

Course

Denoising of Microscopy Images

Noise in Bioimage

Pushing the limits of imaging

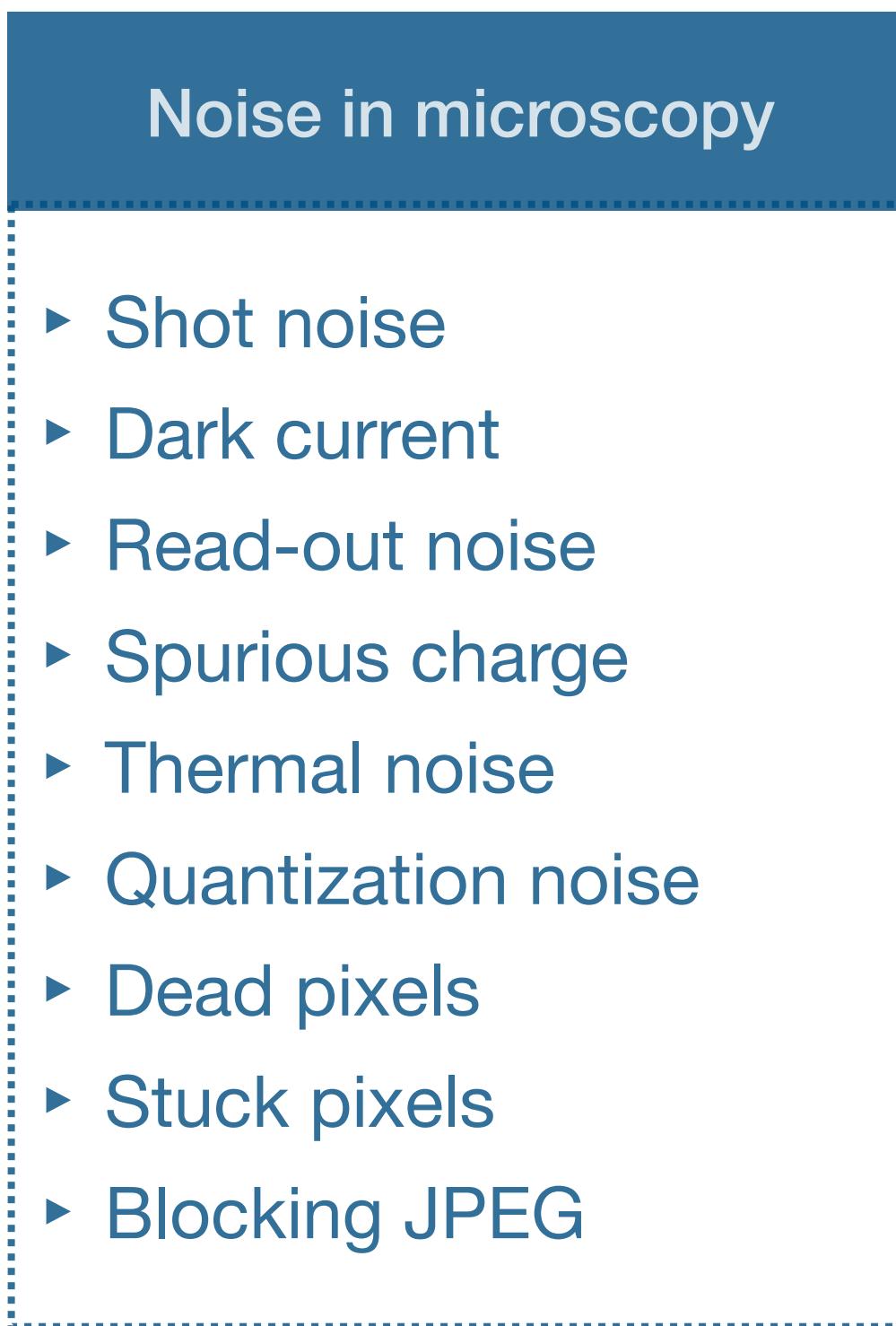
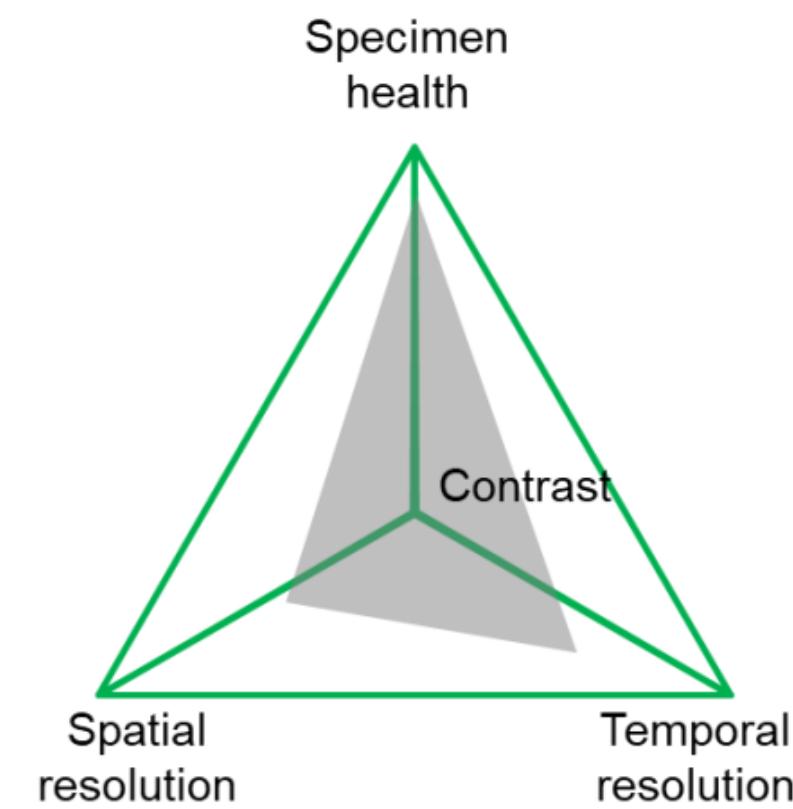
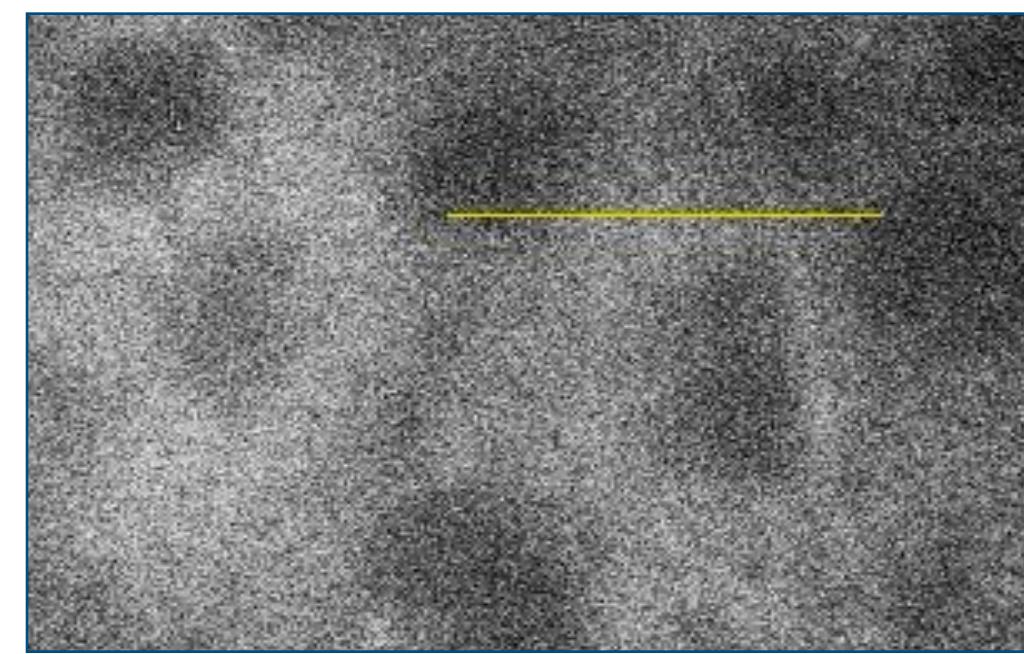
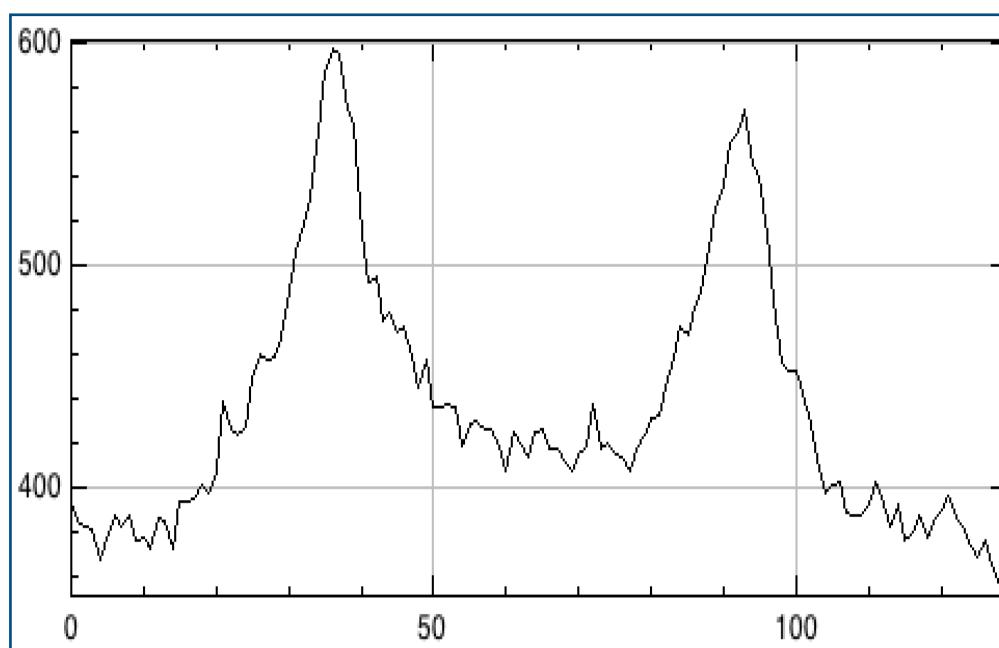
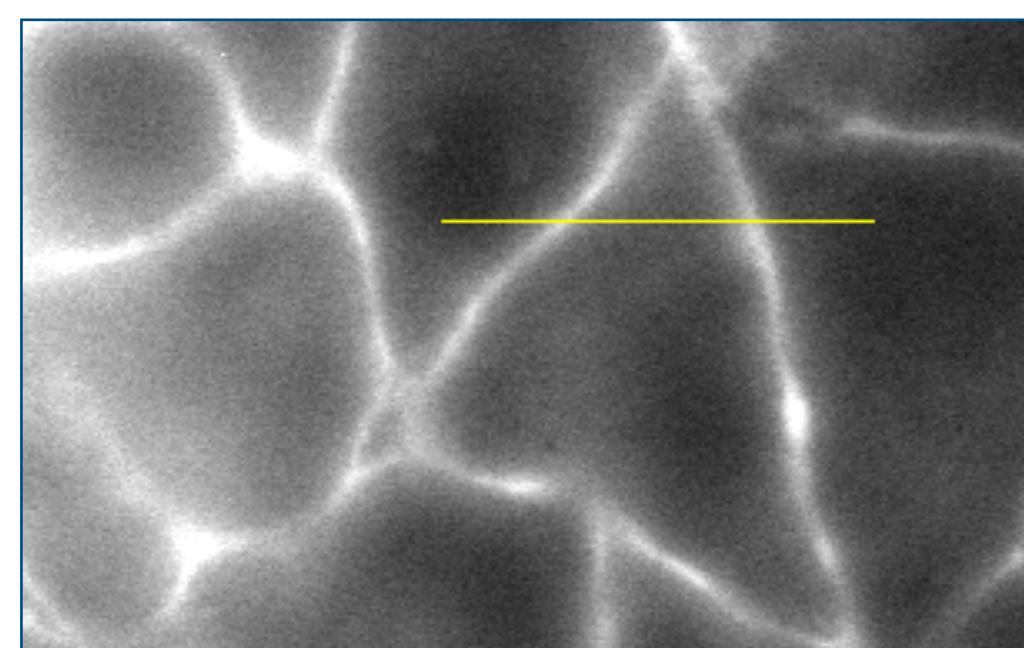
- Low-light condition, low excitation
- High spatial resolution
- Long sequence: bleaching

Degrading in multiple dimension

- Time: short exposure times
- Channel: bleed-through
- Depth: Scattering, less excitation

Source of noise

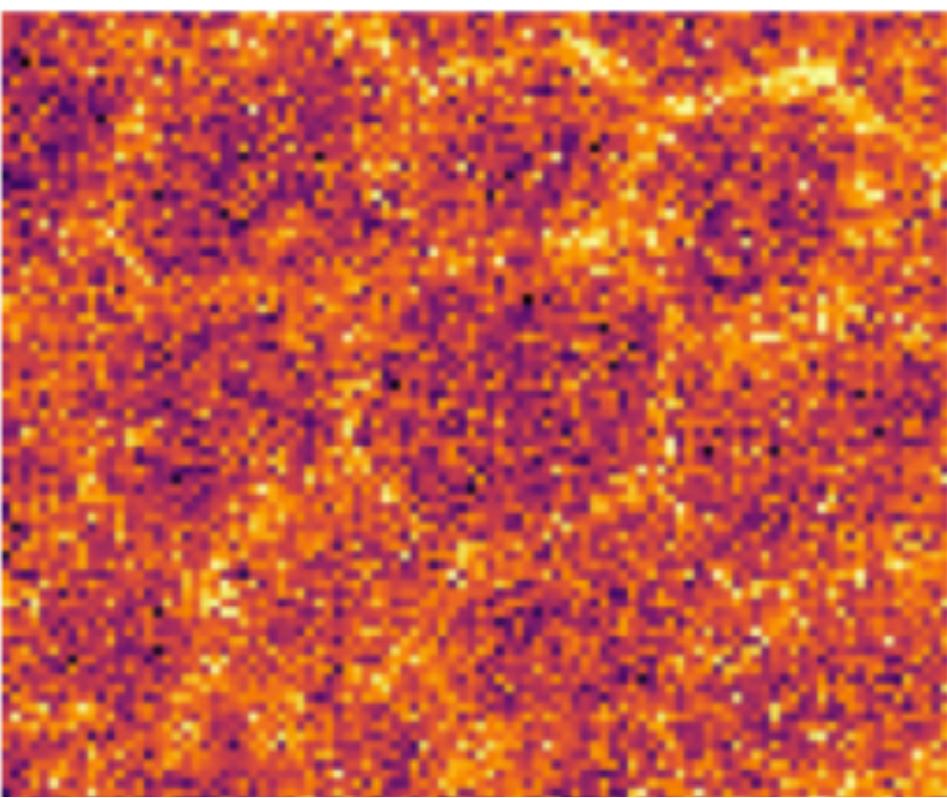
- ▶ From the acquisition device
- ▶ From the camera/detector
- ▶ From the structure
- ▶ From the background



Human are good to guess structures in noisy image

Noise Structure

Pixelwise Noise



$$y[k] = x[k] + n[k]$$

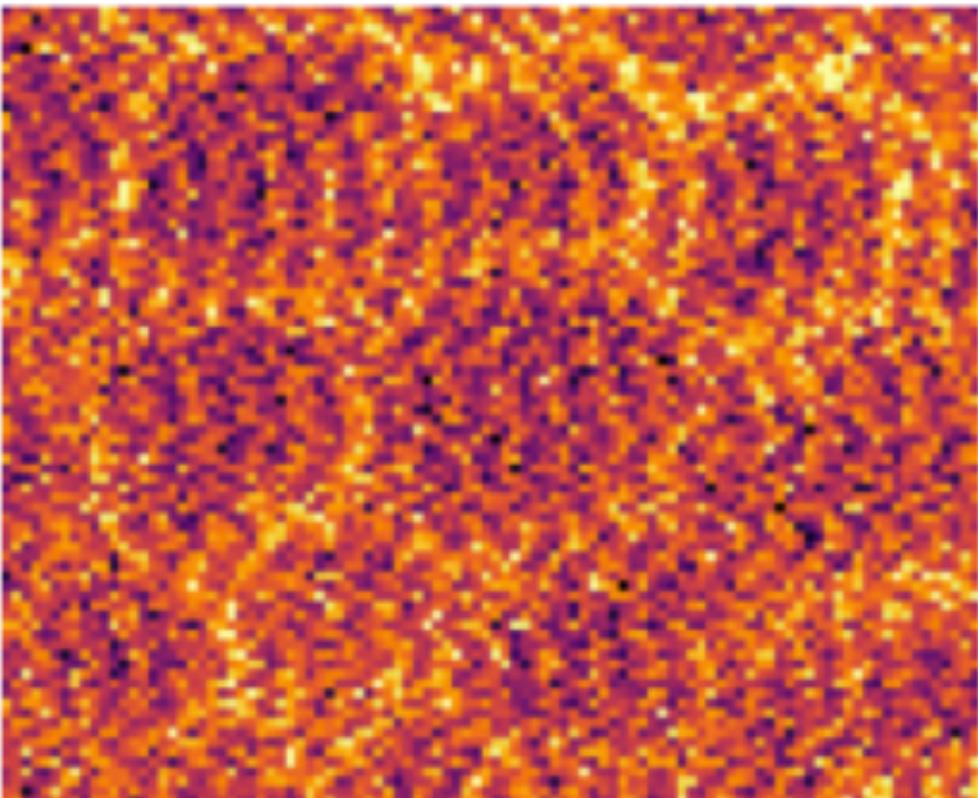
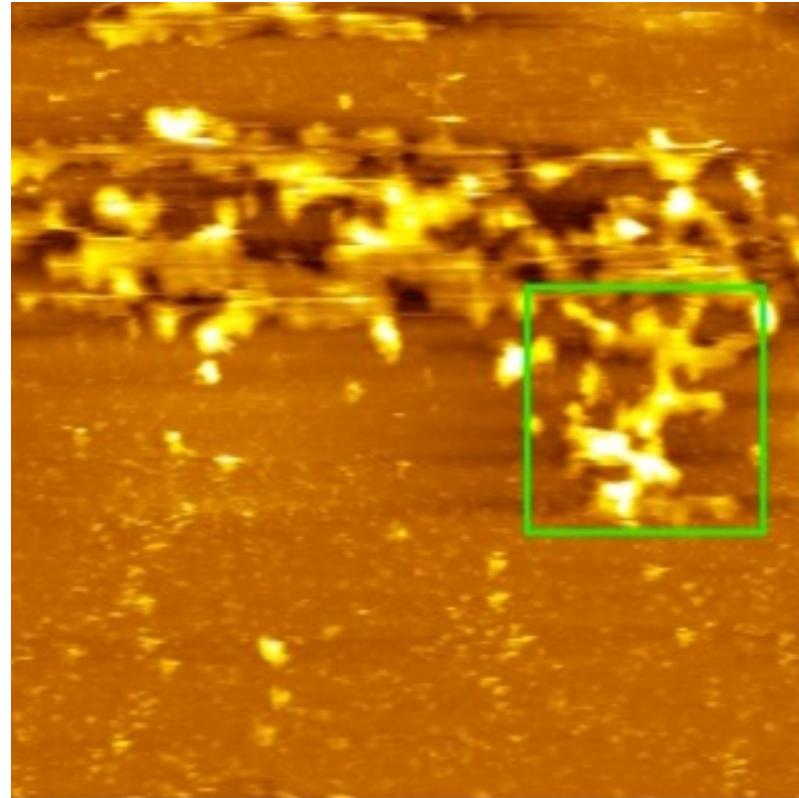
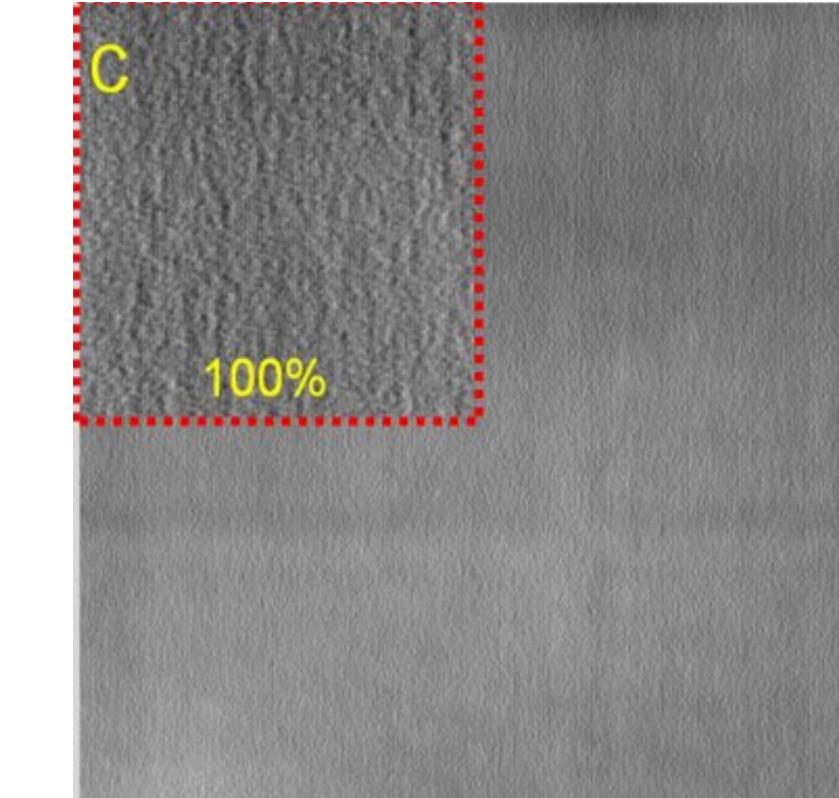
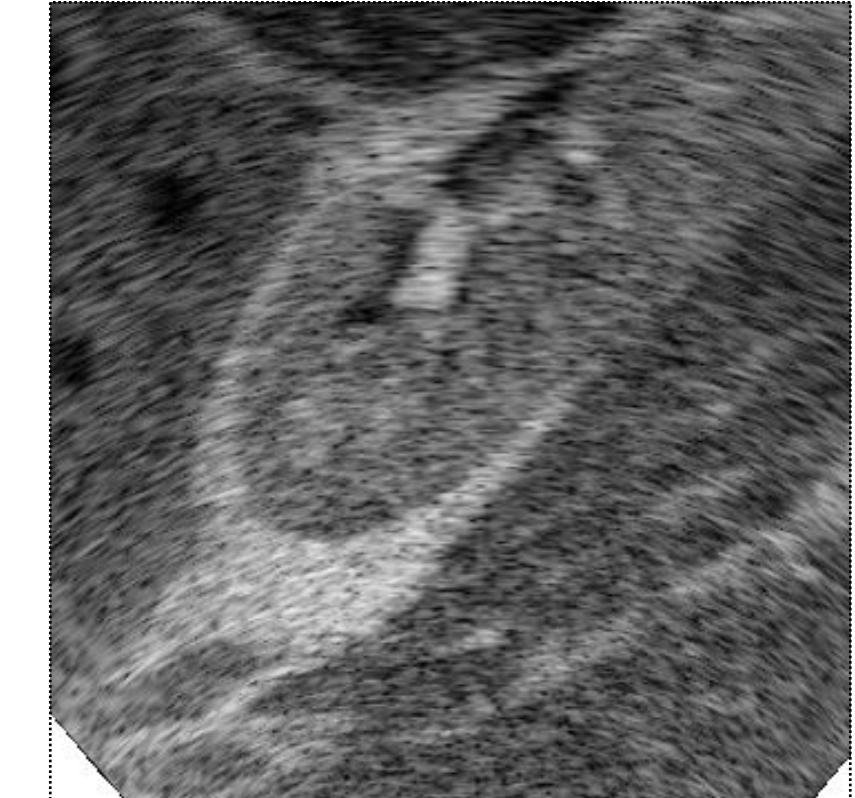
Signal prior

Correlation among pixels
Self-similarity
Patterns
Sparsity
Low frequency

Noise model

Random variables
No spatial structure
Independent realizations
Statistical distribution
High frequency

Structural Noise



Noise Quantity

Signal-to-Noise Ratio **SNR**

$$SNR = \frac{\text{mean}}{\text{stdev}}$$

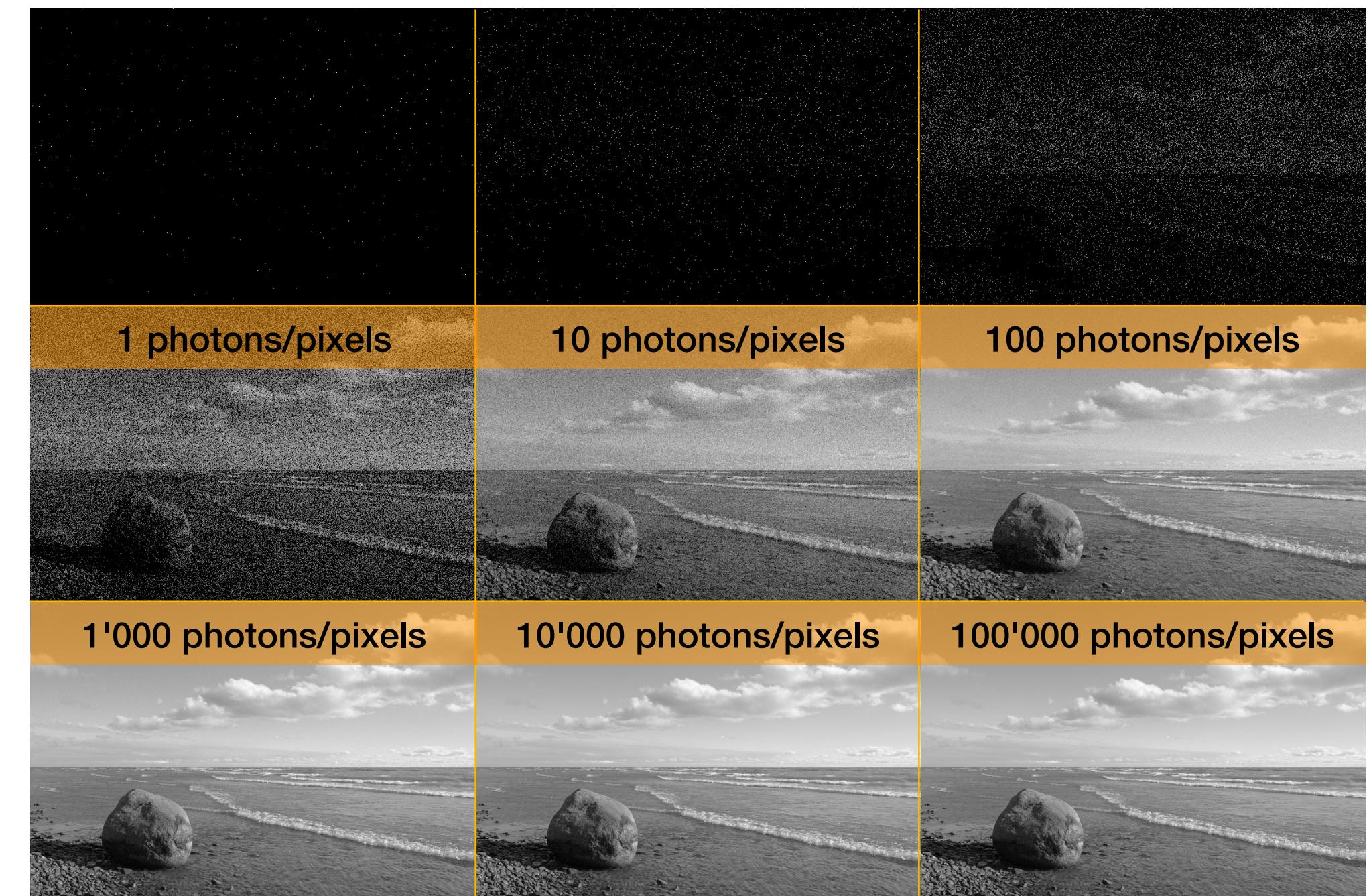
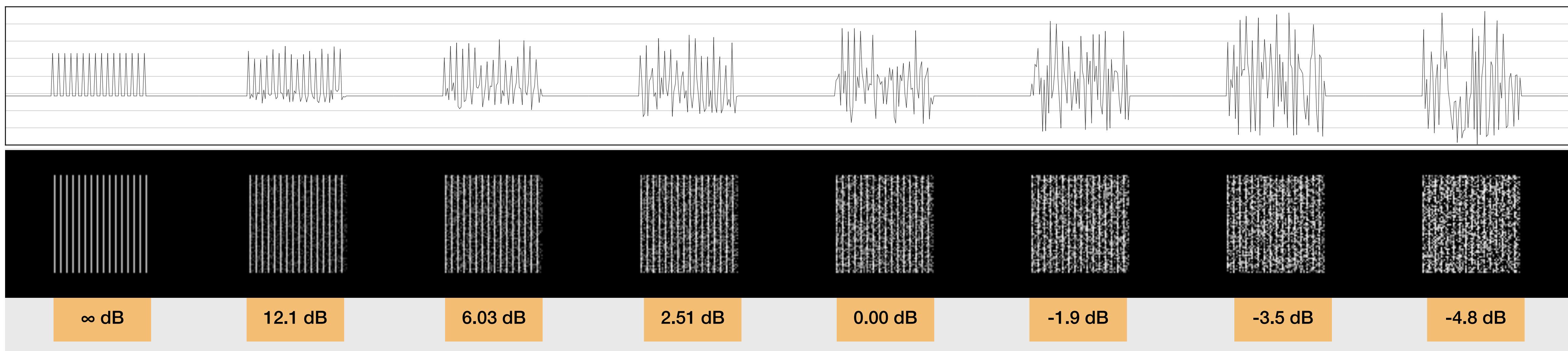
$$SNR_{dB} = 10 \log_{10}(SNR)$$

Peak Signal-to-Noise Ratio **PSNR**

$$PSNR = \frac{\text{dynamic range}}{\text{stdev}}$$

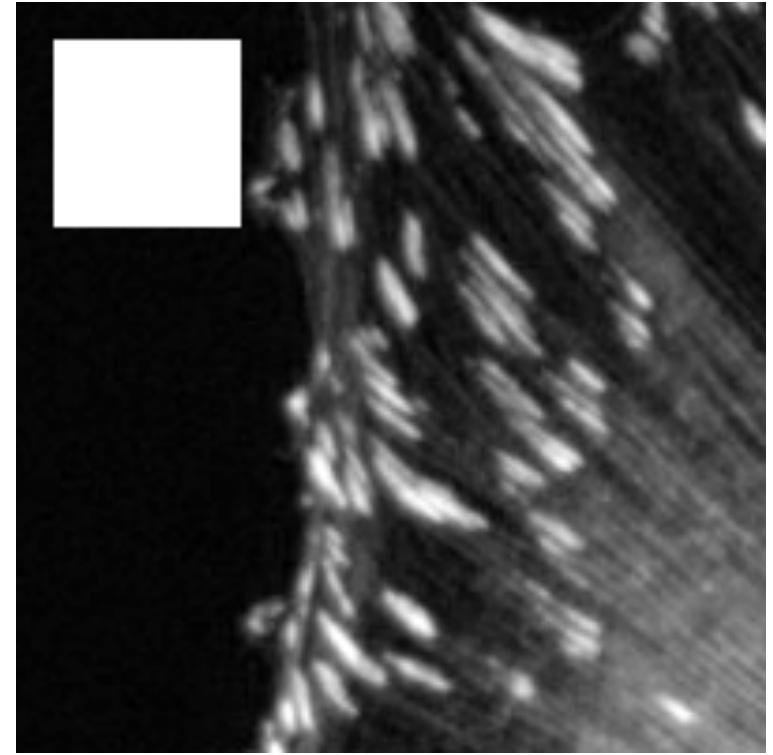
Contrast-to-Noise Ratio **CNR**

$$CNR = \frac{\mu_{sig} - \mu_{bg}}{\sigma}$$



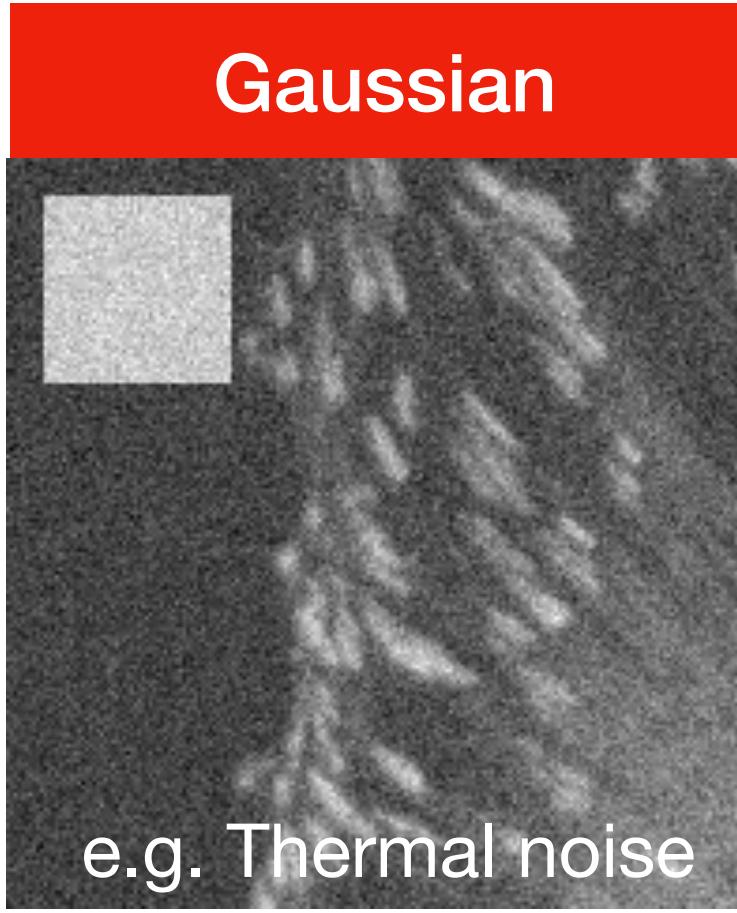
Noise Distribution Models

Test image
Noiseless

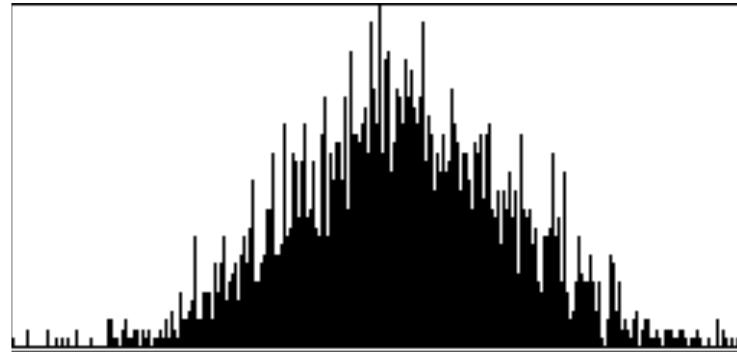


Source: CIL38985

Gaussian

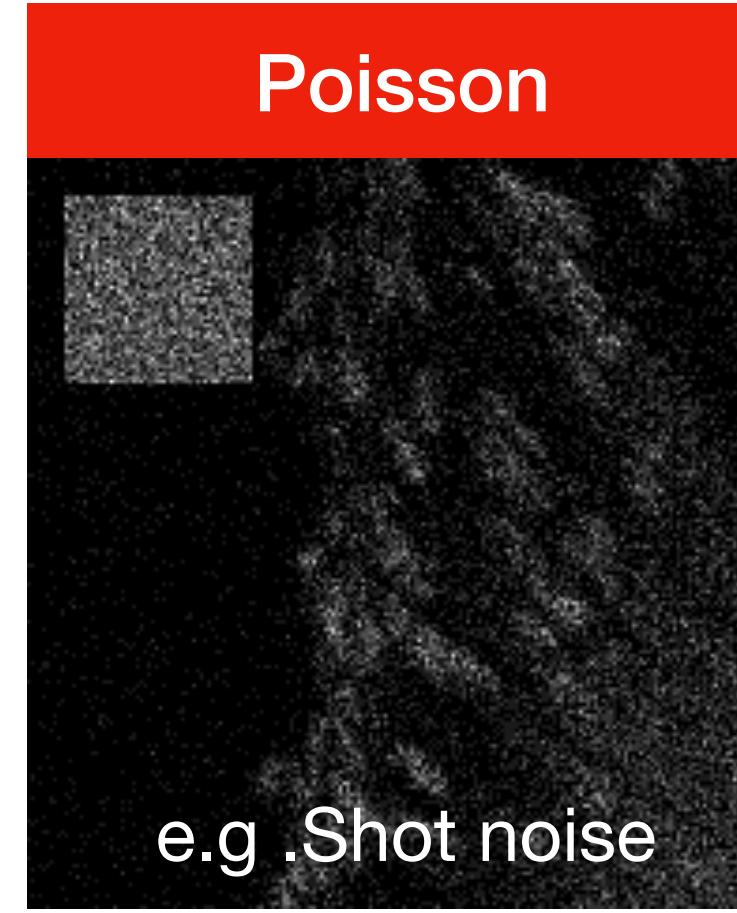


e.g. Thermal noise

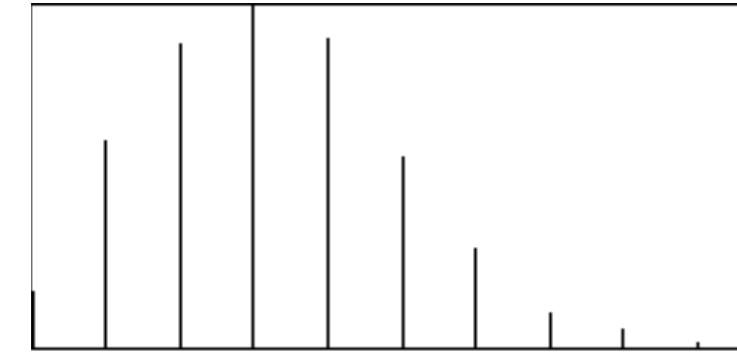


mean μ
standard deviation σ

Poisson

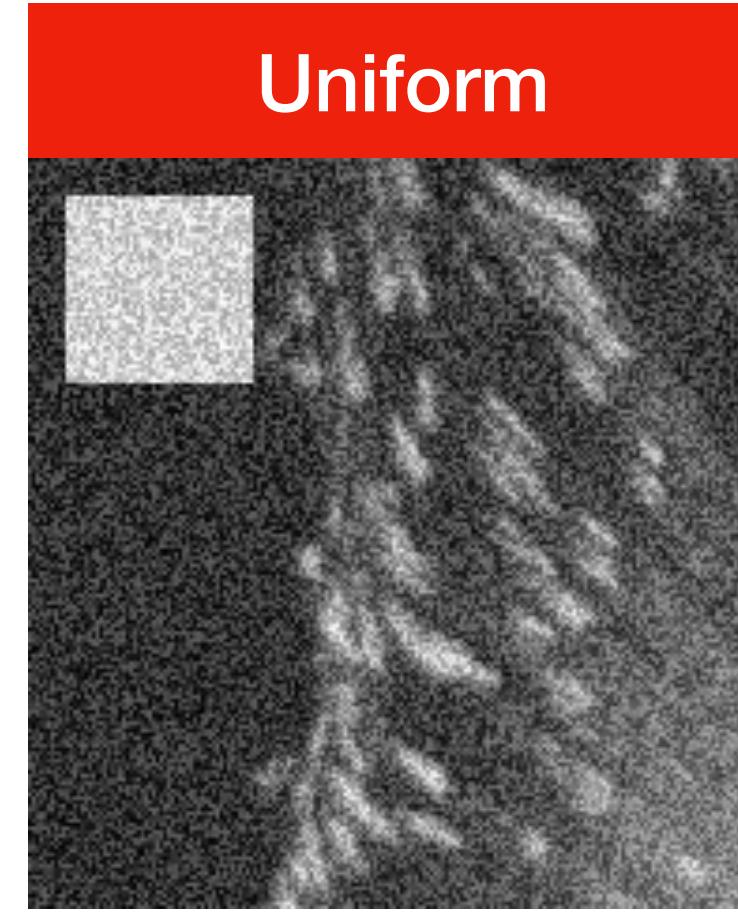


e.g. Shot noise

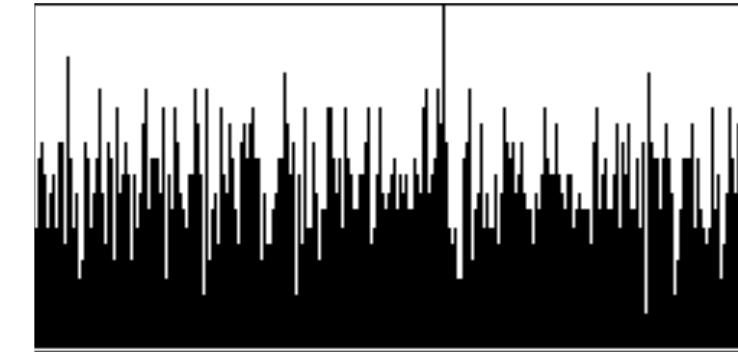


mean $\mu = \lambda$
variance $\sigma^2 = \lambda$

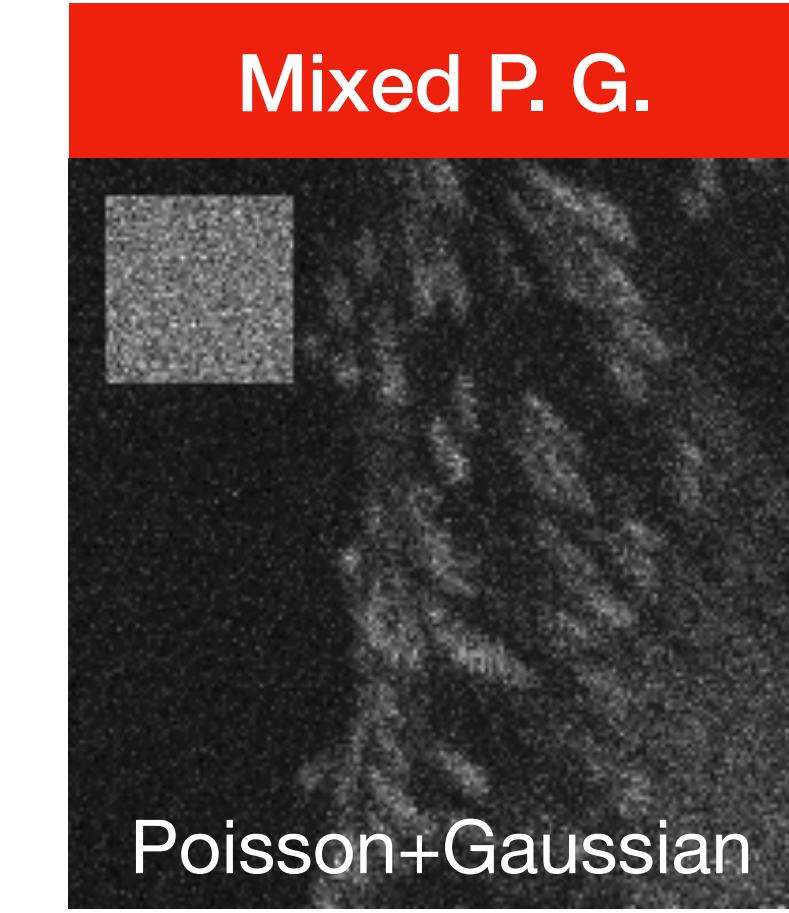
Uniform



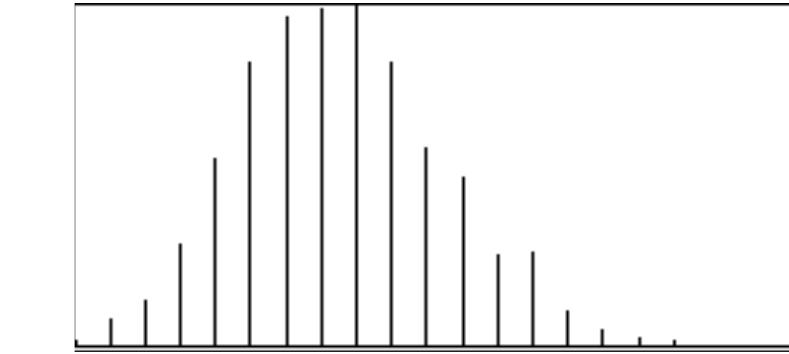
[min, max]
mean $\mu = (\text{max}+\text{min})/2$



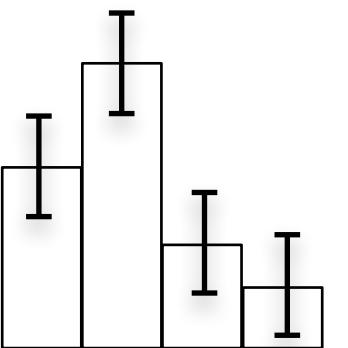
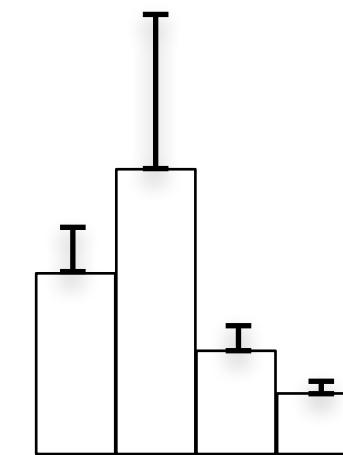
Mixed P. G.



Poisson+Gaussian



Demonstration
RandomJ on Fiji



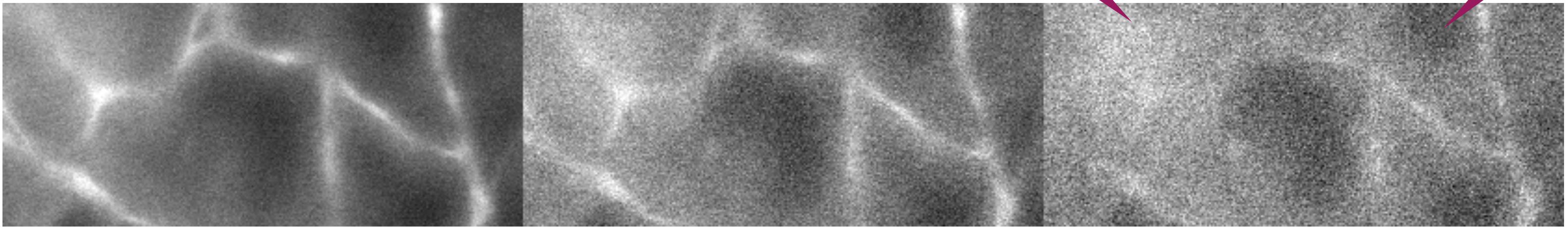
Mixed Poisson-Gaussian

- Realistic model in fluorescence
- Poisson (shot and dark noise)
- Gaussian (readout noise)

Basic Methods

Noisy data

Frames at 3 time-points.
Signal is decreasing
(bleaching)

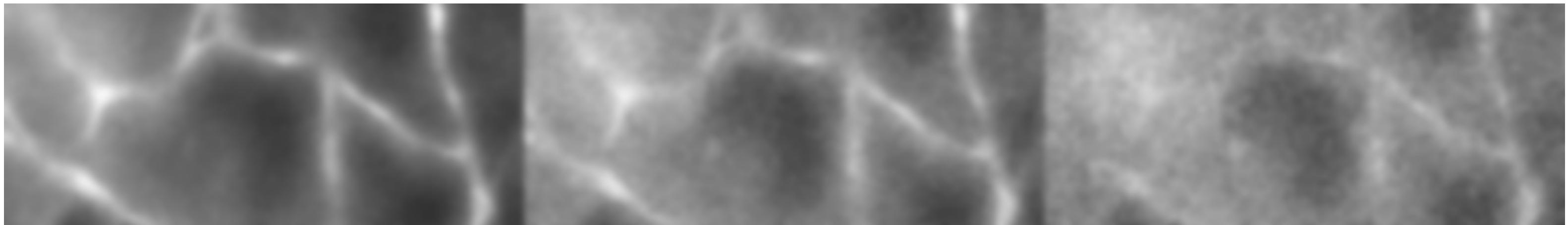


Source: D. Wüstner, University of Odense, Denmark

Gaussian Filter

Low-pass filter

Spatial blurring
Reduction of high
frequency noise

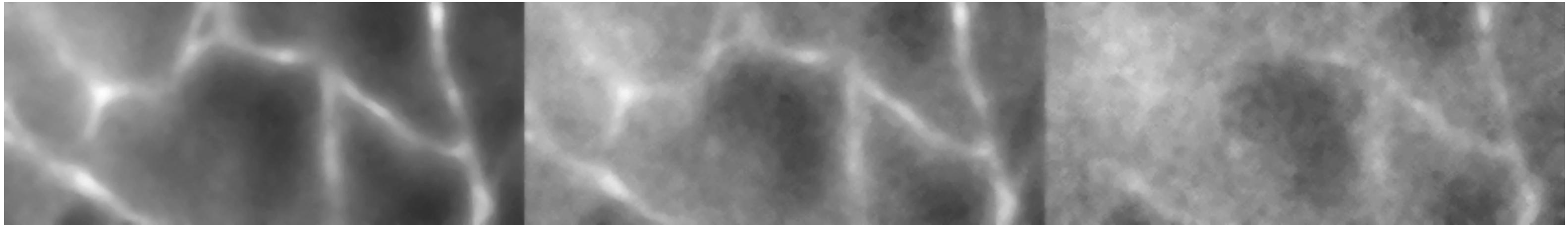


Gaussian Filter of ImageJ, sigma=2

Median Filter

Speckle noise

Preserve edges
Reduce shot noise
Cartoon effect



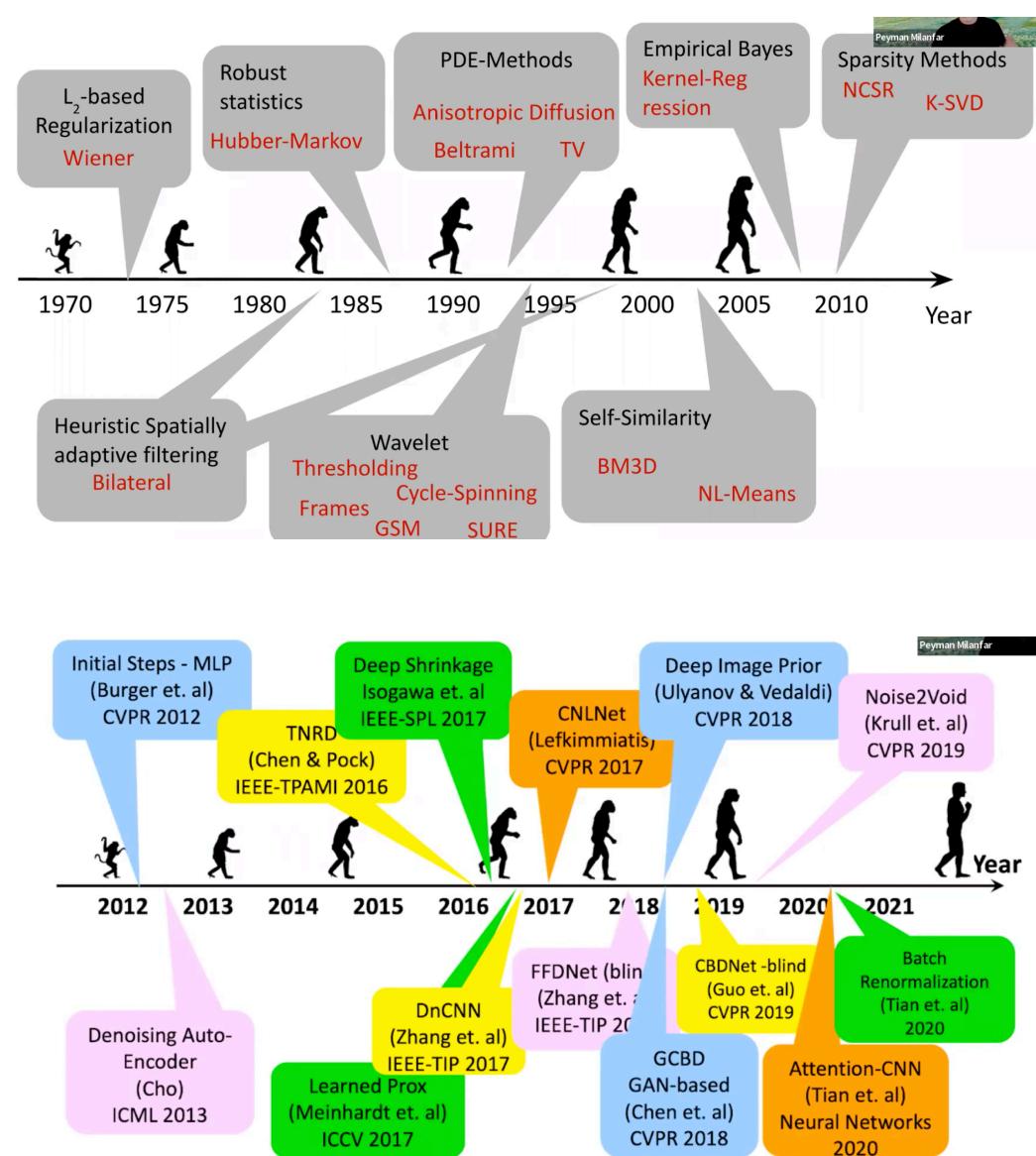
Median Filter of ImageJ, radius=3

Methods for Image Denoising

Goal: Image simplification

- ✓ Preprocess before image segmentation
- ✓ Enhance the structure of interest
- ✓ Take advantages of the multidimensional data

Video tutorial of Peyman Milanfar



Remove high frequency

- Digital linear filtering (Gaussian)

Edge-preserving smoothing

- Non-linear filtering (Median)
- Anisotropic diffusion [Perona-Malik, 1990]
- Bilateral filter [Tomasi, 1998]
- Mean-shift [Comaniciu, 2002]

Sparsity prior

- Total variation [Rudin-Osher-Fatemi, 1992]
- Wavelet shrinkage [Donoho 1998]
- PureLET [Luisier 2010]

Self-similarity prior

- Non-local mean [Buades, 2005]
- Block matching [Dabov 2006]

Supervised Learning

- DnCNN [Zhang 2017]
- CARE [Weigert 2018]

Self-Supervised Learning

- Noise2Noise [Lehtinen 2018]
- Deep Image Prior [Ulyanov 2018]
- Noise2Void [Krull 2019]

Other strategies of learning

- PnP Denosing [Ulugbek 2022]
- Diffusion Generative Model [Song 2020]



Deep-learning approaches

Meiniel et al, Denoising of microscopy images : a review of the state-of-the-art, *IEEE* 2018.

Laine et al., Imaging in focus : An introduction to denoising bioimages in the era of deep learning, 2021.

"Classic" Image Simplification

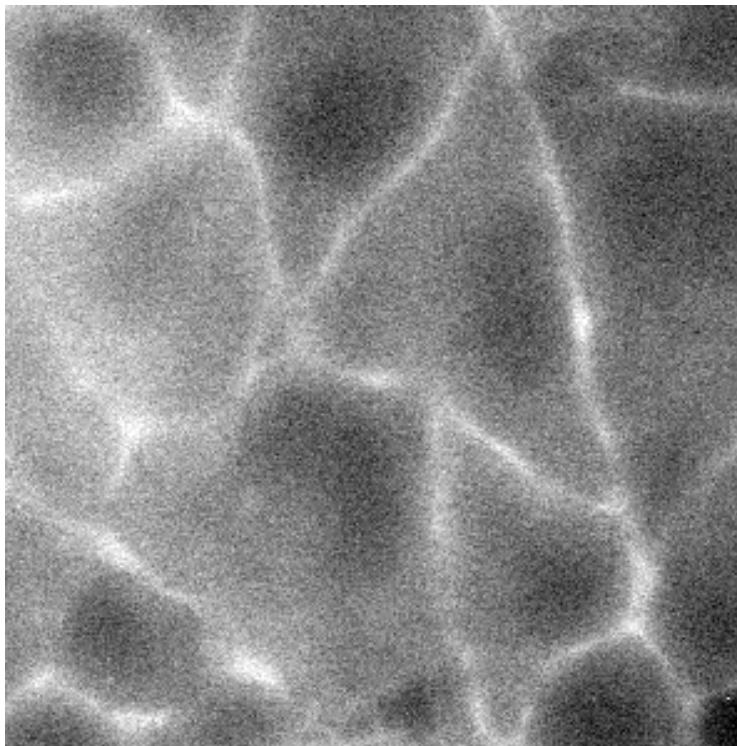
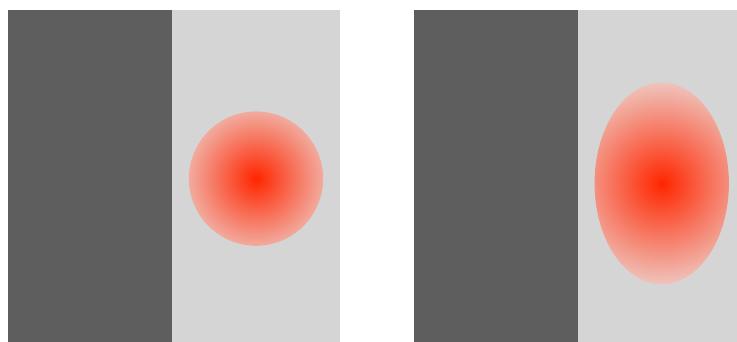


Anisotropic Diffusion

[Perona-Malik, 1990]

Iterative diffusion
Many parameters

$$\frac{\partial f}{\partial t} = \operatorname{div}(c(\|\nabla f\|) \nabla f)$$



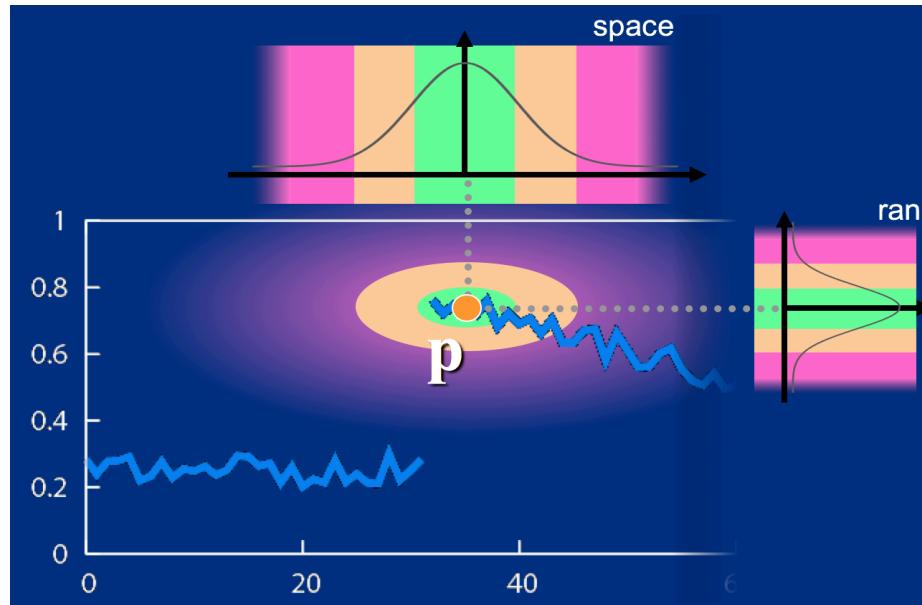
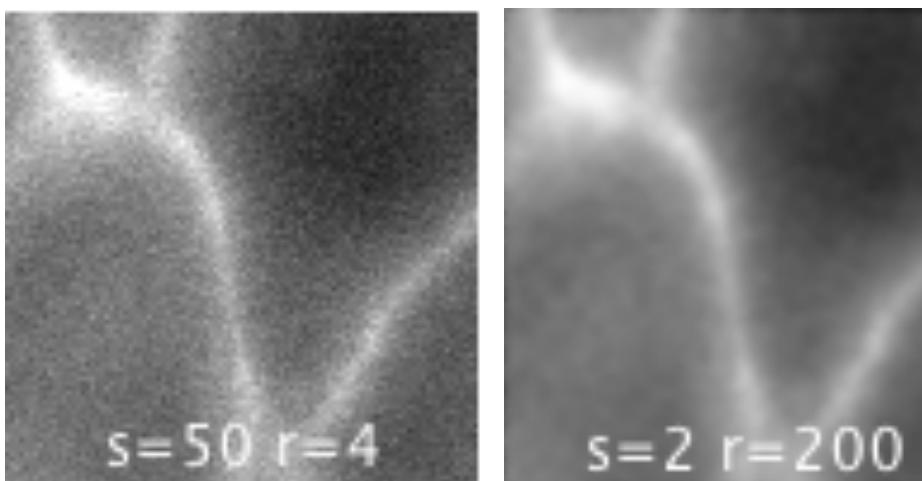
To preserve edges

Bilateral Filter

[Tomasi, 1998]

Local adaptive blur
Preserve edges

$$h(\mathbf{x}) = \frac{1}{W} \int_{k \in \Omega} f(\mathbf{k}) w(\mathbf{x} - \mathbf{k}) \phi(f(\mathbf{x}) - f(\mathbf{k})) d\mathbf{k}$$



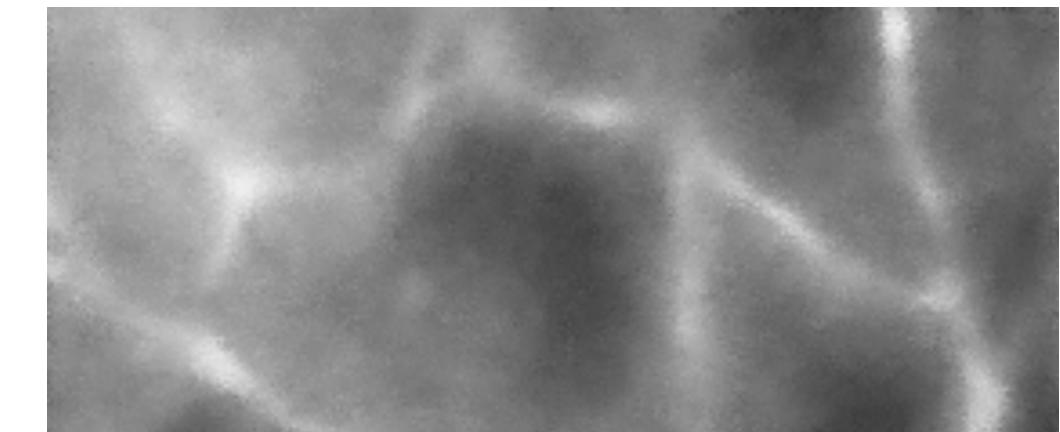
Mean-Shift

[Comaniciu, 2002]

Data clustering algorithm
Cartoon effect, extensible in nD

For every pixel

1. Calculate the center of mass on local window: \mathbf{x} and \mathbf{u}
2. Shift to \mathbf{x}
3. Repeat step 1 until convergence

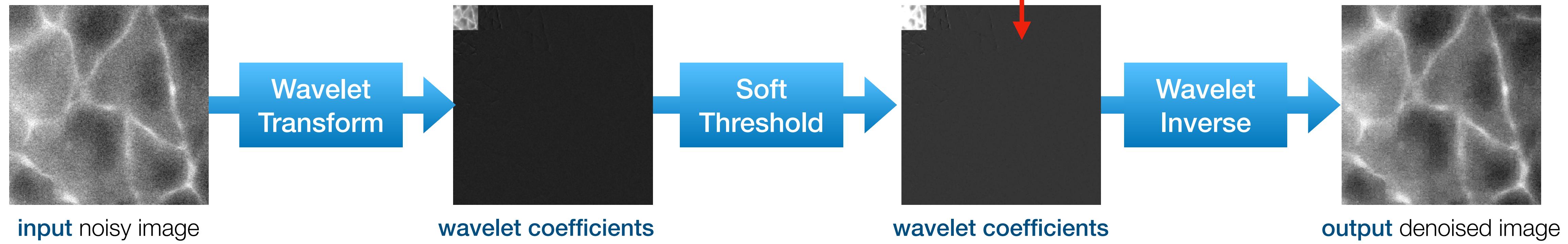


Wavelet Shrinkage

In the wavelet domain

[Donoho, 1998]

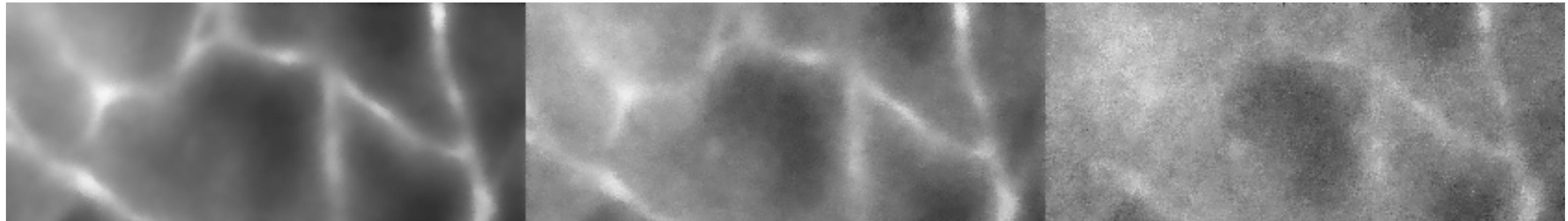
- Decorrelation ability
- Sparse representation
- Multiscale



PureDenoise

[Luisier, 2010]

Linear expansion of threshold using a unbiased criteria



PureDenoise, plugin of ImageJ, EPFL

Eye Self-Similarity-Based Denoising

Non-local mean

[Buades-Coll-Morel, 2005]

Assumptions

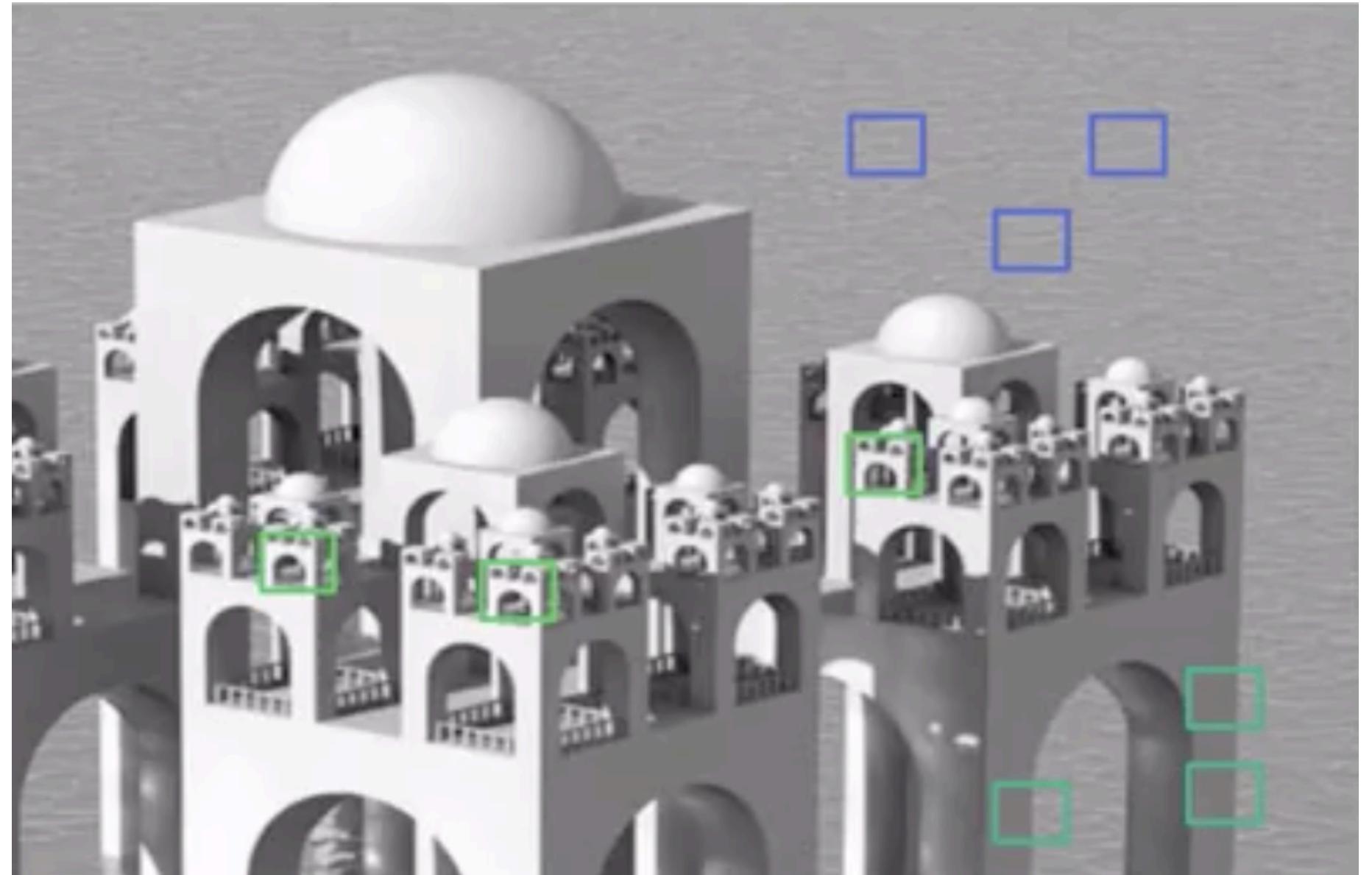
- Images have repetitive textures
- Images have self-similarity

$$\begin{aligned} p_1 &= p_0 + n_1 \\ p_2 &= p_0 + n_2 \\ \dots \\ p_n &= p_0 + n_n \end{aligned}$$

Algorithms

- No averaging around the pixel
- For over all the image find the similar pixel and then average

ij-nlm
CANDLE-J



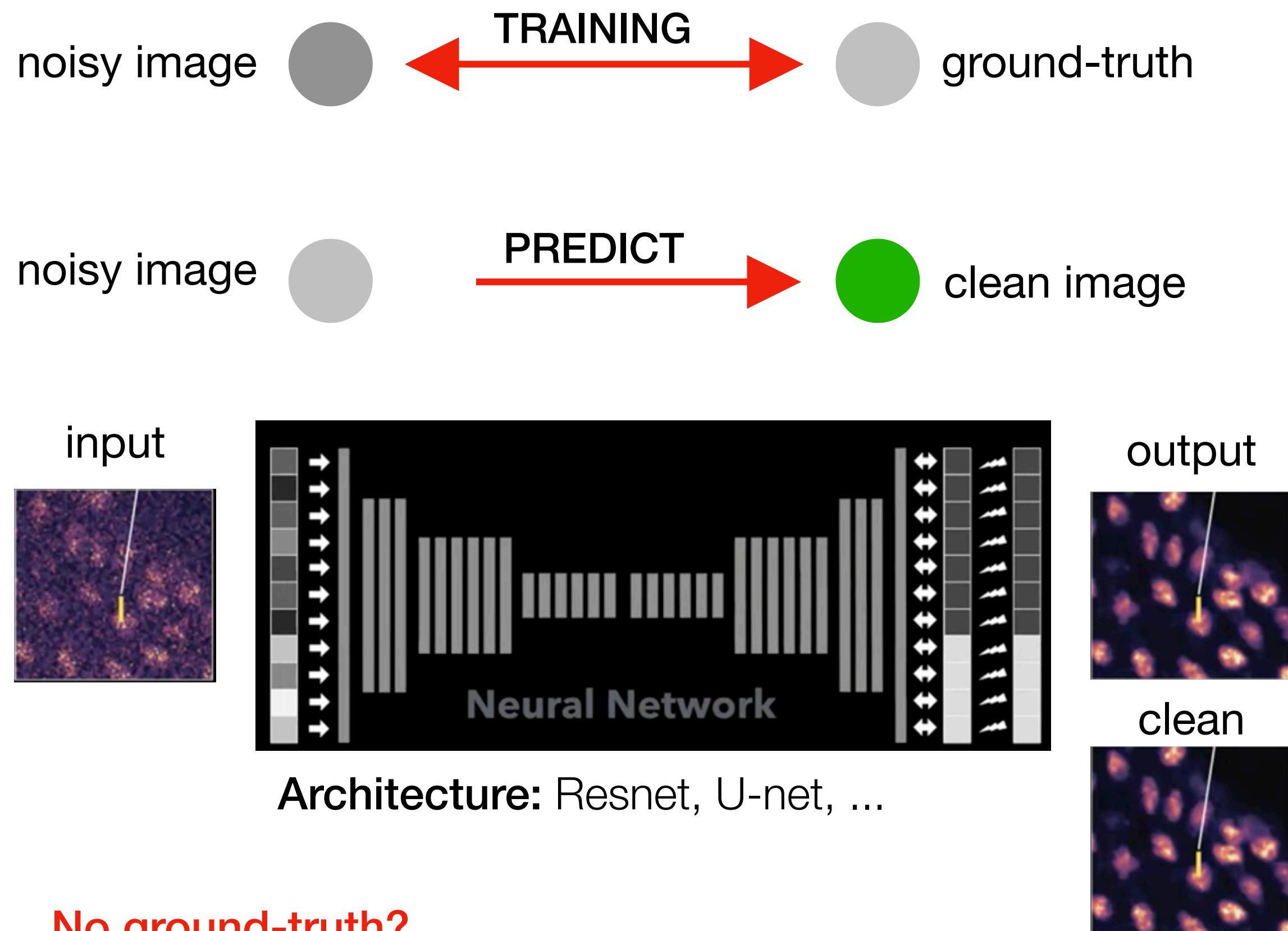
BM3D

[Dabov, 2006]

- Block-Matching 3D
- Wavelet threshold
- Combine patches

State-of-the-art in image
denoising
only in Matlab!

Supervised Learning



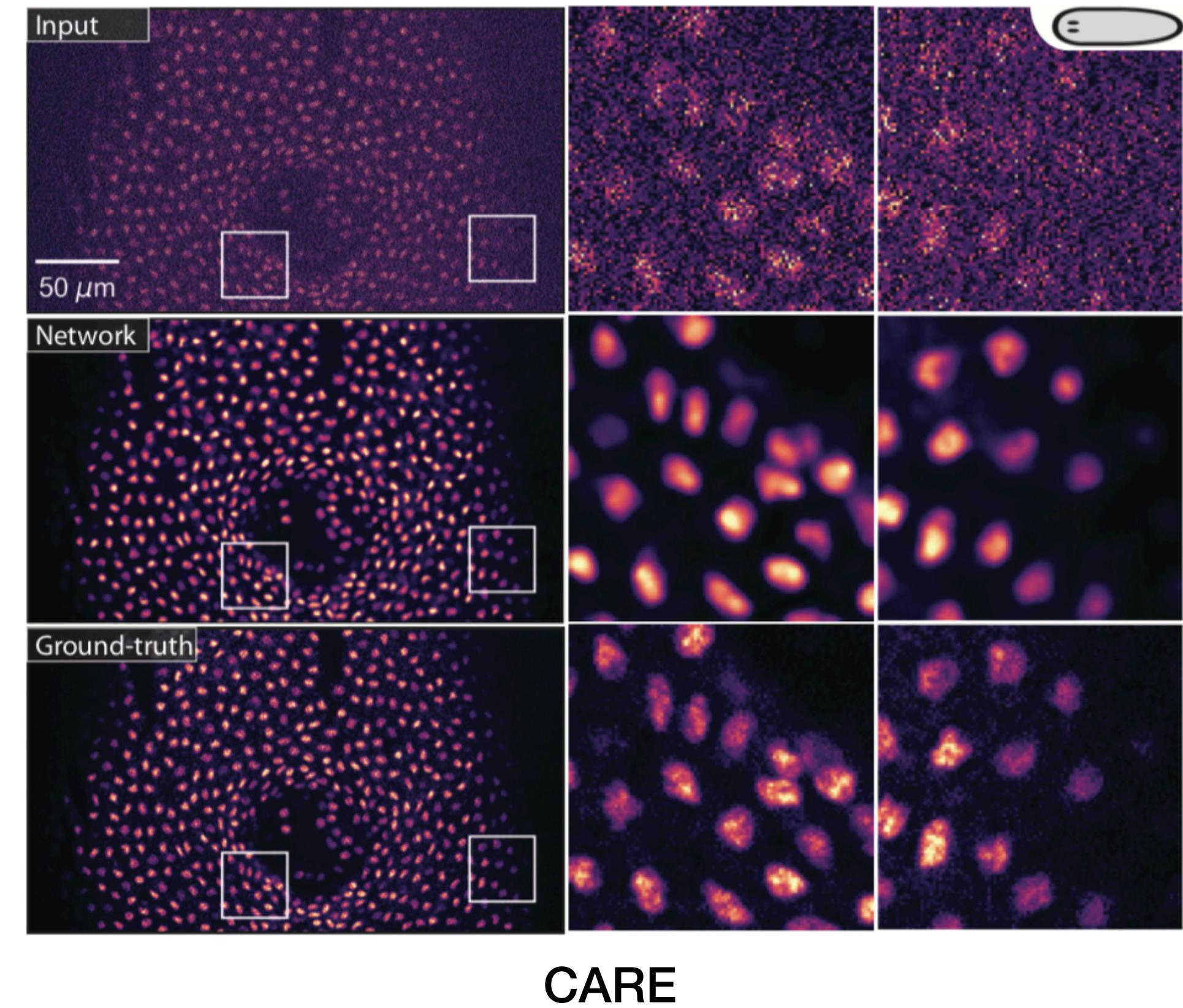
No ground-truth?

Simulation

- Add various noise quantity
- Add various noise type

Real data (microscope)

- Higher illumination
- Slow down the acquisition



CARE
Weigert, Nature Methods, 2018

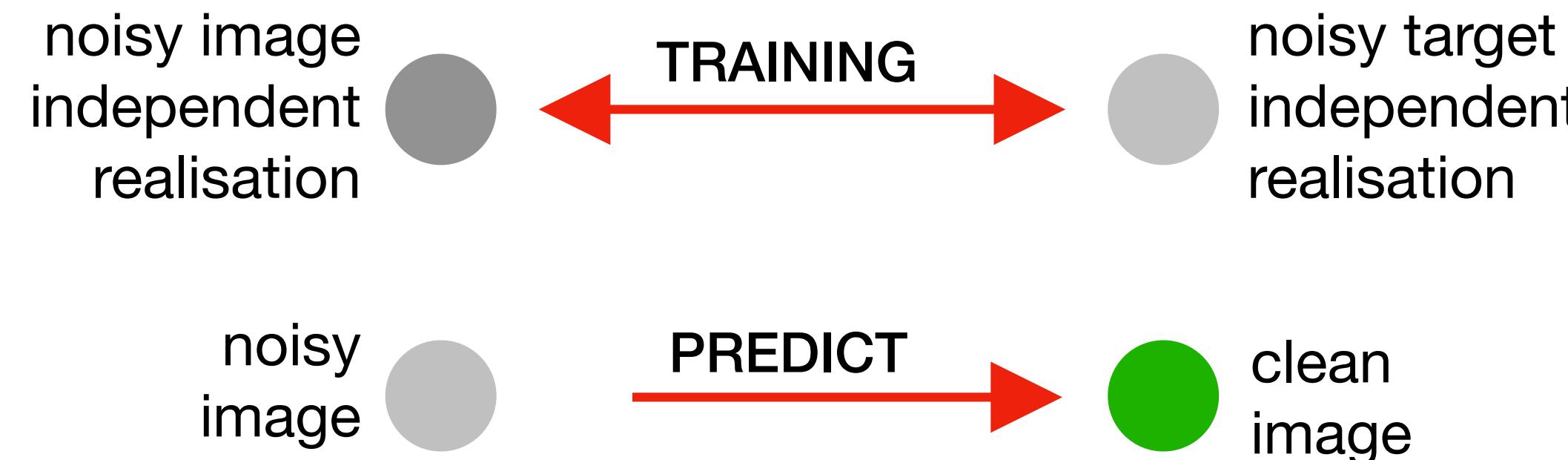
Video tutorial of Joran Deschamps, Denoising microscopy images with self supervised deep learning Nature Methods, Aneris Eurobioimaging, 2023

Self-Supervised Learning

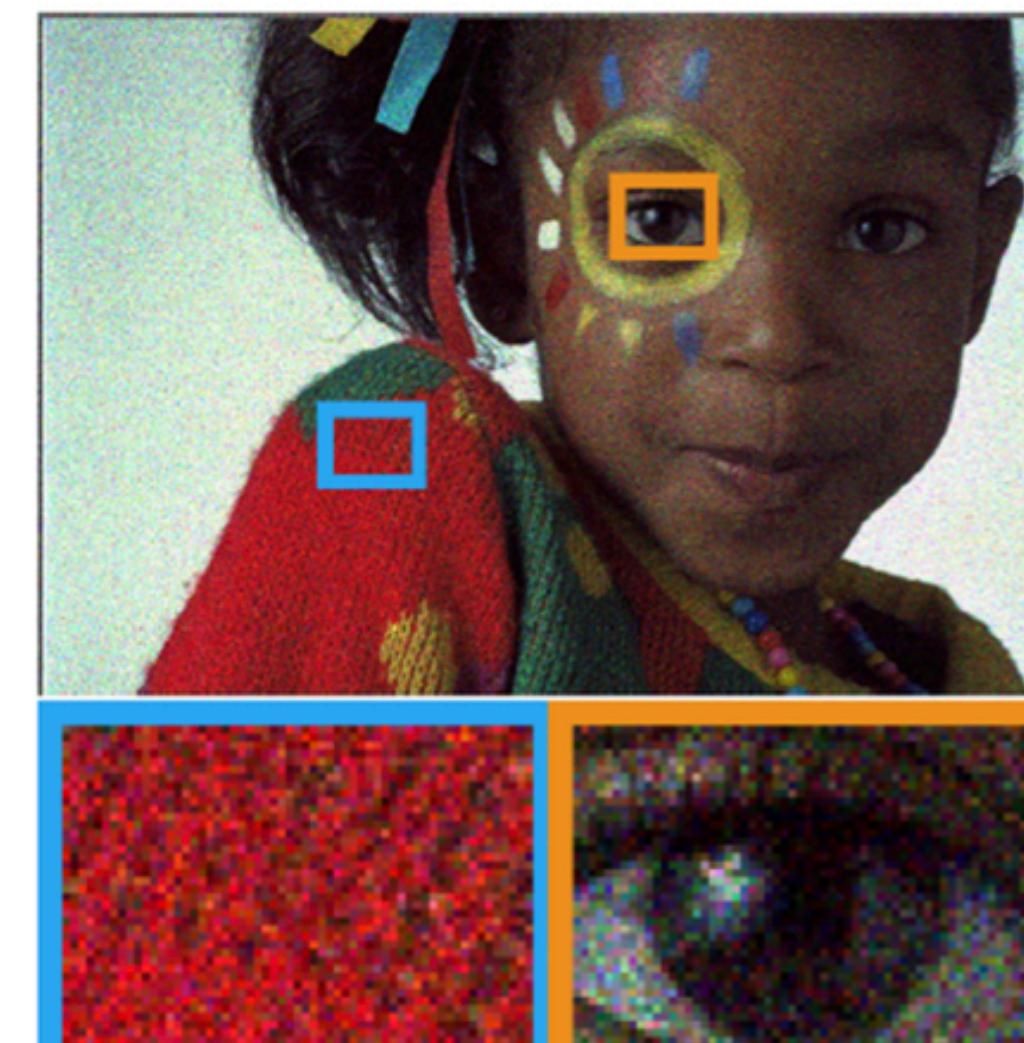
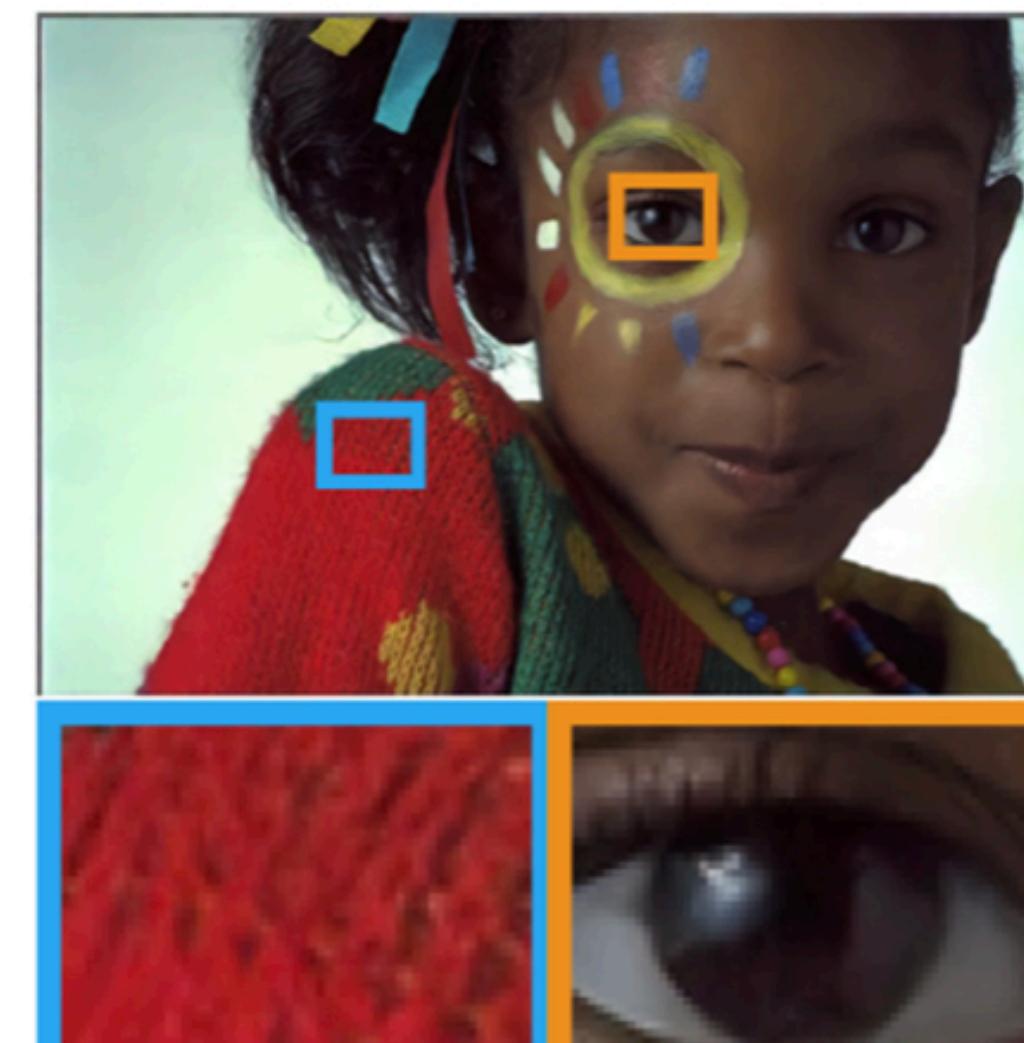
noise2noise

[Lehtinen, arXiv 2018]

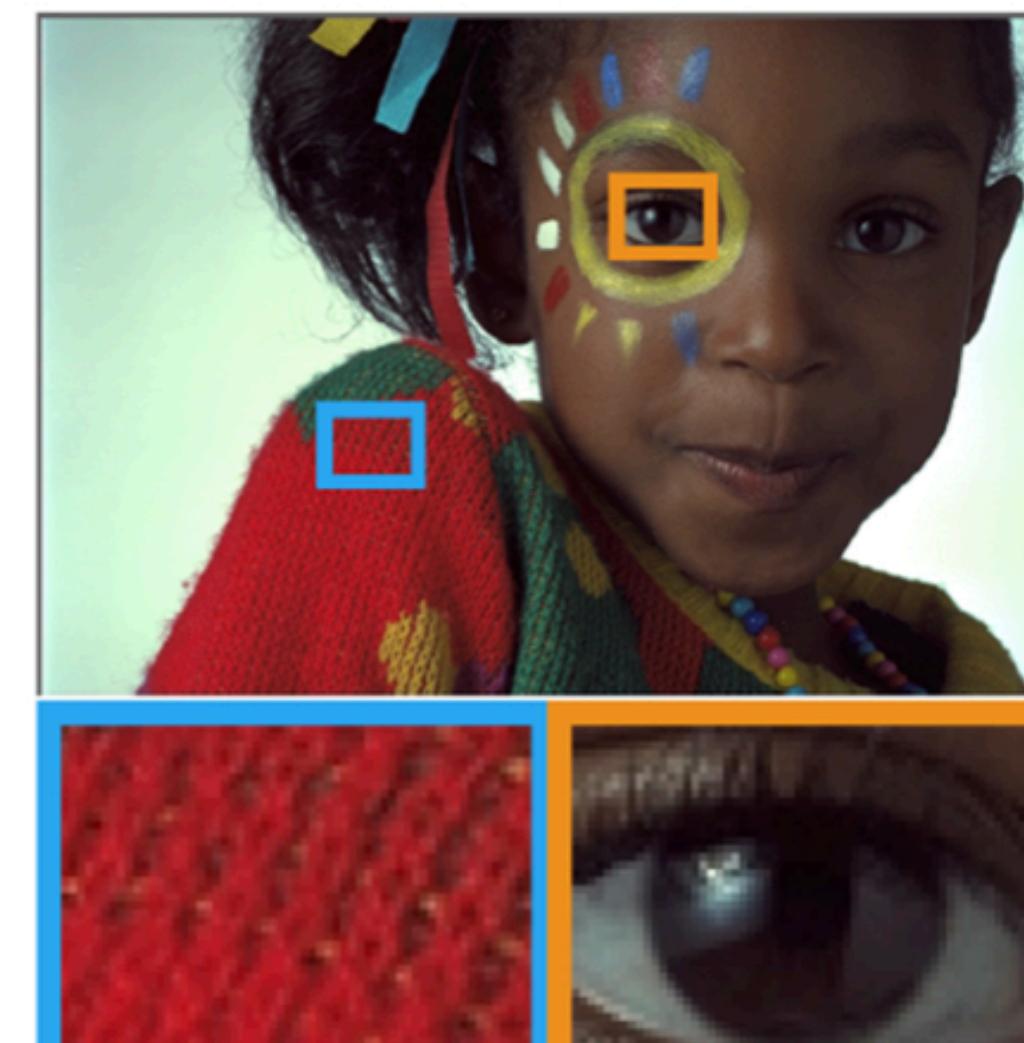
Learn bad images into good images by only looking at bad images



"if we were to acquire multiple images with the same signal, but different realizations of noise and average them, the result would approach the true signal"



Our



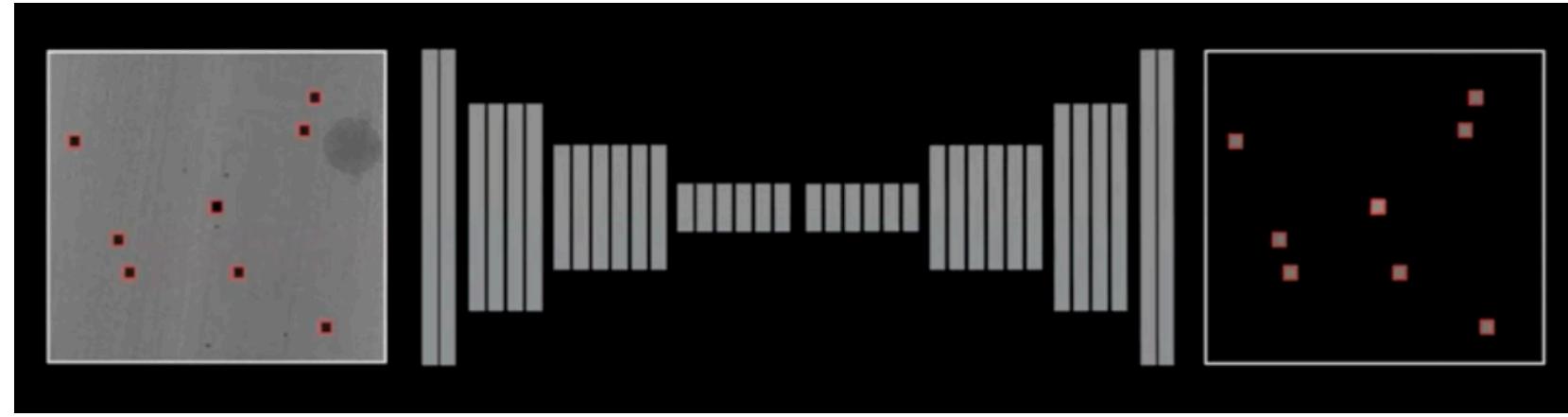
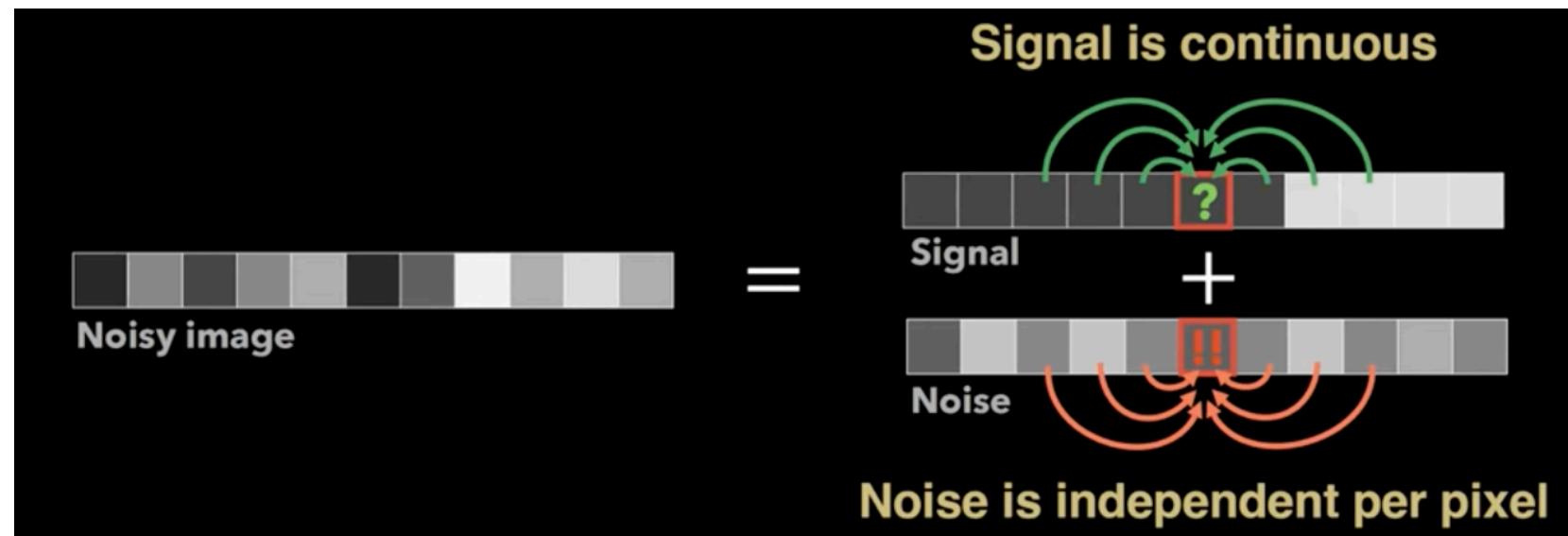
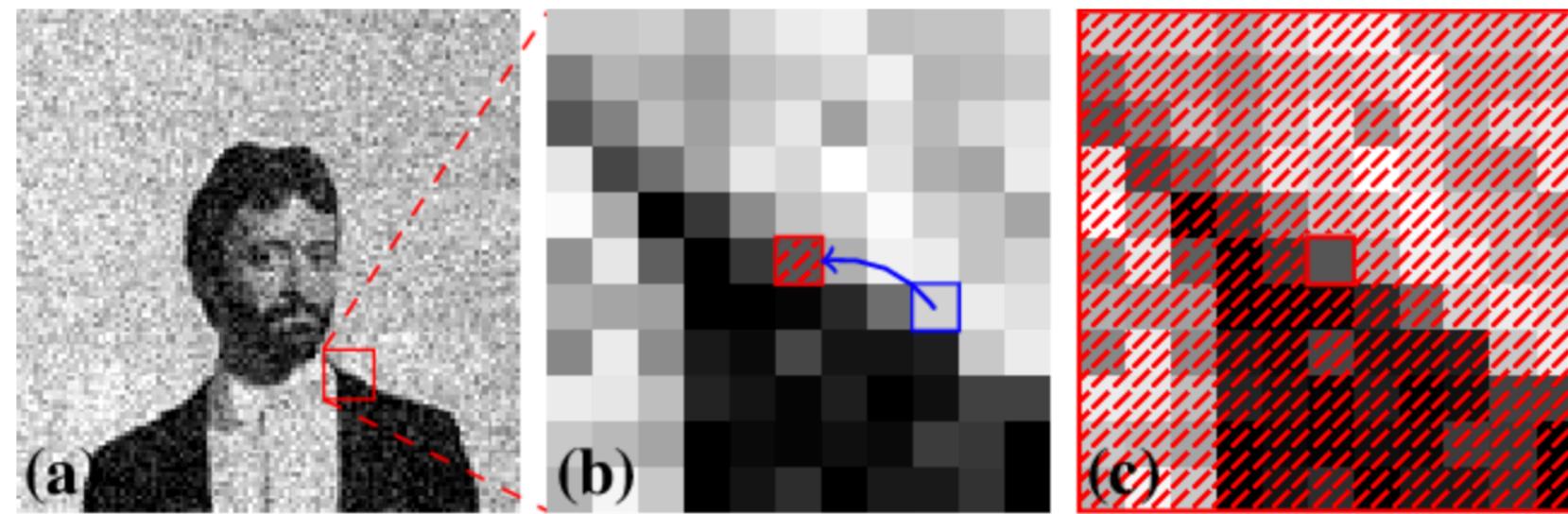
Ground truth

NVidia web site

Self-Supervised Learning

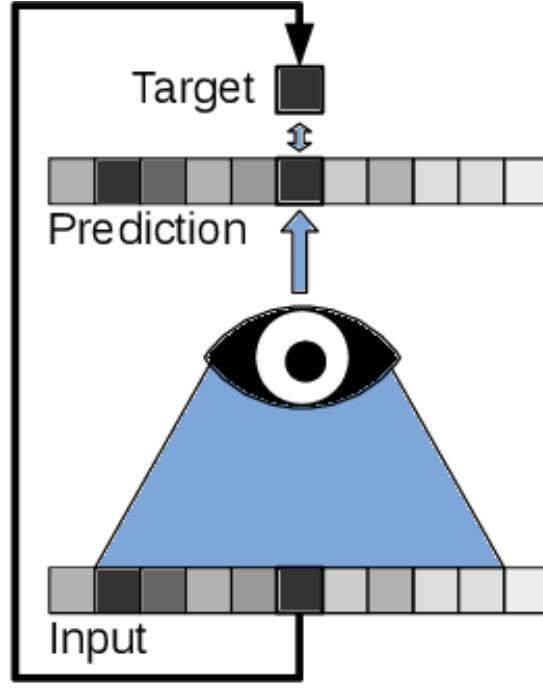
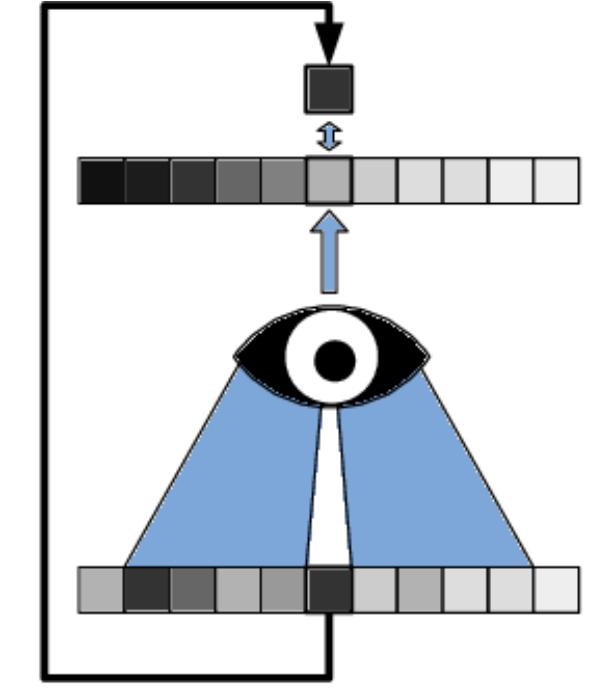
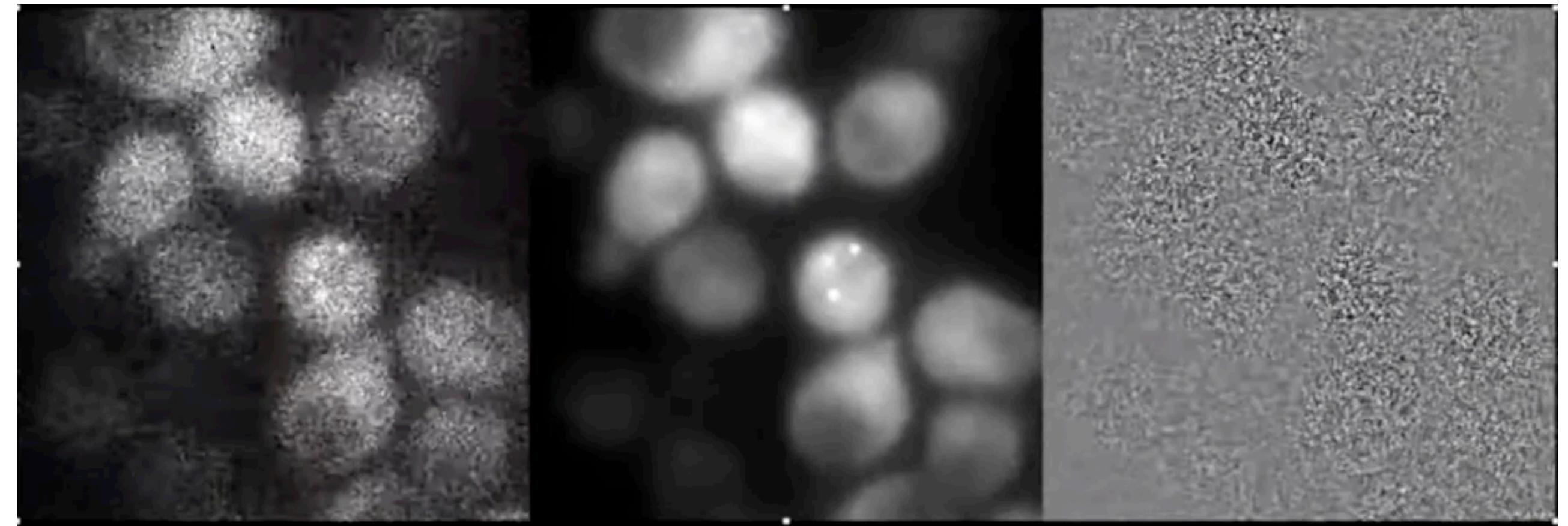
noise2void

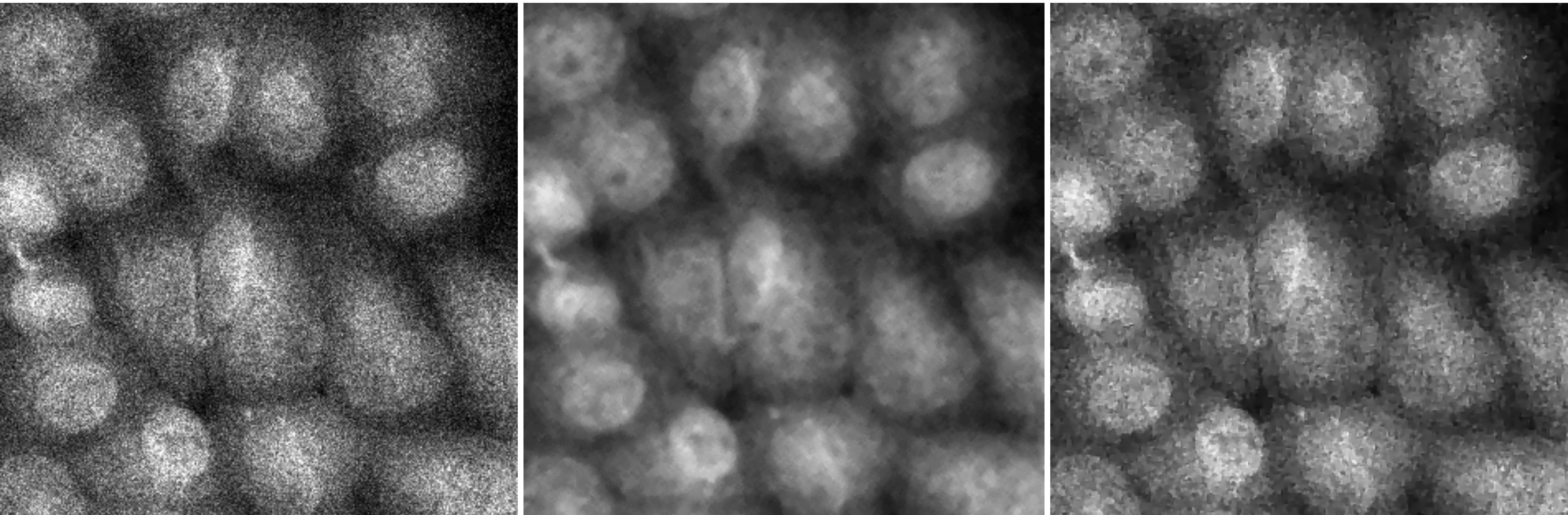
[Krull, IEEE 2019]



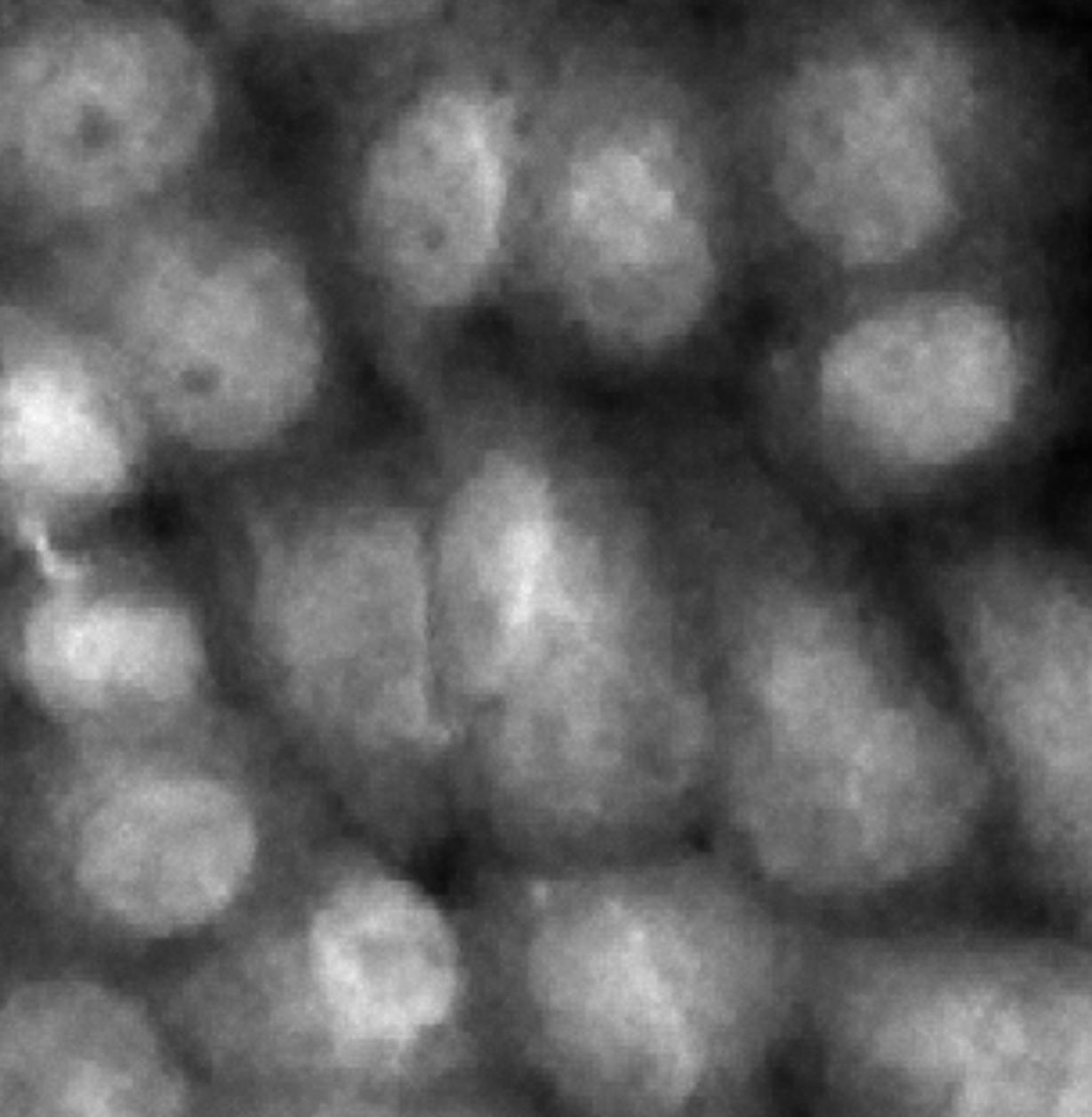
noise2void

- Fiji plugins
- Napari plugins
- Training on GPU
- Prediction on CPU



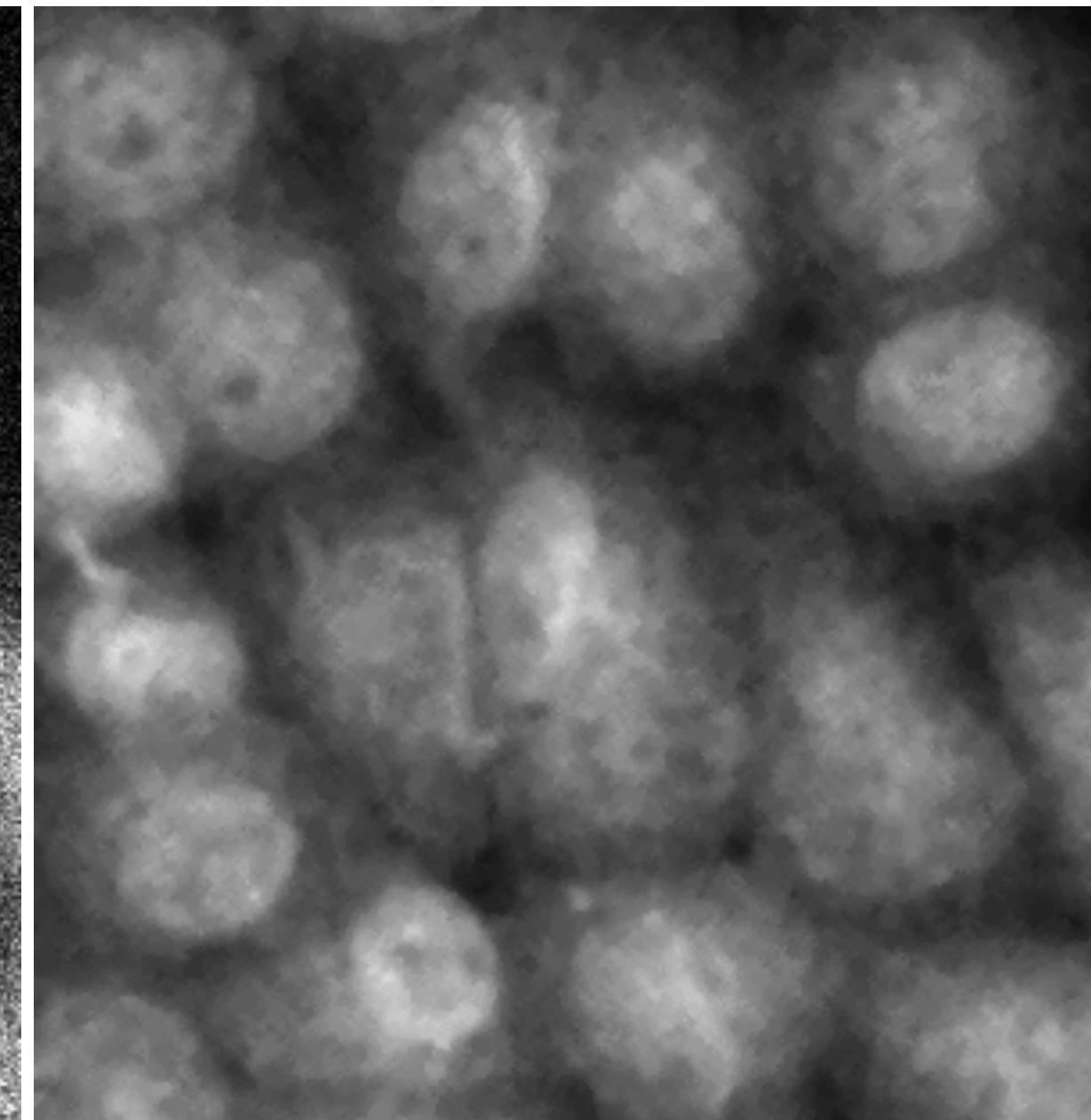


Input

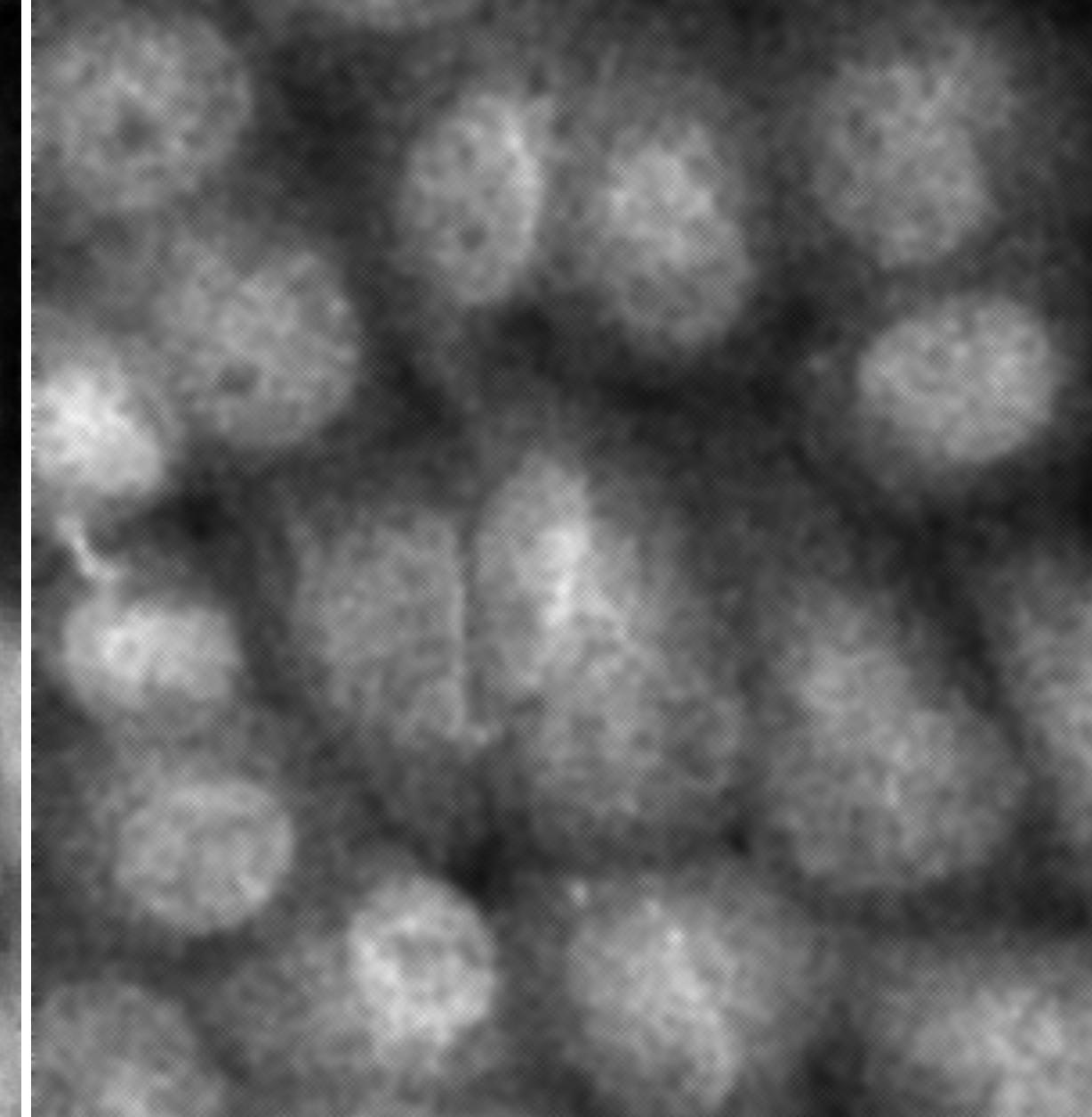


PureDenoise

auto

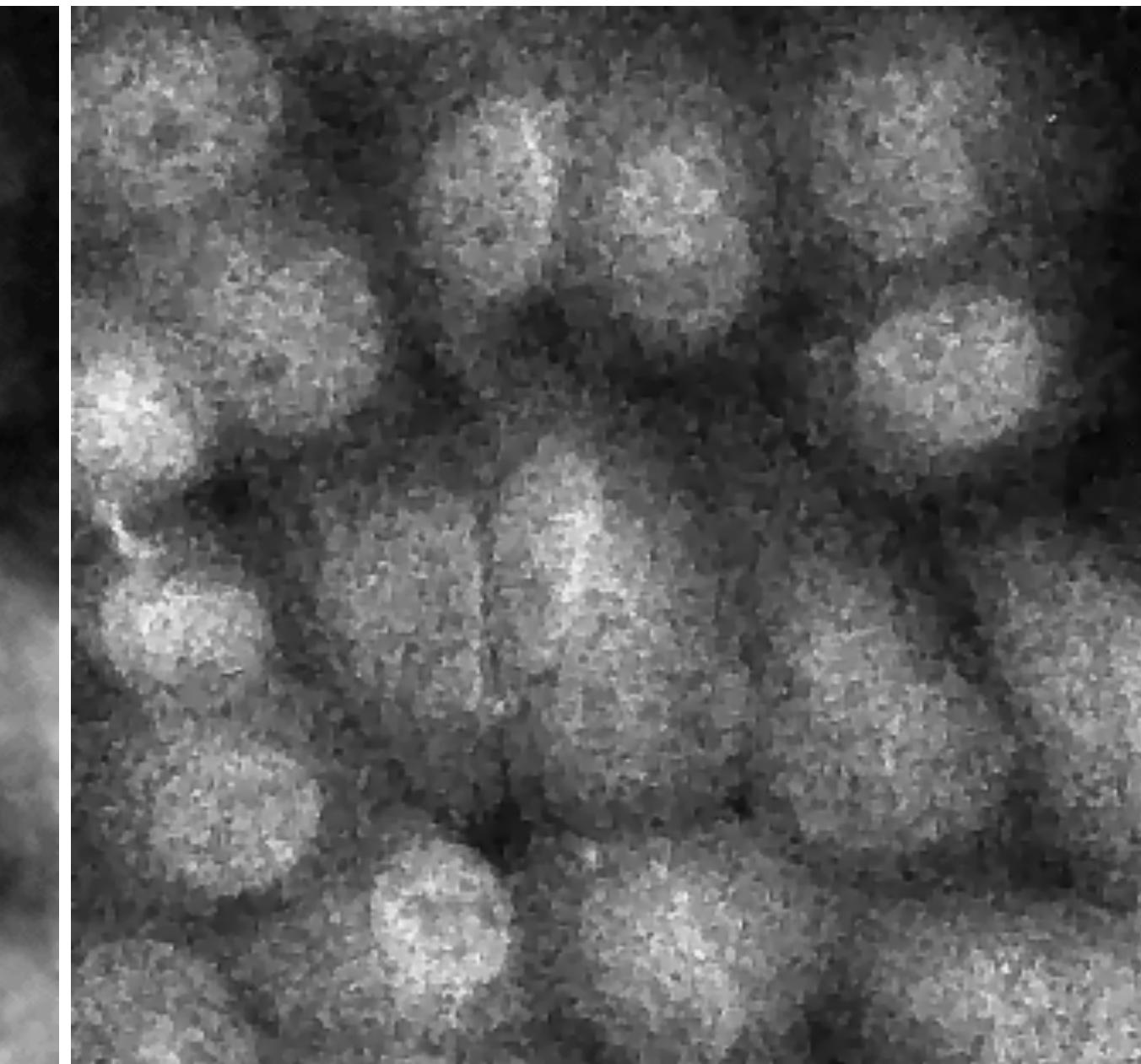


Median filter

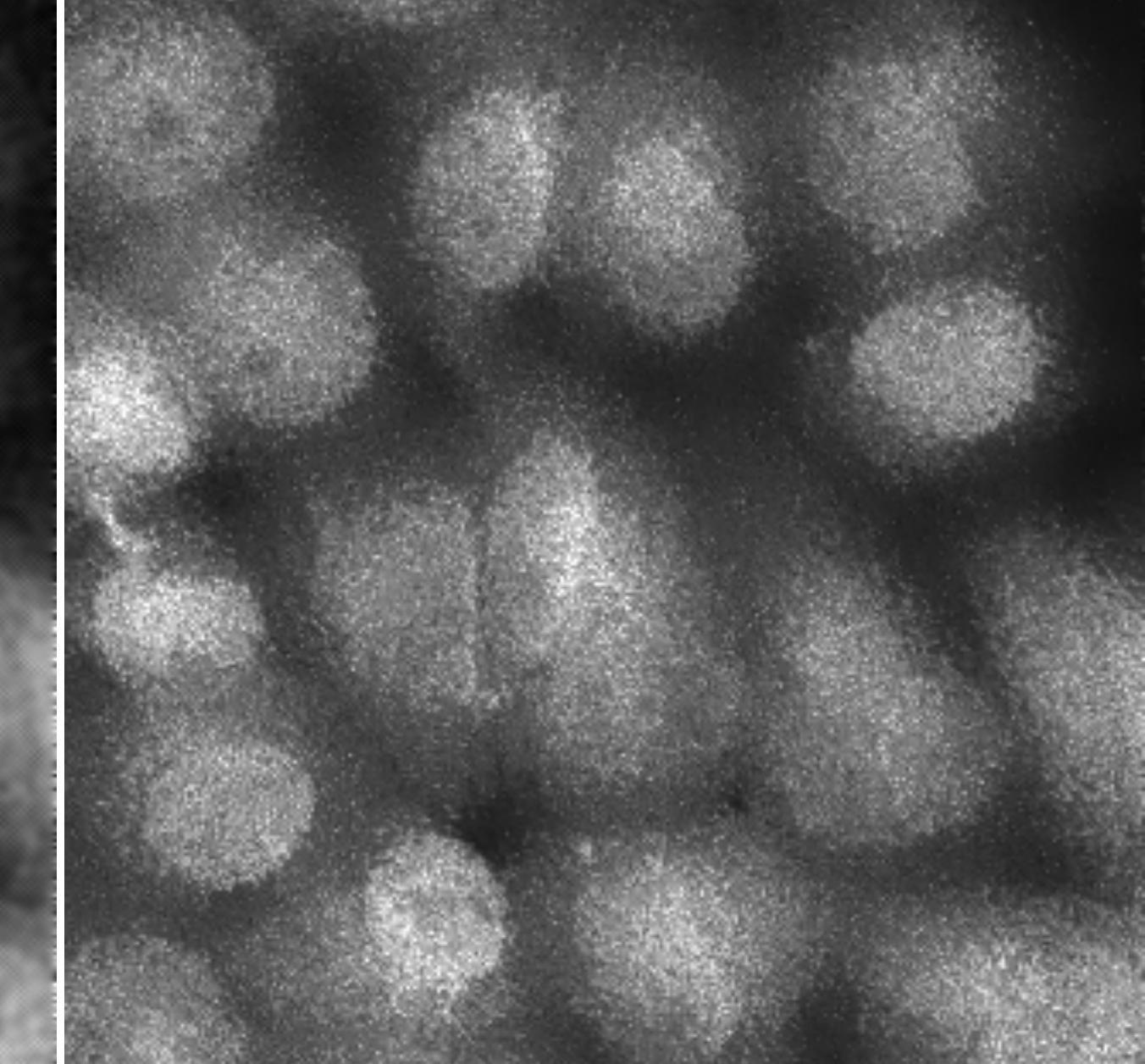


Total Variation

auto

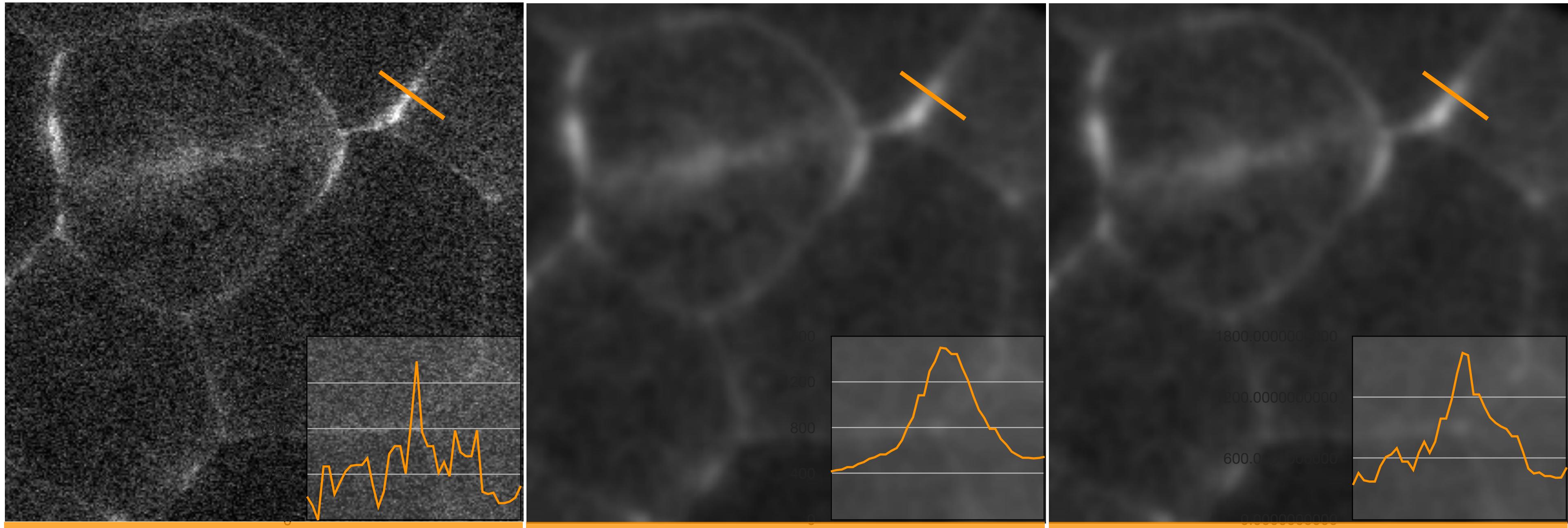
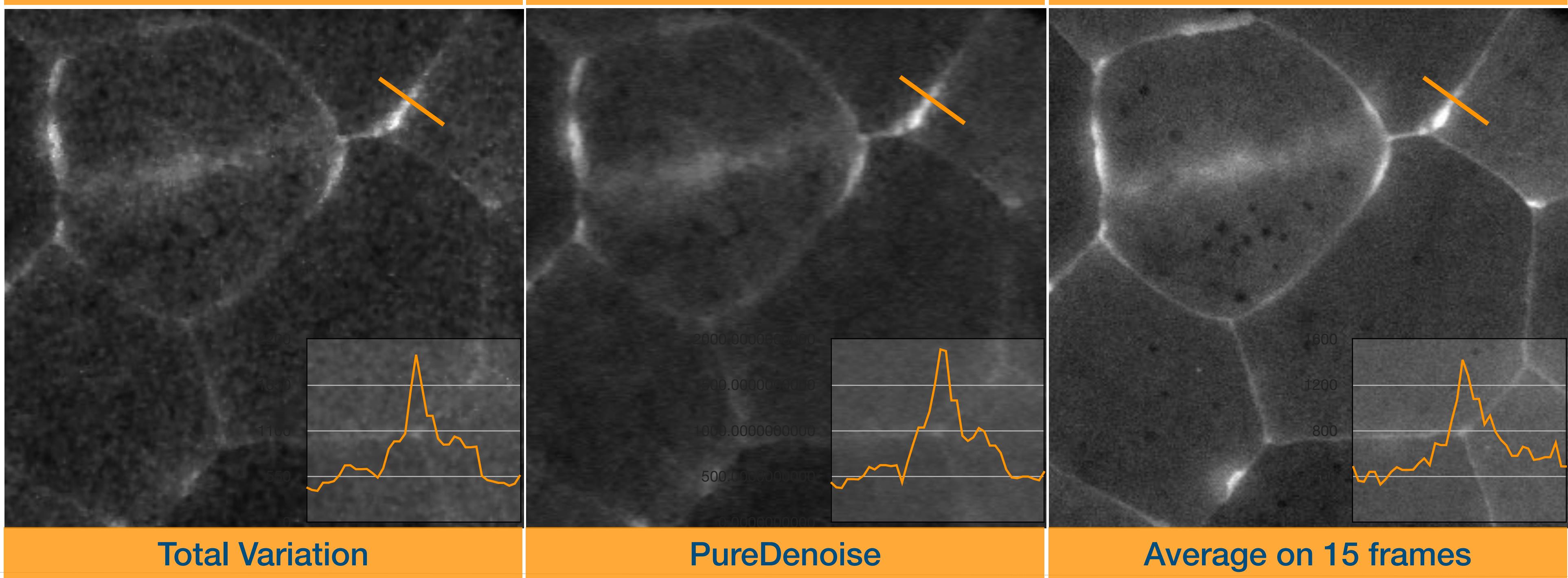


Anisotropic diffusion



Non-local mean

auto



Take-Home Messages

Which method to choose?

- Characterization of the noise (frequency)
- Prior of the structure (**self similarity** is relevant in bioimage)
- Selection of parameters (between noise and structure, automatic)

- ✓ **Acquisition** is the key to avoid corrupted image
- ✓ Denoising is useful for **image simplification** (scattering, autofluo)
- ✓ **Joint** denoising and segmentation performs better (e.g. active contour)
- ✓ **Quantification** is generally affected by denoising

Acquisition

- Exposure time
- Denoising by averaging frames

