

BIO-373
Genetics & Genomics

POPULATION GENETICS

Jacques Fellay

**School of Life Sciences, EPFL
Precision medicine unit, CHUV**

jacques.fellay@epfl.ch

POPULATION GENETICS

1. Genetic variation in populations
2. Neutral theory and Hardy-Weinberg law
3. Natural selection
4. Mutations
5. Migrations
6. Genetic drift
7. Non-random mating

1. Genetic variation in populations

Population genetics

- Study of genetic variation in populations, and how it changes over time
- Merge between the scientific fields of **genetics** and **evolution**:
 - Mathematical principles developed by Wright, Fisher et Haldane in the early 20st century
 - More recently, demonstration of validity through biochemical and molecular approaches

Population

- A group of individuals belonging to same species, living in the same geographic area, actually (or potentially) interbreed
- In evolution, one should distinguish between:
 - **Microevolution**
 - Evolutionary change within populations of a species
 - **Macroevolution**
 - Evolutionary change leading to emergence of new species

Genetic variation at population scale

- **Gene pool** of a population = genetic information carried by the members of population (all existing alleles)
- Most populations have a large gene pool, so multiple alleles and high heterozygosity
- Exception: threatened populations heading toward extinction, with reduced gene pool

Detection of genetic variation in a population

- Historically seen using **artificial selection**
 - If genetic variation does exist, then phenotype changes over generations
 - Domestic dog as an example:
 - genetic and archeological evidence indicates domestication of dogs took place at least 15,000 years ago
 - Progressive selection of desired traits, based on genetic variation that was present in wild wolves
- Now done by **comparison of DNA sequences**

2. Neutral theory and Hardy–Weinberg law

Neutral theory

- The **neutral theory of molecular evolution**, proposed by Kimura in 1968, postulates that most evolutionary changes and polymorphisms within species are caused by random genetic drift of mutant alleles, and not by natural selection

Hardy–Weinberg law

- Mathematical model describing the theoretical **relationship between allelic and genotypic frequencies** in a population
- Assumes an equilibrium (i.e. **Hardy-Weinberg equilibrium**) of allelic and genotypic frequencies from one generation to the next \Leftrightarrow the frequency of alleles in gene pool does not change over time
- Only realized in an “**ideal**” population
 - infinitely large
 - random mating
 - not subject to evolutionary forces
 - No mutation
 - No migration
 - No selection

Hardy–Weinberg law

- For two alleles A and a present at the same locus, the frequency of the genotypes AA, Aa and aa after one generation of random mating can be calculated as follows:

$$p^2 + 2pq + q^2 = 1$$

Where p is equal to allele A frequency and q is equal to allele a frequency

Derivation of genotype frequencies from allele frequencies

		Sperm	
		$fr(A) = p$	$fr(a) = q$
		$fr(A) = p$	$fr(AA) = p^2$
Eggs			$fr(Aa) = pq$
	$fr(a) = q$	$fr(aA) = qp$	$fr(aa) = q^2$

		Sperm	
		$fr(A) = 0.7$	$fr(a) = 0.3$
		$fr(A) = 0.7$	$fr(AA) = 0.7 \times 0.7 = 0.49$
Eggs		$fr(a) = 0.3$	$fr(Aa) = 0.7 \times 0.3 = 0.21$
		$fr(aA) = 0.3 \times 0.7 = 0.21$	$fr(aa) = 0.3 \times 0.3 = 0.09$

Usefulness of Hardy–Weinberg law

- Explains how genetic variability can be maintained in a population
- Explains why dominant traits do not increase from one generation to next
- Allows the calculation of the frequencies of other genotypes from the known frequency of one genotype
- Allows the identification and quantification of the forces involved in evolution, by specifying the conditions of stability

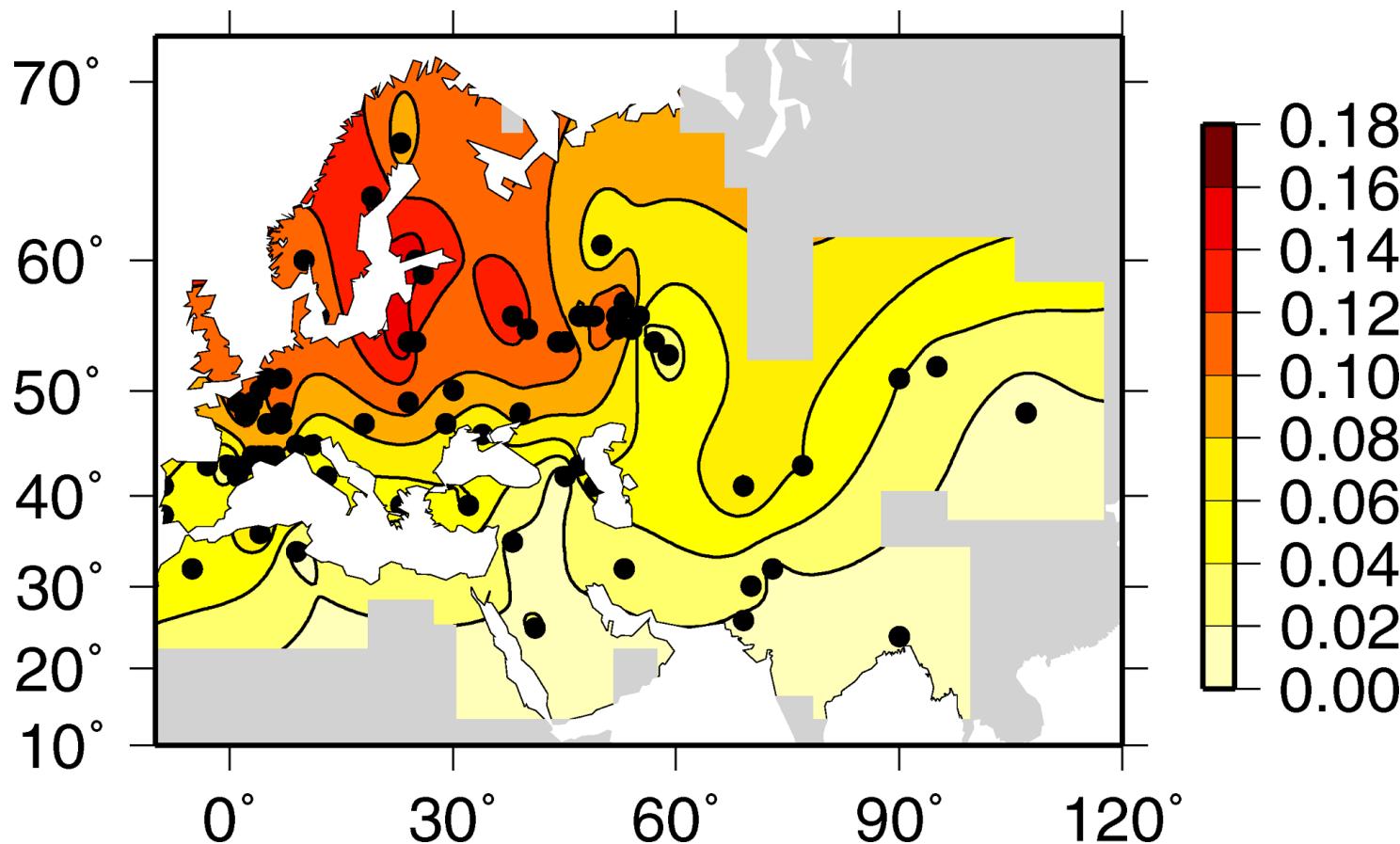
Application to human population

- Concrete example of measurement of allelic frequencies and questions asked in population genetics, using the **CCR5 gene**
 - Encodes CCR5, the main HIV-1 co-receptor expressed at the surface of CD4+ T cells
 - 32 bp deletion = **CCR5Δ32** → non-functional receptor

TABLE 25.1 *CCR5 Genotypes and Phenotypes*

Genotype	Phenotype
1/1	Susceptible to sexually transmitted strains of HIV-1
1/Δ32	Susceptible but may progress to AIDS slowly
Δ32/Δ32	Resistant to most sexually transmitted strains of HIV-1

Geographical distribution of CCR5 Δ 32 allele



Determination of allele frequencies

TABLE 25.2 Methods of Determining Allele Frequencies from Data on Genotypes

	Genotype			Total
	1/1	1/Δ32	Δ32/Δ32	
(a) Counting Alleles				
Number of individuals	79	20	1	100
Number of 1 alleles	158	20	0	178
Number of Δ32 alleles	0	20	2	22
Total number of alleles	158	40	2	200
Frequency of <i>CCR5</i> 1 in sample: $178/200 = 0.89 = 89\%$				
Frequency of <i>CCR5</i> -Δ32 in sample: $22/200 = 0.11 = 11\%$				
(b) From Genotype Frequencies	Genotype			Total
	1/1	1/Δ32	Δ32/Δ32	
Number of individuals	79	20	1	100
Genotype frequency	$79/100 = 0.79$	$20/100 = 0.20$	$1/100 = 0.01$	1.00
Frequency of <i>CCR5</i> 1 in sample: $0.79 + (0.5)0.20 = 0.89 = 89\%$				
Frequency of <i>CCR5</i> -Δ32 in sample: $(0.5)0.20 + 0.01 = 0.11 = 11\%$				

In the population in Hardy-Weinberg equilibrium?

Observed genotype frequencies

79% wt/wt

20% wt/Δ32

1% Δ32/Δ32

Derived allele frequencies

wt = 0.89

Δ32 = 0.11

- From these allele frequencies, Hardy-Weinberg law is used to see if the population is at equilibrium
 - Expected frequency wt/wt: $p^2 = (0.89)^2 = 0.792$
 - Expected frequency wt/Δ32: $2pq = 2(0.89)(0.11) = 0.196$
 - Expected frequency Δ32Δ32: $q^2 = (0.11)^2 = 0.012$
- Very close to what is observed → population at equilibrium

Calculating frequencies for multiple alleles

- If there are more than 2 alleles, additional variables can be added to the Hardy–Weinberg equation
- Example: with three alleles $p + q + r = 1$, frequencies of genotypes given by:

$$(p + q + r)^2 = p^2 + q^2 + r^2 + 2pq + 2pr + 2qr = 1$$

Genotype frequency for multiple alleles

- Example of calculation for ABO blood type

TABLE 25.3 Calculating Genotype Frequencies for Multiple Alleles in a Hardy–Weinberg Population Where the Frequency of Allele $I^A = 0.38$, Allele $I^B = 0.11$, and Allele $i = 0.51$

Genotype frequency for multiple alleles

- Example of calculation for ABO blood type

TABLE 25.3 Calculating Genotype Frequencies for Multiple Alleles in a Hardy–Weinberg Population Where the Frequency of Allele $I^A = 0.38$, Allele $I^B = 0.11$, and Allele $i = 0.51$

Genotype	Genotype Frequency	Phenotype	Phenotype Frequency
$I^A I^A$	$p^2 = (0.38)^2 = 0.14$	A	0.53

Genotype frequency for multiple alleles

- Example of calculation for ABO blood type

TABLE 25.3 Calculating Genotype Frequencies for Multiple Alleles in a Hardy–Weinberg Population Where the Frequency of Allele $I^A = 0.38$, Allele $I^B = 0.11$, and Allele $i = 0.51$

Genotype	Genotype Frequency	Phenotype	Phenotype Frequency
$I^A I^A$	$p^2 = (0.38)^2 = 0.14$	A	0.53
$I^A i$	$2pr = 2(0.38)(0.51) = 0.39$		

Genotype frequency for multiple alleles

- Example of calculation for ABO blood type

TABLE 25.3 Calculating Genotype Frequencies for Multiple Alleles in a Hardy–Weinberg Population Where the Frequency of Allele $I^A = 0.38$, Allele $I^B = 0.11$, and Allele $i = 0.51$

Genotype	Genotype Frequency	Phenotype	Phenotype Frequency
$I^A I^A$	$p^2 = (0.38)^2 = 0.14$	A	0.53
$I^A i$	$2pr = 2(0.38)(0.51) = 0.39$		
$I^B I^B$	$q^2 = (0.11)^2 = 0.01$	B	0.12
$I^B i$	$2qr = 2(0.11)(0.51) = 0.11$		

Genotype frequency for multiple alleles

- Example of calculation for ABO blood type

TABLE 25.3 Calculating Genotype Frequencies for Multiple Alleles in a Hardy–Weinberg Population Where the Frequency of Allele $I^A = 0.38$, Allele $I^B = 0.11$, and Allele $i = 0.51$

Genotype	Genotype Frequency	Phenotype	Phenotype Frequency
$I^A I^A$	$p^2 = (0.38)^2 = 0.14$	A	0.53
$I^A i$	$2pr = 2(0.38)(0.51) = 0.39$		
$I^B I^B$	$q^2 = (0.11)^2 = 0.01$	B	0.12
$I^B i$	$2qr = 2(0.11)(0.51) = 0.11$		
$I^A I^B$	$2pq = 2(0.38)(0.11) = 0.084$	AB	0.08
ii	$r^2 = (0.51)^2 = 0.26$	O	0.26

Frequencies of X-linked traits

- The Hardy–Weinberg equation can also be used to calculate allele and genotype frequencies for **X-linked traits**
 - Frequency of X-linked allele in gene pool = frequency of males expressing X-linked trait = q
 - Frequency of females expressing the trait, i.e. with the allele present on both X chromosomes = q^2

Frequencies of X-linked traits

- Daltonism, present in **8%** of men → means that 8% of X chromosomes in the population carry the causal allele
- Allele frequency
 - $q = 0.08$
- Frequency of women with daltonism
 - $q^2 = 0.08 \times 0.08 = 0.0064 = \mathbf{0.64\%}$
- Frequency of women carrying the allele
 - $2pq = 2 \times 0.92 \times 0.08 = 0.147 = \mathbf{14.7\%}$

Heterozygote frequencies

- Hardy–Weinberg law allows estimation of frequency of **heterozygotes** in population
- For **recessive diseases**, this allows the calculation of the frequency of healthy carriers
- First, the frequency of a recessive phenotype can be determined by counting individuals in the population
- Example: **cystic fibrosis** (autosomal recessive)
 - Incidence of $1/2500 = 0.0004$ in Europe ($q^2 = 0.0004$)
 - Frequency of recessive allele in population

$$q = \sqrt{q^2} = \sqrt{0.0004} = 0.02$$

- Frequency of heterozygous individuals:
Since $p + q = 1$, $p = 1 - 0.02 = 0.98$
 $2pq = 2(0.98)(0.02) = 0.039$, or **~4%**

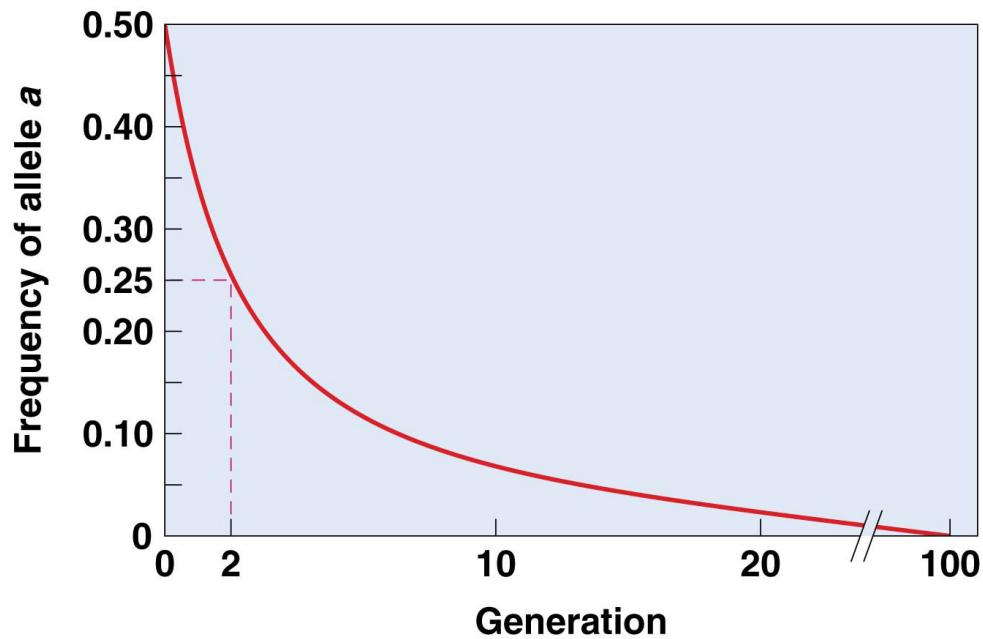
3. Natural Selection

Natural selection

- **Natural selection**
 - Difference in survival and/or reproduction rates between various genotypes
 - Discovered independently by Charles Darwin and Alfred Russel Wallace
 - Major force driving:
 - **Allele frequency change**
 - **Evolutionary changes**
- **Fitness (w)** = contribution of a genotype to the future generations

Fitness (w)

- Example: for a **lethal recessive allele a** , with $w_{AA} = 1$, $w_{Aa} = 1$, $w_{aa} = 0$
- The frequency of the allele will decrease very quickly at first (divided by 2 after 2 generations, then again by 2 after 6 generations)
- Then much slower decrease, because most alleles are carried by heterozygous individuals



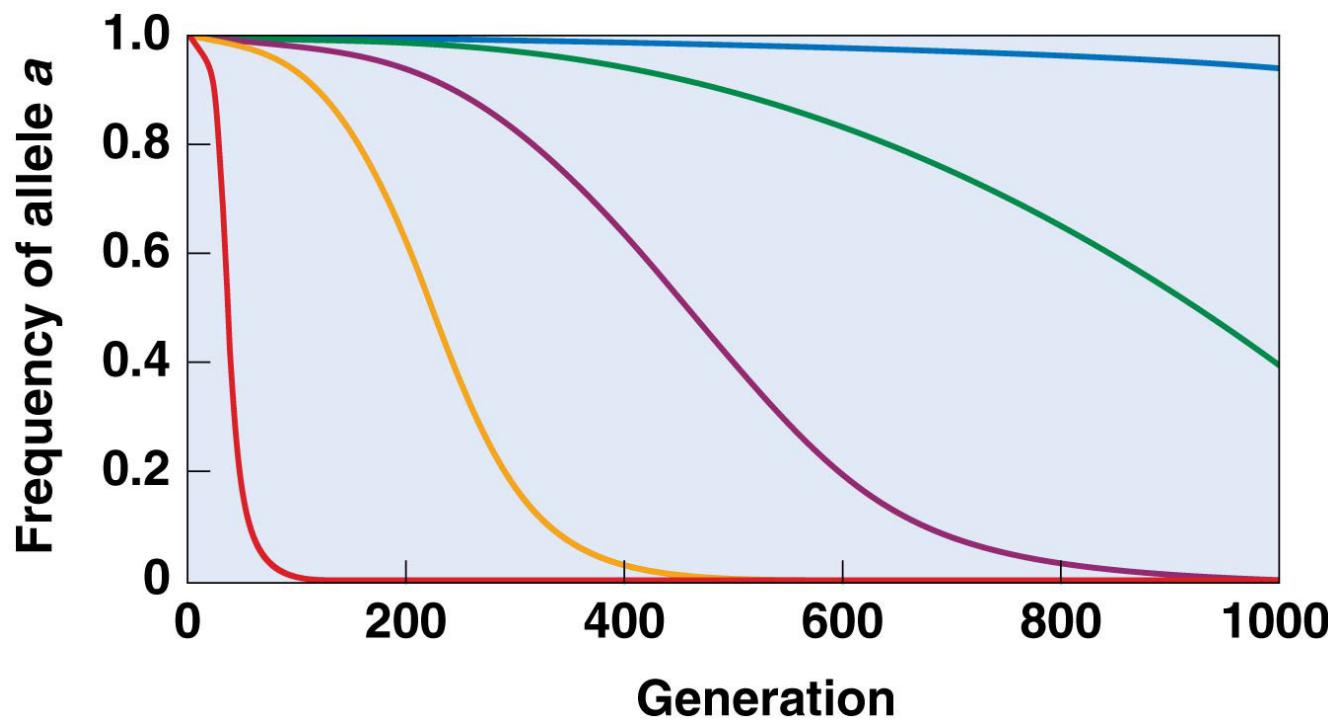
Decrease in allele frequency is defined as:

$$q_g = \frac{q_0}{1 + gq_0}$$

Where q_g is the allele frequency at generation g , q_0 the initial frequency, and g the number of generations

Degrees of selection

- For non-lethal allele, the degree (intensity) of selection varies considerably
 - Example for moderately deleterious alleles:

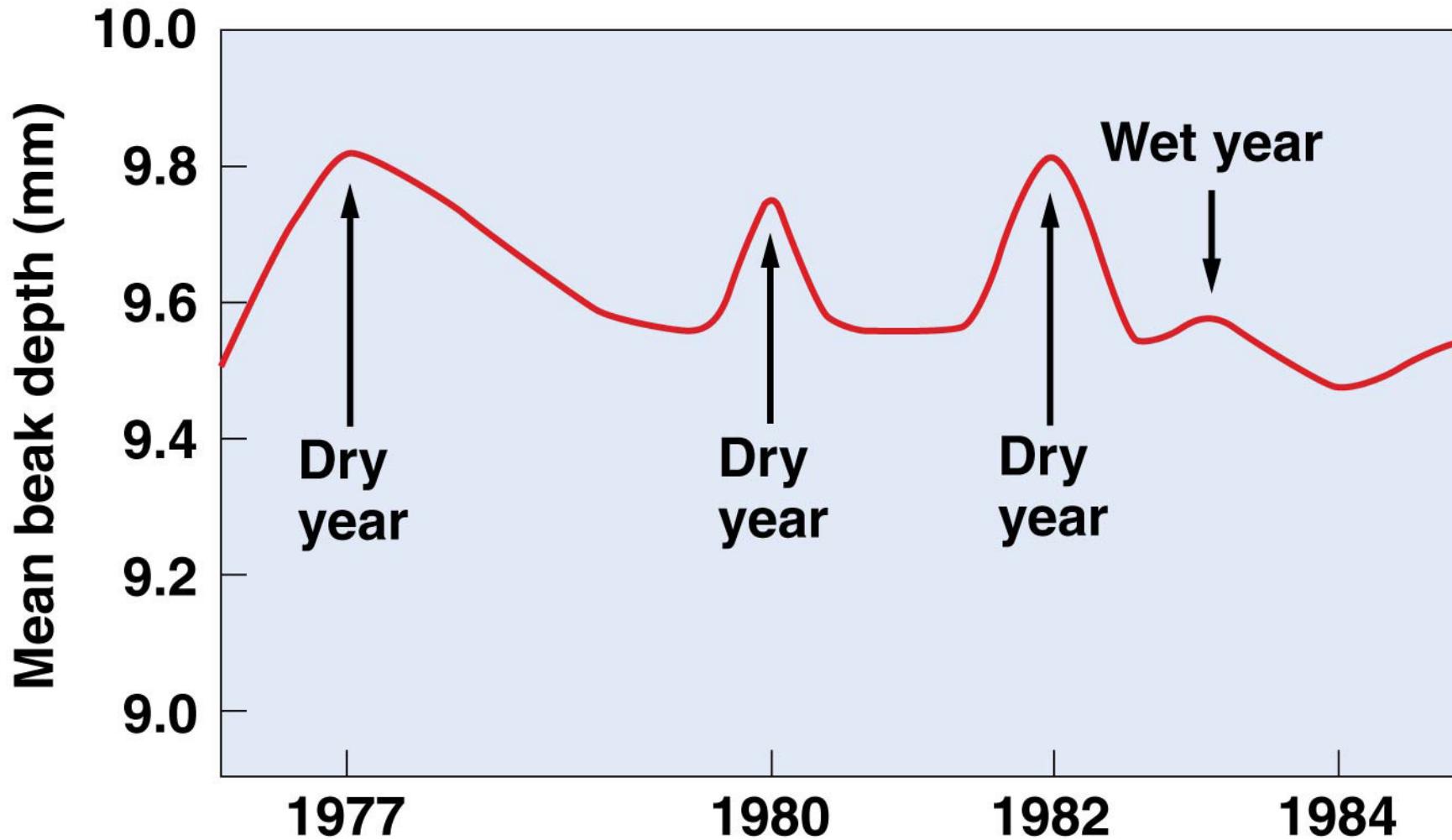


Selection of quantitative phenotypes

- Most phenotypes are quantitative and are controlled by complex combinations of genotypes + environmental influences
- Selection for these traits is classified as
 - **Directional**
 - **Stabilizing**
 - **Disruptive (diversifying)**

Directional selection

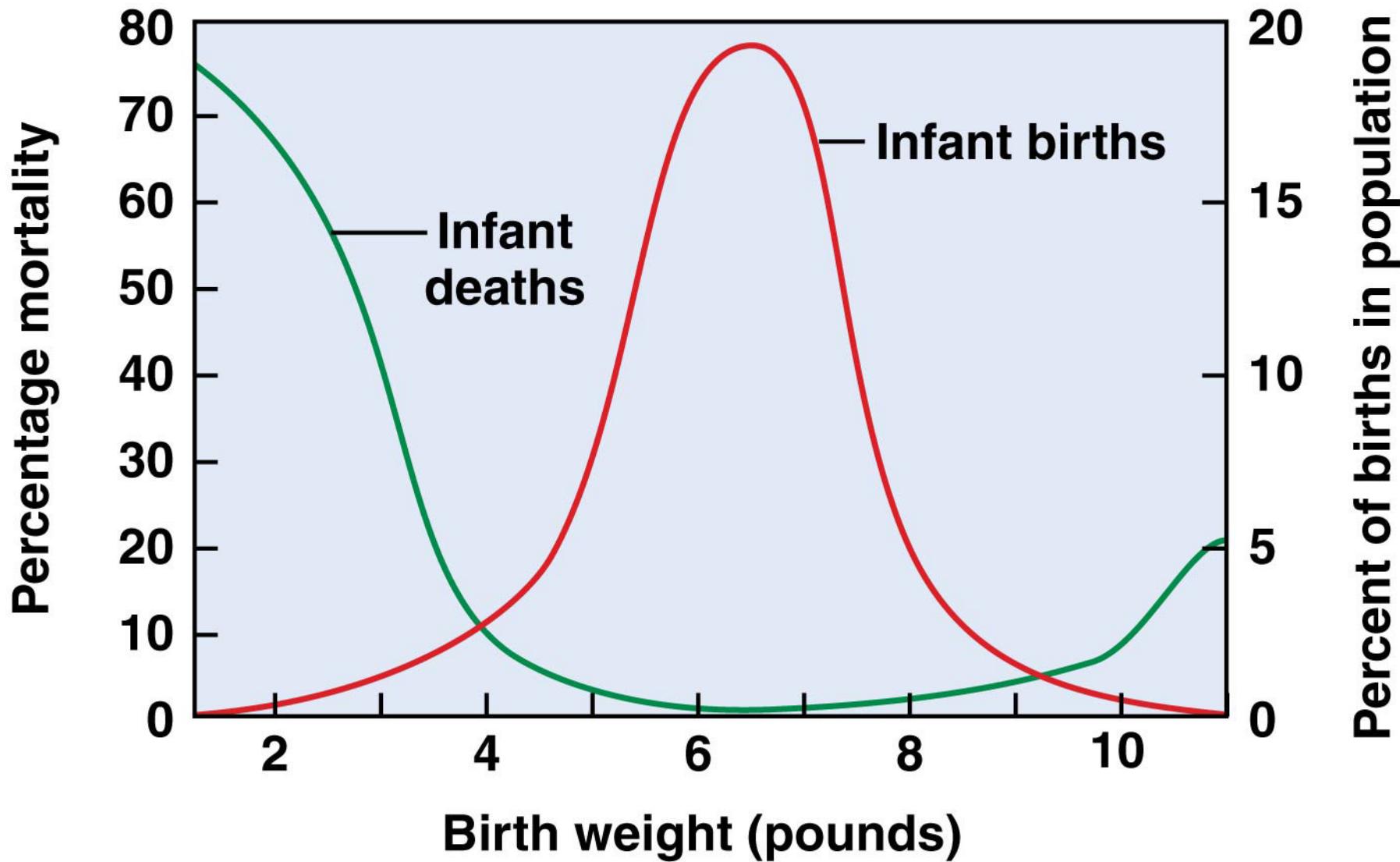
- Phenotypes at one end of spectrum become selected for or against
- Displace population mean
- Usually results from a rapid change in environment
- Example: Beak size in finches during dry years increased due to strong selection (capacity to find food in restricted conditions)



Stabilizing selection

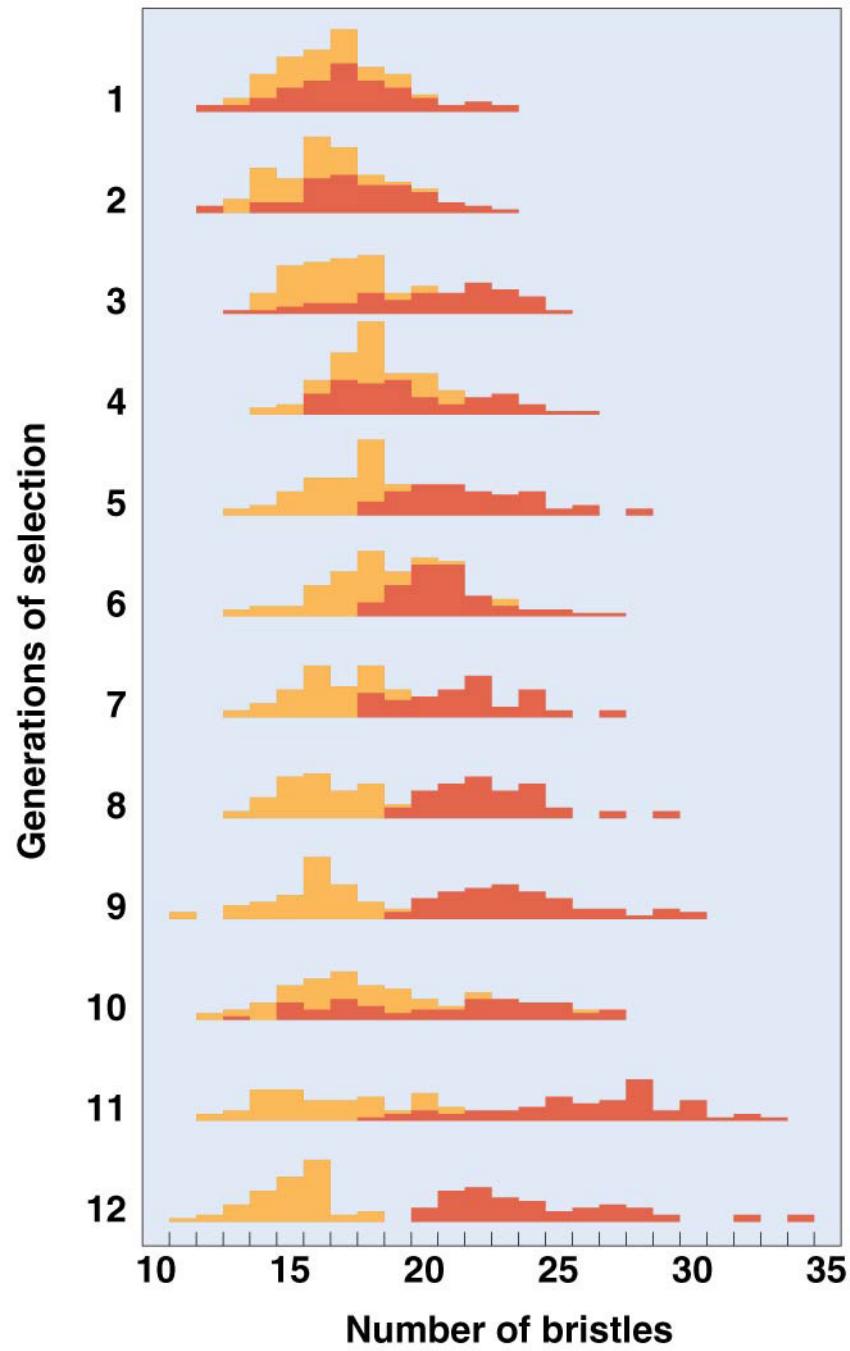
- Intermediate types are favored
- both extreme phenotypes are selected against
- Reduces population variance over time but not the mean

- Example: human birth weight and survival at 1 month



Disruptive (or diversifying) selection

- Both phenotypic extremes are selected for
- Results in population with increasingly bimodal distribution for trait
- Example: selection for low and high bristle number in *Drosophila* population



4. Mutations

Mutation

- Within a population, the gene pool is reshuffled each generation
- However, **mutation** is the only process that creates new alleles in gene pool
- Mutation rate in humans:
 $0.5 \times 10^{-9} / \text{bp} / \text{year}$

Mutation

- Very important in medical genetics, because the apparition of a mutation (“*de novo* variant”) can have a high impact for a specific patient
- Limited importance in population genetics, because mutation has little influence on allelic frequencies at population level
 - Hundreds or thousands of generations are necessary for a new mutation to significantly increase in frequency
 - Unless positive selection is very strong

5. Migration and gene flow

Migration

- Species might divide into populations that are **separated geographically**
- Allele frequencies in sub-populations may differ over time
- **Migration** occurs when individuals move between sub-populations with different allele frequencies

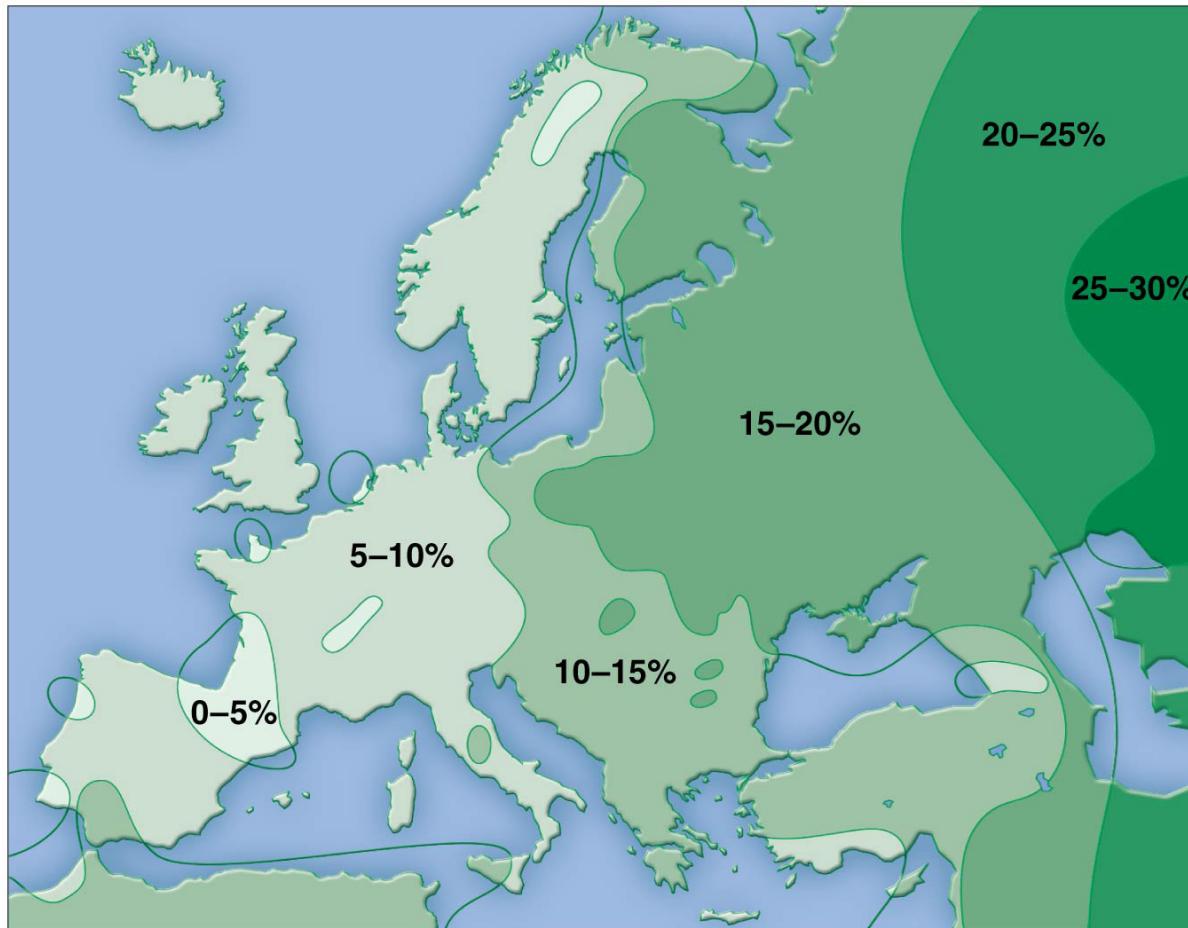
Migration

- Change in A allele frequency in an isolated population (p_i) after arrival of a number m of migrants from another population (p_c):

$$p_i' = (1-m)p_i + mp_c$$

- Migration can contribute significantly to allele frequency variation in a population, especially if:
 - number of migrants (m) is large
 - difference in allele frequencies is high ($p_i \gg p_c$ ou $p_i \ll p_c$)

Frequency gradient of B allele (ABO locus), resulting from Mongols migrations between years 500 and 1000



6. Genetic drift

Genetic drift

- **Random fluctuations in allele frequencies** in a (finite) population
 - Not all alleles are transmitted to the next generation due to limited population size
 - The degree of fluctuation increases as population size decreases
- Can also result from severe reduction in gene pool:
 - **Founder effect:** population originates from small number of individuals
 - **Genetic bottleneck:** large population undergoes drastic but temporary reduction in numbers

7. Nonrandom mating

Nonrandom mating

- **Positive assortive mating:** Similar genotypes more likely to mate than dissimilar ones
- **Negative assortive mating:** Dissimilar genotypes more likely to mate than similar ones
- **Inbreeding:** Mating individuals are related
 - For a given allele, inbreeding **increases the proportion of homozygotes** in population
 - Completely inbred population consists only of homozygotes

Coefficient of inbreeding (F)

- Quantifies probability that two alleles of a given individual are identical **because they are descended from single copy of allele in ancestor**
 - $F = 1$: All individuals in a population are homozygous; both alleles come from same ancestral copy
 - $F = 0$: No individual has two alleles derived from a common ancestral copy