


BIO-372 "MICROBIOLOGY" EXERCISES (WEEK 7)

Your Name : _____ Grade : _____

Your Partner: _____ Grade : _____

EXERCISE 1 "BACTERIAL MOTILITY AND CHEMOTAXIS" :

Three different models have been proposed to explain how the bacterial rotary motor works: the *proton turbine* model, the *thermal ratchet* model, and the *mechanochemical* model.

1. Which diagram represents the *proton turbine* model: (a) (b) (c).
Explain how it works:

2. Which diagram represents the *thermal ratchet* model: (a) (b) (c).
Explain how it works:

3. Which diagram represents the *mechanochemical* model: (a) (b) (c).
Explain how it works:

4. In all three models the source of power is:

- A. ATP (adenosine triphosphate) hydrolysis
- B. PEP (phosphoenolpyruvate) hydrolysis
- C. PMF (proton motive force)
- D. EMF (electron motive force)
- E. (A) and (C)
- F. (B) and (D)

5. Imagine a bacterial flagellar motor that rotates at 100 Hz with a torque of 10^{-18} joules and a motor mass of 10^{-4} fg (1 femtogram = 10^{-15} grams). What is the motor's power output per kg? Show your work:

BIO-372 "MICROBIOLOGY" EXERCISES (WEEK 7)

Your Name : _____ Grade : _____

Your Partner: _____ Grade : _____

EXERCISE 2 "BACTERIAL MOTILITY AND CHEMOTAXIS" :

1. Write out the derivation of the Reynolds number (Re) equation from the terms defining the component of *inertial forces* (F_i) and the component of *viscous forces* (F_v).

$F_i =$

$F_v =$

$Re =$

2. Swimmers can use reciprocal motions to move themselves through water if...

- A. The Reynolds number is < 10
- B. The Reynolds number is $> 200,000$
- C. Both (A) and (B)
- D. None of the above

Explain:

3. Imagine a microbe swimming at a velocity of $10 \mu\text{m}$ per second in water with a length of $1 \mu\text{m}$ and a surface area across the flow of $1 \mu\text{m}^2$. What is the Reynolds number (Re) of fluid flow around the microbe?

Show your work:

4. Imagine a fish swimming at a velocity of 10 m per second in water with a length of 1 m and a surface area across the flow of 1 m^2 . What is the Reynolds number (Re) of fluid flow around the fish?

Show your work:

5. Select the statement/s that is/are true for microscopic swimmers like microbes and macroscopic swimmers like fish (multiple responses are possible):

- A. Inertial forces are more important for microbes than fish
- B. Inertial forces are more important for fish than microbes
- C. Inertial forces are equally important for microbes and fish
- D. Viscous forces are more important for microbes than fish
- E. Viscous forces are more important for fish than microbes
- F. Viscous forces are equally important for microbes and fish

Explain:

BIO-372 "MICROBIOLOGY" EXERCISES (WEEK 7)

Your Name : _____ Grade : _____

Your Partner: _____ Grade : _____

EXERCISE 3 "BACTERIAL MOTILITY AND CHEMOTAXIS" :

1. What is "chemotaxis"? Explain.

2. Describe the strategy that *large* eukaryotic cells use for chemotaxis up a gradient of attractant.

3. Describe the strategy that *small* prokaryotic cells use for chemotaxis up a gradient of attractant.

4. A mutant lacking CheA (kinase) would:

- Run all the time
- Tumble all the time
- Run and tumble with increased tumble frequency (shorter runs)
- Run and tumble with decreased tumble frequency (longer runs)
- Fail to adapt to changes in attractant concentration

Explain:

5. A mutant lacking both CheR (methyltransferase) and CheB (methylesterase) would:

- Run all the time
- Tumble all the time
- Run and tumble with increased tumble frequency (shorter runs)
- Run and tumble with decreased tumble frequency (longer runs)
- Fail to adapt to changes in attractant concentration

Explain: