[1]7:

03.useful python packages and examples

November 11, 2022

0.0.1 Overview of the important Python packages and modules

A few important Python libraries used in the course: * NumPy — contains multidimensional ar-
rays (e.g. np.array()) and allows various computing operations with them * Pandas — library
for data manipulation and analysis * SciPy — library for sientific computing in Python, includes
scipy.stats module that contains multiple statistical functions including probabilistic distribu-
tions, statistical tests, etc * Sklearn — library for data analysis and Machine Learning * Matplotlib
— main Python visualization library * os — functionality for operating system interfaces (e.g., listing
files in directories, creating paths, making folders, etc.) * Seaborn — visualization library based on
matplotlib

Potentially useful packages and modules: * collections — useful wraper for many data types * graph-
tool, Networkx, igraph — network analysis, inference and visualization * plotly — interactive plots *
sys — access to variables used or maintained by the interpreter * tqdm — progress bar * itertools —
fuctions for efficient looping * rpy2 — allows using R functionality in Python * random — generation
of pseudo-random numbers * pytabix — allows efficient access to .bgzip and .thi files * Xarray —
efficient processing of high dimensional data as an alternative to Pandas

The general practice is to import packages in the first cell of the notebook. If you are using
Anaconda, then most of the packages should be already installed. If it not the case, you can install
a package by executing conda install numpy in a command line or use pip install nympy also
in the command line. Alternatively, if you are using Jupyther Notebook, you can install a package
by executing !pip install numpy.

It is common to use abbreviations for some packages, for example: np for numpy, pd for pandas,
sns for seaborn, etc.

Always bear in mind that explicit syntax is always better than implicit! Try to not go overboard
with abbreviations, since using abbreviations may reduce code readability.

Importing all the libraries usefull for this motebook
import os

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import scipy

import seaborn as sns

0.0.2 1. On new data types (NumPy array and Pandas dataframe)

https://numpy.org
https://pandas.pydata.org
https://scipy.org
https://scikit-learn.org/stable/
https://matplotlib.org
https://docs.python.org/3/library/os.html
https://seaborn.pydata.org/index.html
https://docs.python.org/3/library/collections.html
https://graph-tool.skewed.de
https://graph-tool.skewed.de
https://networkx.org
https://igraph.readthedocs.io/en/0.10.2/
https://plotly.com/python/
https://docs.python.org/3/library/sys.html
https://github.com/tqdm/tqdm
https://docs.python.org/3/library/itertools.html
https://rpy2.github.io
https://docs.python.org/3/library/random.html
https://github.com/slowkow/pytabix
https://docs.xarray.dev/en/stable/user-guide/data-structures.html

[2]:

[3]:

[4]:

[5]:

[6]:

1.1. NumPy arrays The main object in NumPy library is a multidimensional array (ndarray).
Such objects are represented as matrices often containing numerical elements. Similar to lists,

arrays are indexed.

A few important attributes of an ndarray are: .shape, .size, .ndim, etc. (to read more about
NumPY, check out this link).

Let’s look into a few examples:

1 dimensional array
x_1 = np.array([1, 2, 3])
print(x_1, type(x_1))

[1 2 3] <class 'numpy.ndarray'>

print('x_1.shape', x_1.shape) # 3 stands for the number of elements in one and,

—only dimension
print('x_1.size', x_1.size) # 3 represents the total number of elements
print('x_1.ndim', x_1.ndim) # 1 represents the number of dimensions

x_1.shape (3,)
x_1.size 3
x_1.ndim 1

2 dimensional array
x_2 = np.array(
[(f1, 2, 31,
[4, 5, 6]1]
)
print(x_2, type(x_2))

[[1 2 3]
[4 5 6]] <class 'numpy.ndarray'>

print('x_2.shape', x_2.shape) # 2 stands for the number of rows, 3 for the,

—number of columns
print('x_2.size', x_2.size) # 6 represents the total number of elements

print('x_2.ndim', x_2.ndim) # 2 represents the number of dimensions

x_2.shape (2, 3)

x_2.size 6

x_2.ndim 2

NumPy has a lot of functionality which we will not cover in this course. However, below we provide
a few examples that are representative enough:

zero_array = np.zeros((3, 4)) # create an array of size 3z4 filled with zeros

print(zero_array)

https://numpy.org/doc/stable/user/quickstart.html

[7]1:

[8]:

[9]:

[10]:

[10]:

[11]:

[11]:

[[0. 0. 0. O.
[0. 0. 0. O.
[0. 0. 0. 0.

—_ L

]

calculate the exponential value of each element in the array
with the base e (mathematical constant)

exp_x_2 = np.exp(x_2)

print(exp_x_2)

[[2.71828183 7.3890561 20.08553692]
[54.59815003 148.4131591 403.42879349]]

calculate the sum of elements in the array across columns (azis 1)
sum_axis_0 = np.sum(x_2, axis=0)
print('Sum across rows = ', sum_axis_0)

sum_axis_1 = np.sum(x_2, axis=1)
print('Sum across columns = ', sum_axis_1)

Sum across rows = [5 7 9]
Sum across columns = [6 15]

NumPy is useful for various linear algebra tasks, e.g., matrix multiplication, eigenvalue decompo-
sition, etc. To know more about NumPy functionality, please see this link.

print('x_1 * x_1 =', x 1 *x x_1) # element-wise multiplication
print('x_20x_1 = ', x_2@x_1) # matriz multiplication, equivalent to .matmull()

x 1 *xx 1=1[1409]
x_20x_1 = [14 32]

1.2. Pandas dataframes Pandas dataframe is a two-dimensional cunstructor for tabular data.
It stores the data, allows performing various operations with it, including cleaning the data and
processing it.

Create a dataframe from mp.array
df_from_array = pd.DataFrame(x_2)
df _from_array.head() # visualize the first n rows (default n=5)

0o 1 2
0 1 2 3
1 4 5 6
df_from_array.columns = ['one', 'two', 'three'l # set column names

df _from_array.head()

one two three
0 1 2 3

https://numpy.org/doc/stable/reference/routines.linalg.html

1 4 5 6

[12]: | # Create a dataframe from dictionary
df _from_array = pd.DataFrame (

{
'one': [1, 4],
"two': [2, 5],
'three': [3, 6]
}
)
df _from_array.head()
[12]: one two three
0 1 2 3
1 4 5 6

[13]: df_from_array['four'] = [4, 7] # add a new column

create a column where new value s equal to

the sum of the wvalue in column one and column three:

df _from_array['sum_one_and_three'] = df_from_array.loc[:, 'one'] +,
—df_from_array.loc[:, 'three']

create a column where new value s logl0 transformed
df _from_array['logl0_one'] = np.loglO(df_from_array.loc[:, 'one'l)

df _from_array.head()

[13]: one two three four sum_one_and_three loglO_one
0 1 2 3 4 4 0.00000
1 4 5 6 7 10 0.60206

To know more about Pandas functionality, check out this link.

0.0.3 2. Reading files

[14]: | # define the core path
core_path = '/data/gardeux/Course_GG'

2.1. Optional: Reading files line by line and writing to files You can read files in Python
with the complex of open(), readline(), close() functions in the following way:

[15]: f_in = open(
os.path.join(core_path, 'iris_dataset.csv'), # path to file

https://pandas.pydata.org/docs/user_guide/index.html

[16]:

[17]:

[18]:

[19]:

mode='r' # mode for opening the file (see function details for more,

—options)

)

print(f_in.readline()) # outputs the first line of the file

print(f_in.readline()) # outputs the second line of the file
print(f_in.readline()) # outputs the second line of the file
sepal_length,sepal_width,petal_length,petal_width,variety

5.1,3.5,1.4,.2,Setosa

4.9,3,1.4,.2,5etosa

f_in.close() # it's necessary to close the file after you've finished,

—processing it

Alternatively, you can use the function .readlines() that would provide the list of all lines con-

tained in the file, where each line is represented as string with \n in the end.

f_in = open(
os.path.join(core_path, 'iris_dataset.csv'), # path to file
mode='r' # mode for opening the file (see function details for morey
—options)
)
i=0
for line in list(f_in.readlines()): # iterate over each line
replace \n with an empty string and
split the line based on the separator
print(line.replace('\n', '').split(',"))
i+=1
if 1 == 3: # to print only the first three lines
break
f_in.close() # close the file

['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'variety']
['5.1', '3.5', '1.4', '.2', 'Setosa']

['4.9', '3', '1.4', '.2', 'Setosa']

Now, let’s try writing only the data for Setosa species into the new file
setosa_dataset_write.csv:

f_in = open(
os.path. join(core_path, 'iris_dataset.csv'), # path to file
mode='r' # mode for reading the file (see function details for more,
—options)

)

named

f_out = open(
os.path.join(core_path, 'setosa_dataset_write.csv'), # path to file
mode='w' # mode for writing the file (see function details for morey
—options)
)
for i, line in enumerate(list(f_in.readlines())): # iterate over each line in,
—~the tnput file will all data
replace \n with an empty string and
split the line based on the separator

values_in_line = line.replace('\n', '').split(',"')
if 1 ==
f_out.write(line) # write the header to the output file
if values_in_line[-1] == 'Setosa': # if the last element in the list s,
—~Setosa

f_out.write(line) # write this line to the output file
f_in.close() # close the input file
f_out.close() # close the output file

2.2. Reading and writing to files with Pandas One of the most standard ways of reading
tabular data is to use the read_csv() function from Pandas.

[20]: # We use the pd.read_csv() function from Pandas to read files
iris_df = pd.read_csv(
os.path.join(core_path, 'iris_dataset.csv'), # specify path to file
sep=',' # specify separator (default is comma)

[21]: iris_df.head()

[21]: sepal_length sepal_width petal_length petal_width variety
0 5.1 3.5 1.4 0.2 Setosa
1 4.9 3.0 1.4 0.2 Setosa
2 4.7 3.2 1.3 0.2 Setosa
3 4.6 3.1 1.5 0.2 Setosa
4 5.0 3.6 1.4 0.2 Setosa

Let’s say we want to extract only Setosa species and save the respective dataframe to the new file
‘setosa__dataset.csv’. This can be achieved with the .to_csv() function in the following way:

[22] : | # Subset only setosa species from the dataframe
setosa_df = iris_df[iris_df['variety'] == 'Setosa'l]

[23]: | # We use the my_df.to_csv() function from Pandas to save dataframe to .csv
setosa_df.to_csv(
os.path.join(core_path, 'setosa_dataset_pandas.csv'), # specify path tog

[24]:

[24] :

[25]:

[25]:

[26] :

sep=',', # specify separator (default is comma)

index=False, # indication not to write index

header=True # indication to write header (column names)

As you may notice, reading and writing files with Pandas is easier as compared to the
open/write/close version described in the subsection 1.1.
files or files with non dataframe-like content, the latter option might be more convenient.

Side note: NumPy arrays, dictionaries and pickled objects can be efficiently stored with NumPy to
.npy, .npz and .pickle formats with the np. save () function, and read afterwards with the np. Load ()

function.

0.0.4 3. Analyzing and visualizing the data

In this section, we will do some exploratory data analysis (aka EDA) and visualization for the iris

dataset.

iris_df.head()

However, when dealing with large

sepal_length sepal_width petal_length petal_width variety

0 5.1 3.5
1 4.9 3.0
2 4.7 3.2
3 4.6 3.1
4 5.0 3.6

1.4

NS IS

1.
1.
1.
1.

0

o O O O
NN NN

.2 Setosa
Setosa
Setosa
Setosa
Setosa

First, let’s start with summary statistics for features of the dataset:

iris_df.describe()

sepal_length sepal_width petal_length petal_width
150.
.199333
. 762238
.100000
.300000
.300000
.800000

000000

.067333
.435866
.000000

.800000
.000000
.300000

count 150.000000 150.
mean 5.843333 3
std 0.828066 0
min 4.300000 2
25% 5.100000 2
50% 5.800000 3
75% 6.400000 3
max 7.900000 4

Exercise 1. Look into the output of the .describe() function. What feature has the largest

.400000

150.

(o) I 2 Y S i e V]

mean value? What about standard deviation?

write your answer here

000000
. 758000
. 765298
.000000
.600000
.350000
.100000
.900000

N =, = OO O =

000000

.500000

Let’s check if there is any dependency between the lengths and widths of petals and sepals by using
the .scatter() plot function from the matplotlib library. First, we create the figure object by
definging figure (fig) and axes (ax). Axes can be either a single object, or an array of Axes objects
if several subplots are created. Check out the documentation to know more about creating figures
with matplotlib.

[27]: fig, ax = plt.subplots(l, 1, figsize=(5, 5)) # 4nitialize a figure

ax.scatter(
iris_df['petal_length'l, # plot petal length on the z azis
iris_df['petal_width'], # plot petal width on the y azis
color="'lightgray'

)

ax.set_xlabel('Petal length', size=12) # annotate = azis, specify the text size

ax.set_ylabel ('Petal width', size=12) # annotate y azis

plt.title('Petal length vs width', size=12) # add a title to the plot and,

—spectfy i1ts stize

plt.show()

Petal length vs width

2.5 1

20 4

15 1

Petal width

10 1

0.5 -

0.0 -

1 2 3 4 5 B 7
Petal length

There is a clear linear dependency bertween the two features. Let’s get some numerical value
for this dependency by calculating Pearson correlation with the .pearsonr() function from the

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html

scipy.stats package:

[28]: correlation, corr_pvalue = scipy.stats.pearsonr (
iris_df['petal_length'],
iris_df ['petal_width']

)
if corr_pvalue < 0.05:
print(
'Correlation =', correlation,
'with the respective pvalue =', corr_pvalue)

Correlation = 0.9628654314027961 with the respective pvalue =
4.6750039073275495e-86

Side note: do not forget to check function parameters before using it!

Since the number of features and samples is not huge, we can look into all possible pairwise re-
lationships between the features in the dataset with the .pairplot() function from the seaborn
library:

[29]: sns.pairplot(iris_df)

[29] : <seaborn.axisgrid.PairGrid at 0x1537645ada30>

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html

[30]:

84 - .
L o 0.
]
H
71 . :? '.. H ’
g H |o%=' . o .g 5..
5 W& - E g. H .szoo
16 g 2 % . ® 's.
] . . 2.3 . .
2 Y. o Gy s
. o .
51 1 %; v, 1 SEES.. g o
.
o -'=
T T T T T
45 . .
. o°
40 . ..
.. aes e
£ 35 I°& o 1%, .
o+ iy . = sse
H .o " e -
z < g |8
T 30 [WIS 0 NE & - 888
o (] . K8 @ H
B g8, e
ses . .
25 S e e
. * e .
201 .
T T T
L - .y . 0 e’
B - 'E.. L]) H . :". L]
0.05:% *s oo:o o] o "3 E:so'
=5 28 . s Sew so.oa' .
= B ® 35 522, T O
= L - o, 9, SEE0E% -3338"
24 = L) oe_geft™® s d8,°
=l - ﬁ' . s * L
E 3] . . :
21 ..
- 8
L .ﬁﬁﬁ‘gﬂi s | . '388'§='.§' .y ®
251 « 28 ° 1 PN et
e e . weess ®
- H . s e
o ame o ams @
20 o “o. o (Y] . I&.'.“...i.
g ° 8 " @ 33 .
= 15 i a1 o"aeh” »
i FC R ®aes's
E 10 A o« twe)
05 e " %
“aee . e . e
e @ . LR L])
» SIOCRNINTE @ SERSREINE B 8 R
. - e " L] . L]
{'0 T T T T T T T T T
3 7 8 2 3 4 2 4 B 1 2
sepal_length sepal_width petal_length petal_width

Exercise 2. 1. How do you call the plots visualized on the diadonal of the output figure? What
do they represent? 2. Look into parameters of the.pairplot() function and find a way how to
color the data based on the iris species (the last column of the iris_df).

provide answers and the code in this cell

Let’s look into the sepal and petal length distributions and compare them side by side. To visu-
alize figures side by side, we will use the plt.subplots() function with parameters nrows=1 and
ncols=2, indicating the number of rows and columns for the subplot grid respectively.

Be careful with the Axes! Note that since we are creating more that one plot, ax will be an array
of Axes object (e.g., ax1, ax2 = ax in our case, or alternatively, individual axes can be extracted
with indexing: ax[0], ax[1], as in the example below).

10

[31]:

Initialize a figure with two subplots sidy by side:
fig, (azl, az2) = plt.subplots(l, 2) # or as follows:
fig, ax = plt.subplots(
1, # number of rows with plots
2, # number of columns with plots
figsize=(10, 5), # full figure size, in our case each plot will occupyy
—half of = azis
sharex=True, # set = azis to be the same for two plots
sharey=True, # set y azis to be the same for two plots
)
in the first subplot, visualise the distribution of sepal lengths
ax[0] .hist(
iris_df['sepal_length'],
bins=20,
color="'lightgray',
)
ax[0] .set_xlabel('Sepal length', size=12) # annotate = azis, specify the texty
—Sstze
ax[0] .set_ylabel('Frequency', size=12) # annotate y azxis, specify the text size
ax[0] .set_title('Sepal length distribution', size=12) # add a title to the,
—plot and specify tts size

in the second subplot, wvisualise the distribution of petal lengths
ax[1] .hist(
iris_df['petal_length'],
bins=20,
color="'lightblue',
)
ax[1] .set_xlabel('Petal length', size=12)
ax[1] .set_title('Petal length distribution', size=12)
plt.show()

11

[32]:

Sepal length distribution Petal length distribution

= e =
. . .

Frequency
&=

1 2 3 4 5 & i 4 5 6
Sepal length Petal length

-
o
=
-
-
[==1

Side note: The list of named colors available in matplotlib can be found via this link. Custom
colors can be defined in RGB, RGBA formats or with hex identifiers, see this link for more details.

Exercise 3. let’s plot the two density plots (with .hist () function and density=True parameter)
in one figure. Complete the code in the cell below by coloring the histogram with the same colors
as in the example above, set labels, add figure legend outside the axes, specify labels of x and y
axes and the figure title.

fig, ax = plt.subplots(i, 1, figsize=(5, 5))
ax.hist(

[iris_df['sepal_length'], iris_df['petal_length'l], # two datasets in oney
—list

bins=20,

density=True, # plot density value instead of frequencies

specify colors for the respective datasets

set dataset labels

Indicate with vertical lines mean Sepal and Petal lengths respectively:
ax.axvline(
np.mean(iris_df ['sepal_length']l), # calculate the mean with NumPy
color='black',
label='Mean sepal length'
)
ax.axvline(
np.mean(iris_df['petal_length']l), # calculate the mean with NumPy
color='blue',

12

https://matplotlib.org/stable/gallery/color/named_colors.html
https://matplotlib.org/stable/tutorials/colors/colors.html

[33]:

label='Mean petal length'

)

add = label

add y label

add title

add legend

plt.show()
0.6 -
0.5 -
0.4 1
0.3 -
0.2 -
0.1 -
0.0 -

Exercise 4. We have already tried calculating correlation and the reapective p-value with the
scipy.stats package. Now we want to know whether there is a statistically significant difference
in means of sepal lengths for Setosa and Virginica species. To do that, we will use the t-test
for independent samples, which is already implemented in the scipy.stats package. Find the
respective function, use it on the sepal lengths for Setosa and Virginica species, print the value of
the respective statistics and p-value. What is your conclusion?

provide the code in this cell

Finally, we will see how to group data with Pandas .groupby() function. To learn more about its

13

https://www.scribbr.com/statistics/t-test/

functionality, see this link.

For example, imagine we want to know the average values for all features per iris species. To do
that, we will provide the column name for aggregation by specifying it as the first argument of
the .groupby () function. This will yield the pandas.core.groupby.generic.DataFrameGroupBy
object containing iris variety and the respecive dataframe. Later, we can use the .mean() function
to aggregate across all samples for each feature and output the result into one dataframe:

[34]: iris_df.groupby('variety') .mean()

[34]: sepal_length sepal_width petal_length petal_width
variety
Setosa 5.006 3.428 1.462 0.246
Versicolor 5.936 2.770 4.260 1.326
Virginica 6.588 2.974 5.56562 2.026

To have a better understanding of the .groupby () function content, let’s iterate over it:

[35]: for iris_variety, variety_df in iris_df.groupby('variety'):
print('-' * 20)
print('Iris variety is', iris_variety)
print(variety_df.head())
You can process the subsetted data in any way you want
in this loop

Iris variety is Setosa
sepal_length sepal_width petal_length petal_width variety

0 5.1 3.5 1.4 0.2 Setosa
1 4.9 3.0 1.4 0.2 Setosa
2 4.7 3.2 1.3 0.2 Setosa
3 4.6 3.1 1.5 0.2 Setosa
4 5.0 3.6 1.4 0.2 Setosa

Iris variety is Versicolor

sepal_length sepal_width petal_length petal_width variety
50 7.0 3.2 4.7 1.4 Versicolor
51 6.4 3.2 4.5 1.5 Versicolor
52 6.9 3.1 4.9 1.5 Versicolor
53 5.5 2.3 4.0 1.3 Versicolor
54 6.5 2.8 4.6 1.5 Versicolor

Iris variety is Virginica
sepal_length sepal_width petal_length petal_width variety

100 6.3 3.3 6.0 2.5 Virginica
101 5.8 2.7 5.1 1.9 Virginica
102 7.1 3.0 5.9 2.1 Virginica
103 6.3 2.9 5.6 1.8 Virginica
104 6.5 3.0 5.8 2.2 Virginica

14

https://realpython.com/pandas-groupby/

Now you are ready for the genetics and genomics exercises!

15

	Overview of the important Python packages and modules
	1. On new data types (NumPy array and Pandas dataframe)
	2. Reading files
	3. Analyzing and visualizing the data

