
MICROBIOLOGY EXERCISES (WEEK 1)

Your Name : _____ Grade : _____

Your Partner: _____ Grade : _____

QUESTION 1 "LIVING AT MICRO SCALE" :

Imagine two microorganisms with equal mass and volume but different shapes, (a) and (b):

1. Which shape has the lower ratio of surface area to volume (S/V ratio)?

- A. Shape (a).
- B. Shape (b).
- C. Shapes (a) and (b) have the same S/V ratio.

Explain your answer:

2. Which shape is better optimized to conserve internal heat (for example, heat generated by metabolic processes)?

- A. Shape (a).
- B. Shape (b).
- C. Shapes (a) and (b) are equivalent with respect to conservation of internal heat.

Explain your answer:

3. Which shape is better optimized to promote rapid exchange of diffusible materials (for example, nutrients) between the outside and inside?

- A. Shape (a).
- B. Shape (b).
- C. Shapes (a) and (b) are equivalent with respect to exchange of diffusible materials.

Explain your answer:

4. If cell (a) grows larger *while keeping the same shape*, how does the S/V ratio change?

- A. As the cell grows larger the S/V ratio increases.
- B. As the cell grows larger the S/V ratio decreases.
- C. As the cell grows larger the S/V ratio stays the same.

Explain your answer:

5. If cell (b) "stretches" to get longer and thinner *while keeping the same volume*, how would the S/V ratio change?

- A. As the cell stretches the S/V ratio increases.
- B. As the cell stretches the S/V ratio decreases.
- C. As the cell stretches the S/V ratio stays the same.

Explain your answer:

MICROBIOLOGY EXERCISES (WEEK 1)

Your Name : _____ Grade : _____

Your Partner: _____ Grade : _____

QUESTION 2 "LIVING AT MICRO SCALE" :

1. Write the exponential growth rate equation: _____ and define each term below.
Do not peek at the slides until you've made your best effort to write everything from memory!

N =

N_0 =

e =

k =

t =

t_d =

2. Imagine a cell culture growing exponentially with a doubling time of 2.00 hours.

The culture's growth rate constant is: _____

Show your work:

3. Imagine a cell culture growing exponentially with a growth rate constant of 1.40 per hour.

The culture's doubling time is: _____

Show your work:

4. Imagine a cell culture growing exponentially with a doubling time of 2.00 hours.

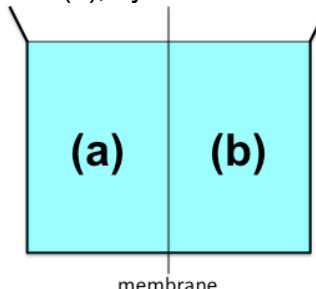
Starting from one cell, how long would it take the culture to reach one million cells: _____

Show your work:

5. Imagine a cell culture growing exponentially with a growth rate constant of 1.40 per hour.

Starting from one cell, how long would it take the culture to reach one million cells: _____

Show your work:


MICROBIOLOGY EXERCISES (WEEK 1)

Your Name : _____ Grade : _____

Your Partner: _____ Grade : _____

EXERCISE 3 "LIVING AT MICRO SCALE" :

Imagine a container filled with water and separated into two equal-volume compartments, (a) and (b), by a membrane that is permeable to water but impermeable to solutes.

1. Write the equation for the van't Hoff relation: _____ and define each term below. Do not peek at the slides until you've made your best effort to write everything from memory!

n =
 P =
 R =
 T =
 V =

2. If you add some solute to compartment (a), what happens?

- A. The volume of water increases in compartment (a) and decreases in compartment (b).
- B. The volume of water increases in compartment (b) and decreases in compartment (a).
- C. The volume of water remains the same in both compartments.

Explain your answer:

3. If you add 0.2 moles (mol) of solute to compartment (a) with a volume (V) of one liter (0.001 m^3) at 27°C (300°K), the resulting osmotic pressure (P) would be: _____

Show your work:

4. Imagine a bacterium surrounded by a rigid (non-elastic) cell wall that is water-permeable. If you put the bacterium in a container filled with pure distilled water:

- A. The bacterium's internal pressure increases.
- B. The bacterium's internal pressure decreases.
- C. The bacterium's internal pressure stays the same.

Explain your answer:

5. If you change the shape of a bacterium from sphere-shaped to cube-shaped while maintaining the same size (volume), what happens?

- A. The bacterium's internal pressure increases.
- B. The bacterium's internal pressure decreases.
- C. The bacterium's internal pressure stays the same.

Explain your answer: