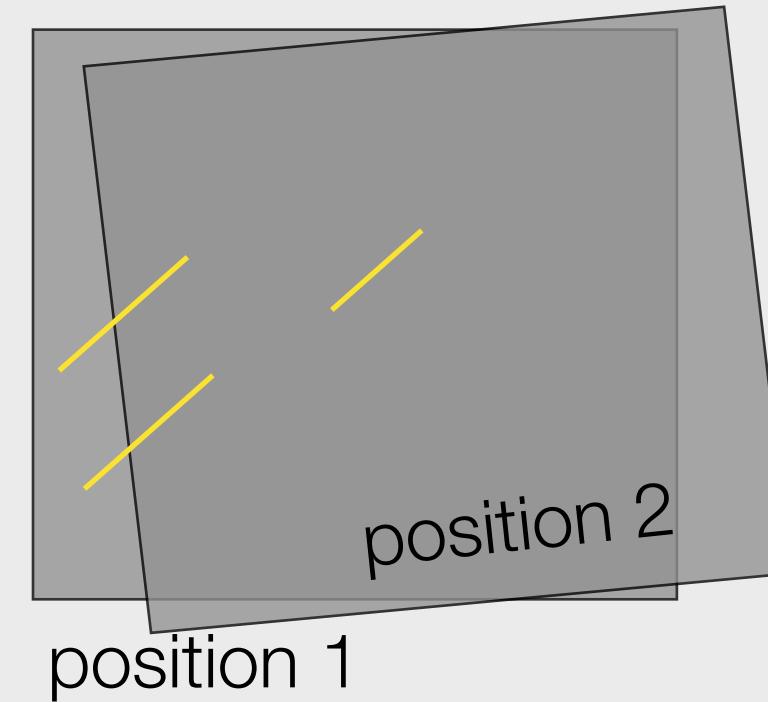
Greedy
 $1+2+4+5+9=21$

?

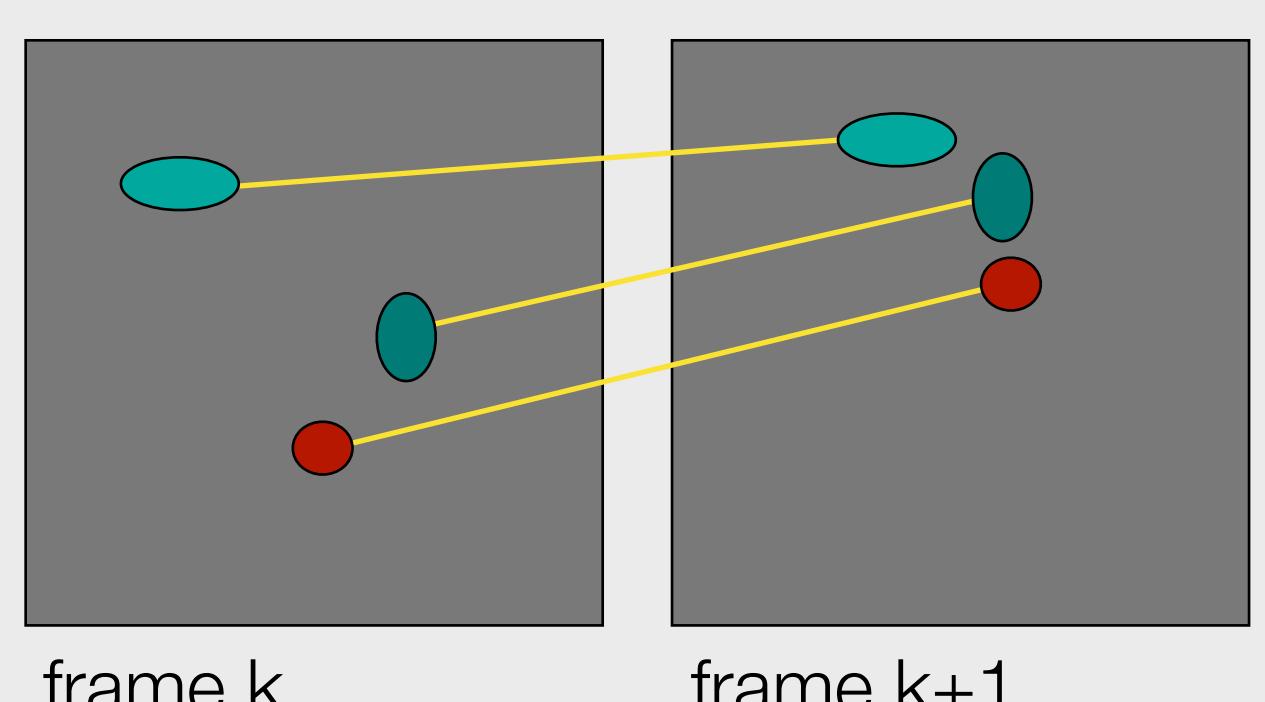
Is it the best
match?



Registration



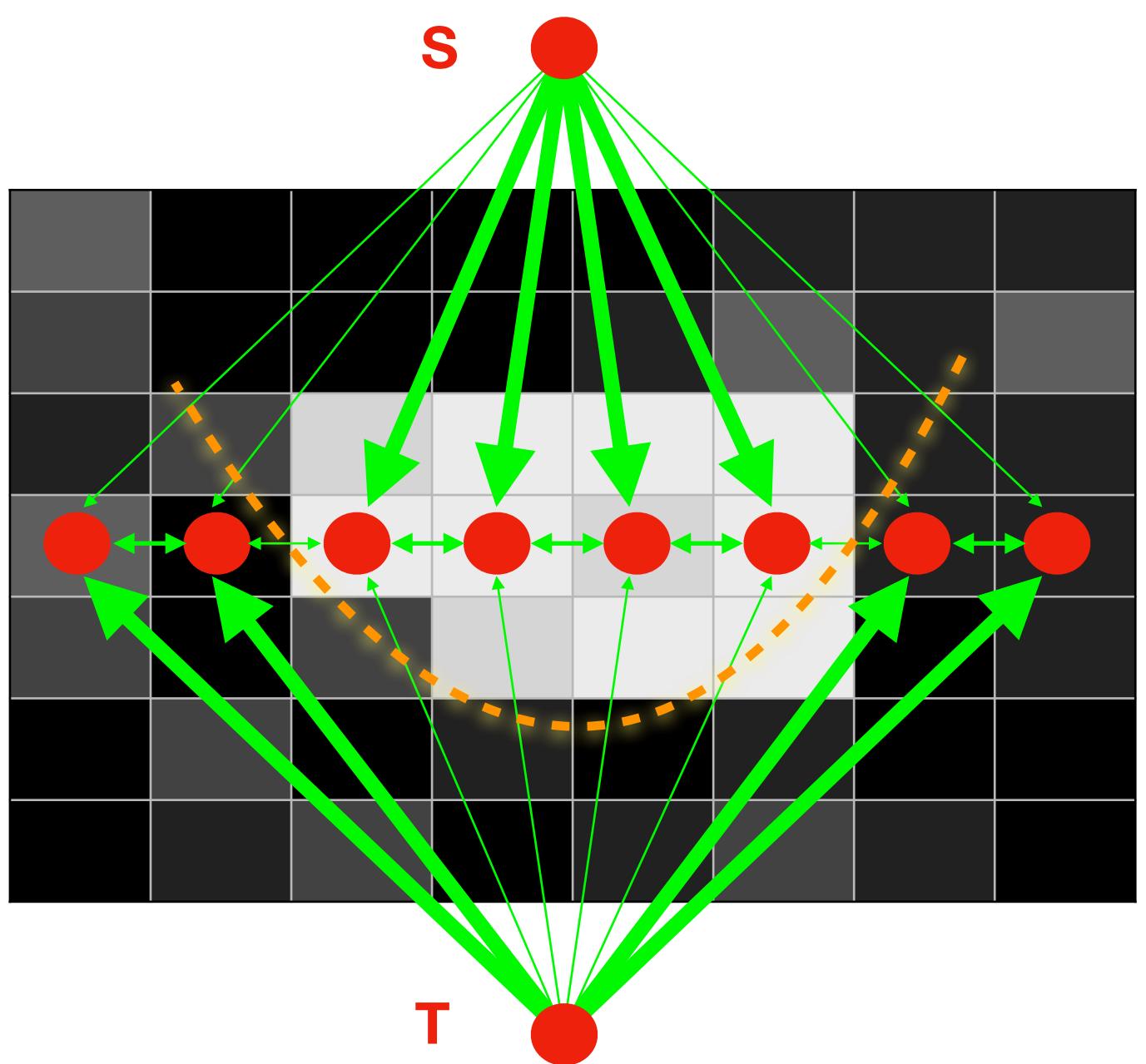
Tracking



Graph Cut

Minimal cut

- Build a graph with a source **S** and a sink **T**
- Based on min-cut max-flow theorem
- Efficient way to compute (Boykov-Kolmogorov)
- Interactivity: user guide partition



Weights for image segmentation

- **Source** with probability to belong to the foreground
- **Sink** with probability to belong to the foreground
- **Neighborhood** with a measure of similarity of adjacent pixels

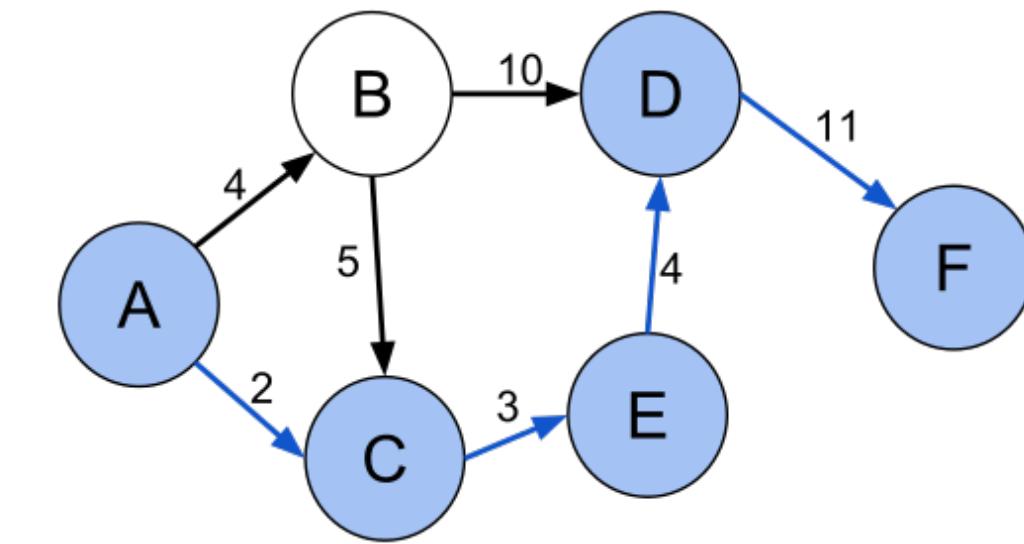
Application to image segmentation with complex background

Interactive Graph Cuts www.csd.uwo.ca

Shortest Path

Shortest path problem in weighted graph

- Find a path between a starting vertex and an ending vertex
- Minimise the sum of weights of edges
- Applications: GPS route, intelligent scissors in imaging, clipping path in photo...

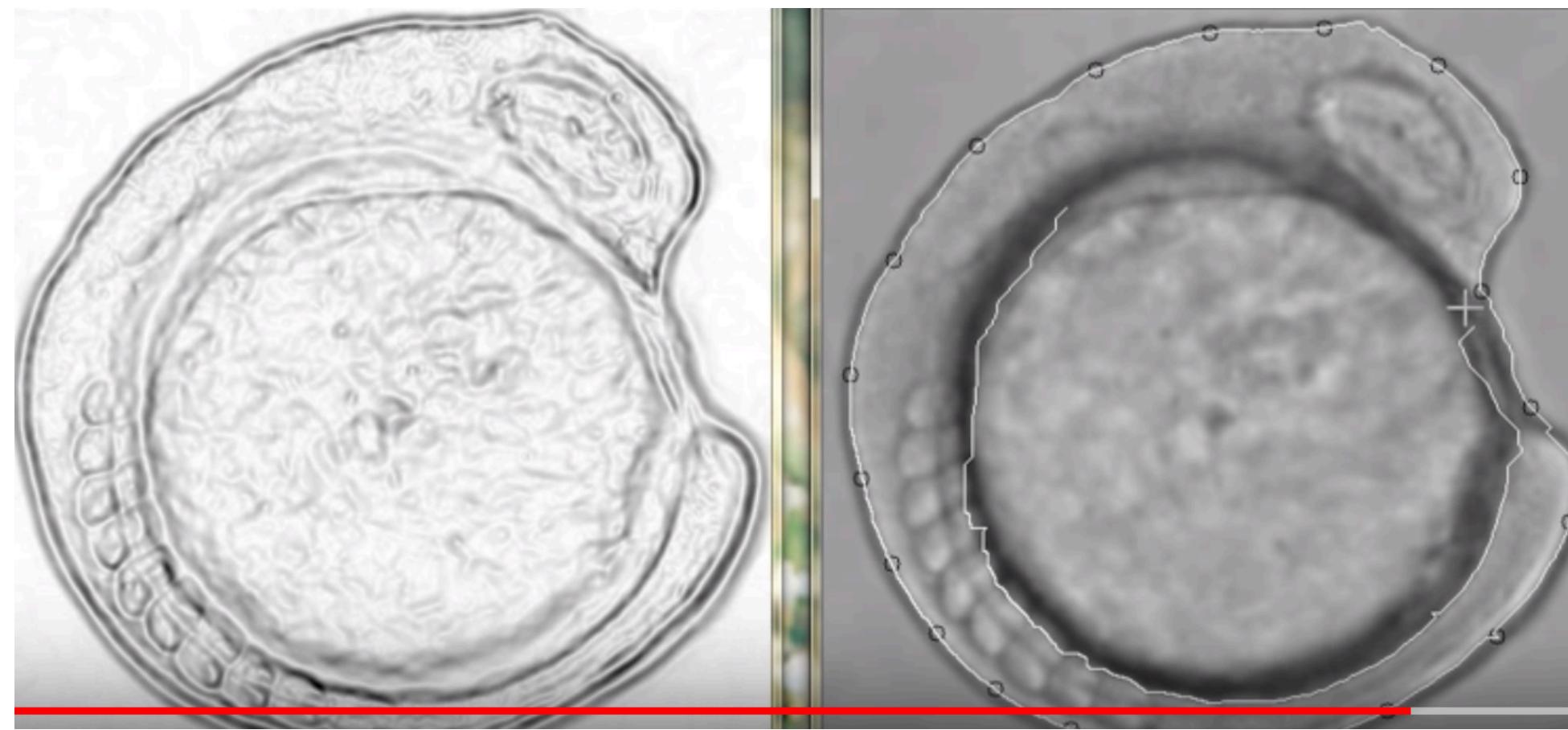


Dijkstra Algorithm

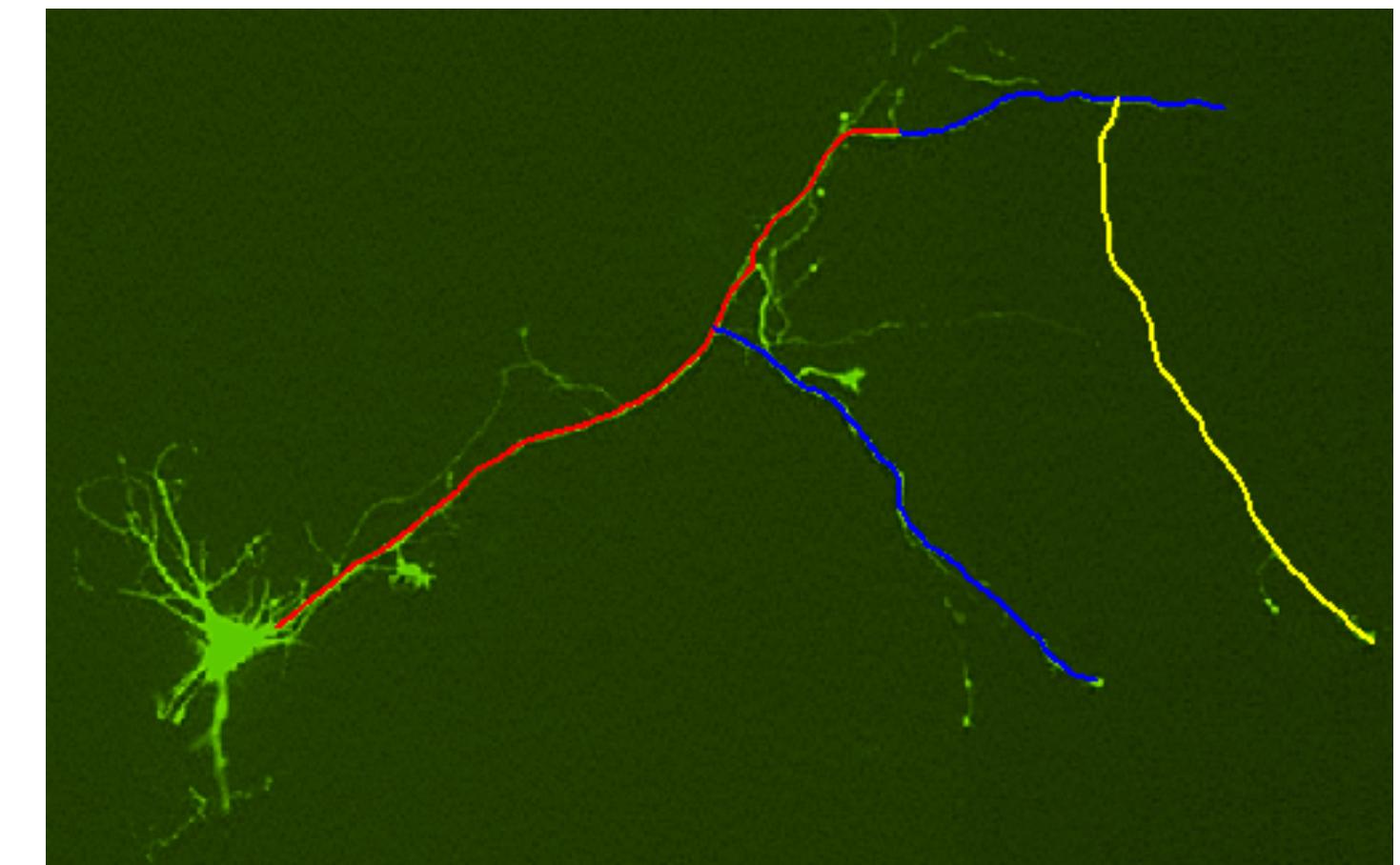
Explore to the end point and backtrack to start point

- Picks the unvisited vertex with the lowest distance
- Distance through it to each unvisited neighbor
- Direct implementation $O(V)$ → Fast $O(E + V \log(V))$

11	13	12	9	5	8	3	1	2	4	10
14	11	7	4	2	5	8	4	6	2	8
11	6	3	5	7	9	12	11	10	7	4
7	4	6	11	13	18	17	14	8	5	2
6	2	7	10	15	15	21	19	8	5	5
8	3	4	7	9	13	14	15	9	5	6
11	5	2	8	3	4	5	7	2	5	9
12	4	1	5	6	3	2	4	8	12	10
10	9	7	5	9	8	5	3	7	8	15



https://www.youtube.com/watch?v=X_dZ_7xAcIM
Franklin Fang, Intelligent Scissor



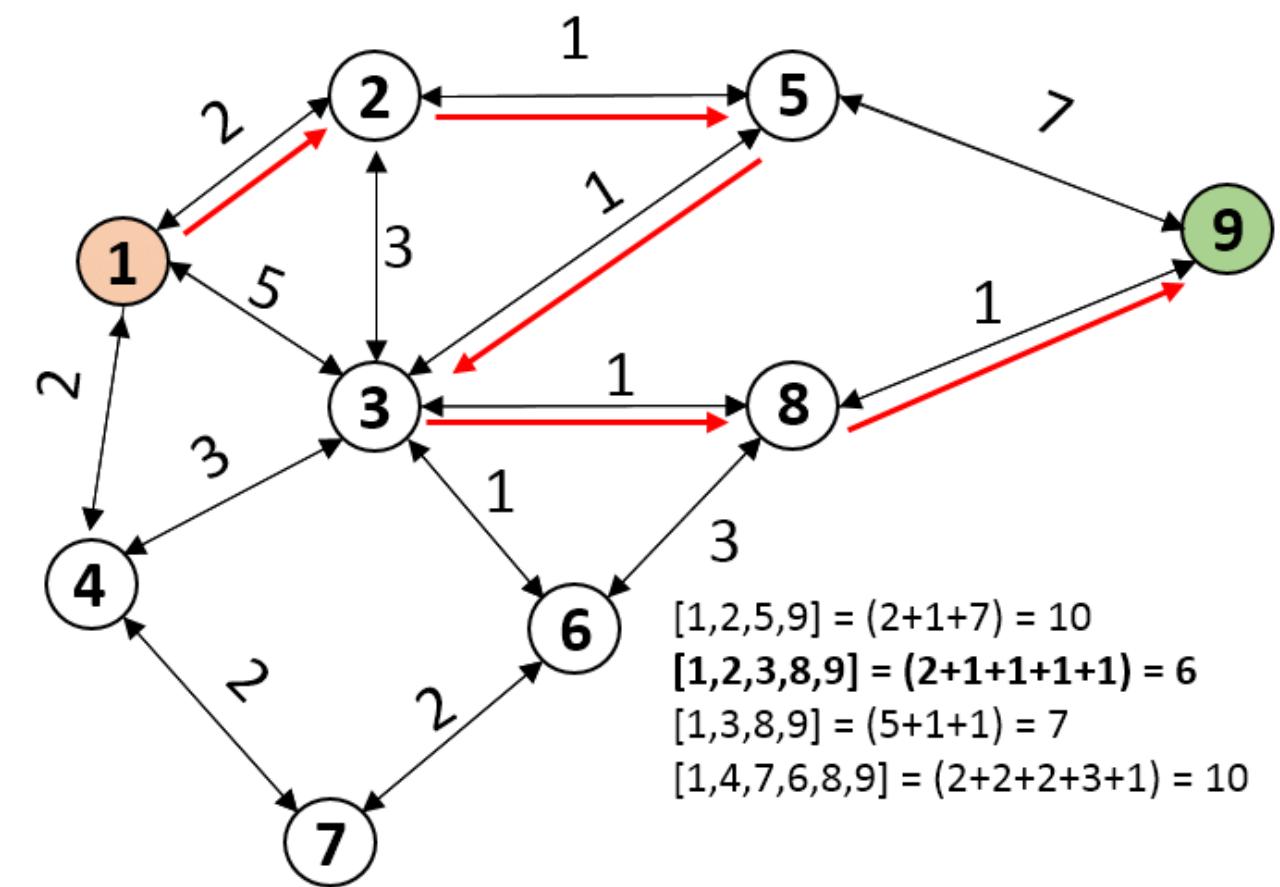
Livewire
Erik Meijering, Neuronj

Shortest Path

Shortest path problem in weighted graph

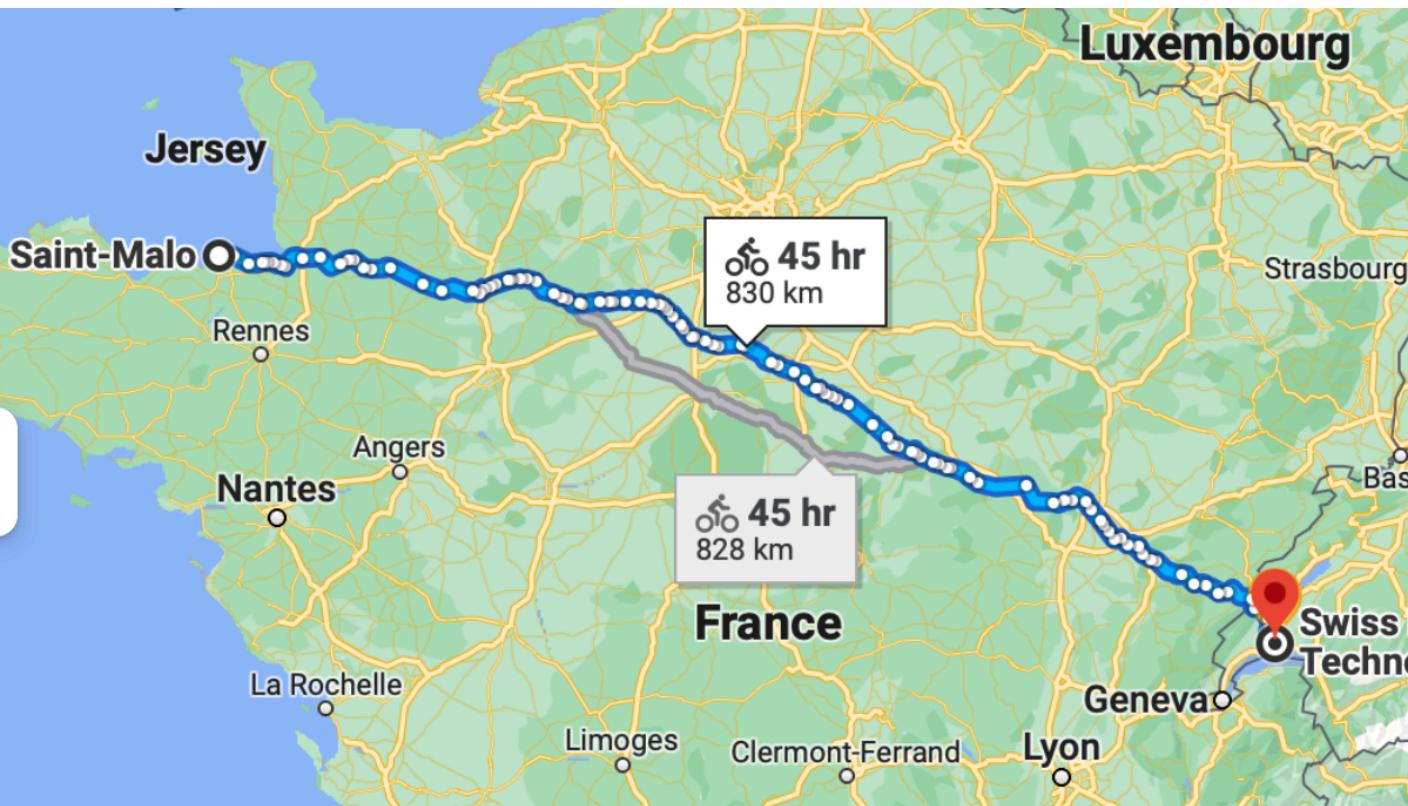
- Find a path between a starting vertex and an ending vertex
- Minimise the sum of weights of edges
- Applications: GPS route, intelligent scissors in imaging, clipping path in photo...

Shortest Path

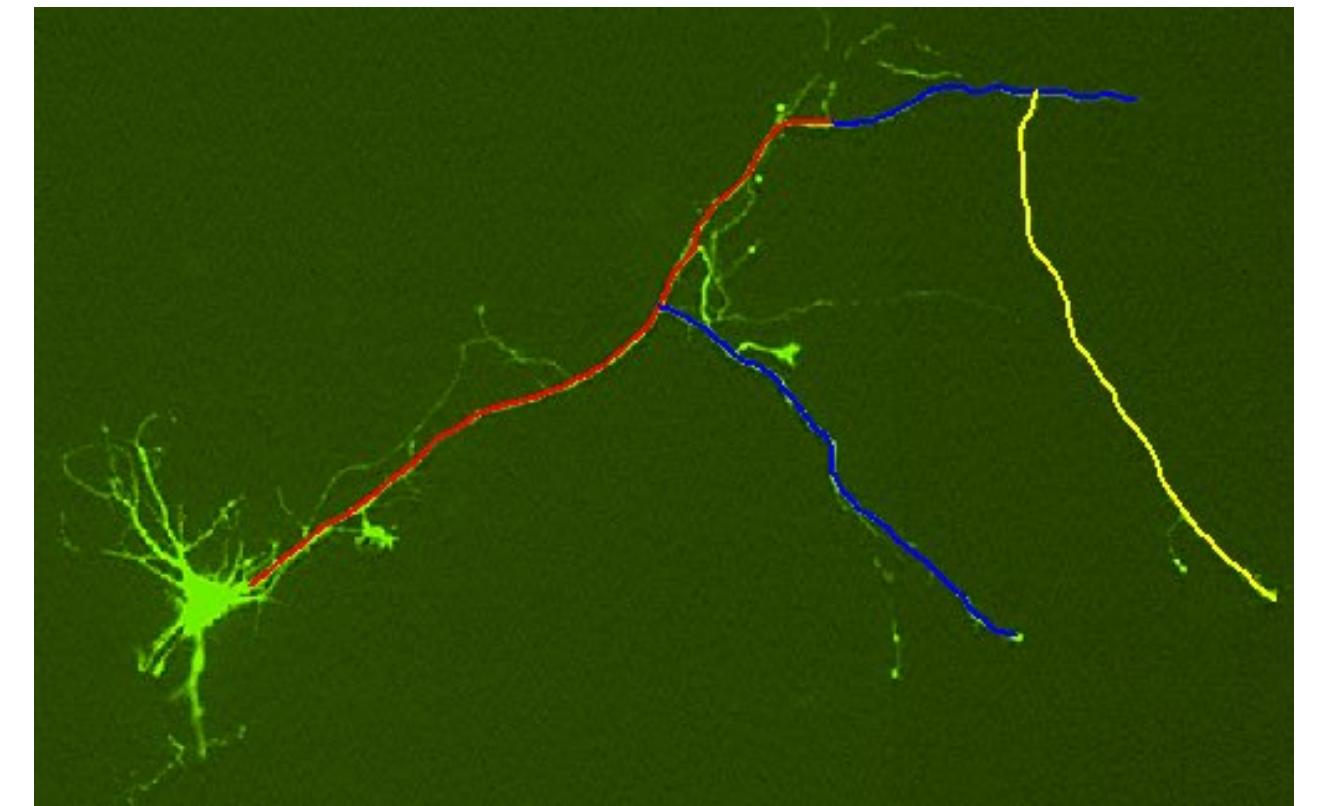


Dijkstra Algorithm

Find the shortest route



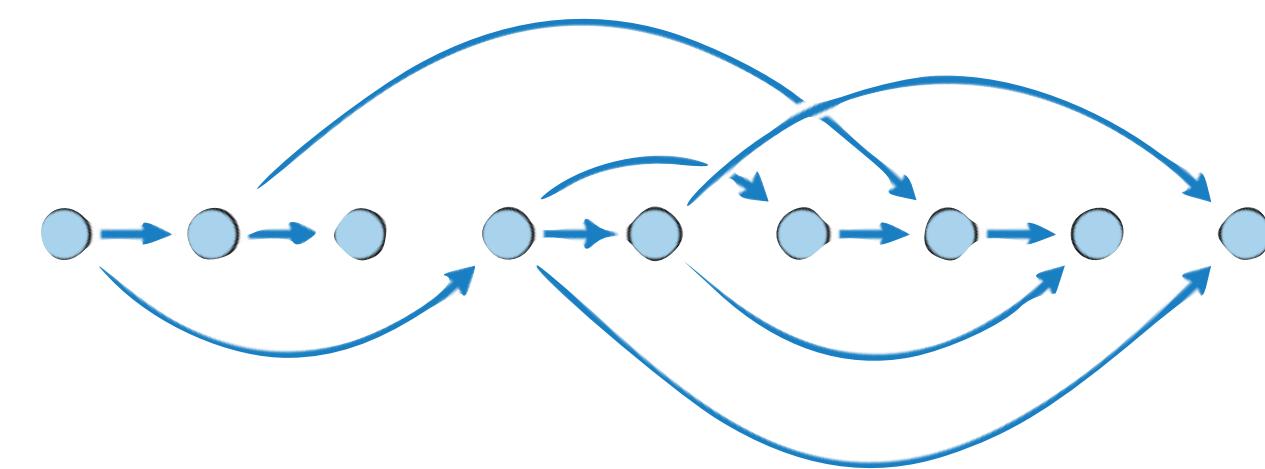
NeuronJ



E. Meijering et al. Cytometry 2004

Dynamic Programming

A **directed acyclic graph (DAG)** is a directed graph with no directed cycles
→ A DAG has a topological ordering of its vertices into a sequence



Dynamic Programming

Viterbi algorithm

Bellman's principle: break this decision problem into smaller subproblems

Building the graph on the pixel image (connectivity)

- Possible paths from start point to end point
- **Smoothness** aperture Δ controls the possible jump
- **Confinement area** limitation the search area

DP engine

- Explore the graph in sequence
- Backtrack
- Minimising the sum of costs

Cost a the edge

- from a vertex A to a vertex B
- customise to a specific problem
- cost = weight of edge

DP Optimal Detection of Curves

Powerful and fast optimiser for curve detector in images

- Discretization along the initial line
- Cost: weighted sum of penalisation / attraction
- Easy to add constraint point

$$\xi_{\mathbf{u}\mathbf{v}} = \lambda_1 \frac{f(\mathbf{u})}{N_{int}} + \lambda_2 \frac{|\mathbf{u} - \mathbf{v}|}{N_s}$$

↑ ↑
data term regularisation
 term

