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1 Estimating a diffusion coefficient

a) Because the N measurements of displacements ∆x, ∆y of the particle are considered independent,
the joint probability distribution function of the dataset (∆x1,∆y1,∆x2,∆y2, . . . ,∆xN ,∆yN ) at
a given V is the product of the probability distributions of each (∆x,∆y):

p(∆x1,∆y1,∆x2,∆y2, . . . ,∆xN ,∆yN |V ) =
1

(2πV )N
exp

[
− 1

2V

N∑
i=1

(
∆x2i + ∆y2i

)]
, (1)

It is the probability of the data given the model (Gaussian distribution with variance V ), and thus
it can be interpreted as a likelihood function. Its logarithm reads:

log [p(∆x1,∆y1,∆x2,∆y2, . . . ,∆xN ,∆yN |V )] = −N log(2πV )− 1

2V

N∑
i=1

(
∆x2i + ∆y2i

)
, (2)

It is easier to work with it because it does not involve an exponential.

b) To obtain the maximum-likelihood estimate of V , the log-likelihood can be differentiated with
respect to V (the data being fixed):

∂ log [p(∆x1,∆y1,∆x2,∆y2, . . . ,∆xN ,∆yN |V )]

∂V
= −N

V
+

1

2V 2

N∑
i=1

(
∆x2i + ∆y2i

)
, (3)

and then, setting it to zero yields

V =

∑N
i=1

(
∆x2i + ∆y2i

)
2N

. (4)

c) See Jupyter notebook. The computation with the real data yields σ =
√
V = 5.75 µm.

d) Here D = V/(2T ) = 0.55 µm2/s.

2 Counting fluorescent molecules

a) For the Poisson distribution, the variance is equal to the mean λ. See Jupyter notebook. Here the
variance (16) is not far from the mean (22), they are not the same but there is not much data so
the discrepancy is not sufficient to exclude a Poisson distribution.

b) Assuming that measurements are independent, the likelihood of the data (n1, n2, . . . , nK) given
the model (Poisson distribution) with mean λ reads

P (n1, . . . , nK |λ) = e−Kλ
λ
∑

i ni∏
i ni!

, (5)
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where i ranges from 1 to K. The log-likelihood reads:

log [P (n1, . . . , nK |λ)] = −Kλ+

(∑
i

ni

)
log λ− log

(∏
i

ni!

)
, (6)

and we will focus on the reduced log-likelihood

L(n1, . . . , nK |λ) = −Kλ+

(∑
i

ni

)
log λ , (7)

because the last term in Eq. 6 does not depend on λ and is heavy to compute. Differentiating the
log-likelihood (or the reduced log-likelihood) with respect to λ yields

∂ log [P (n1, . . . , nK |λ)]

∂λ
= −K +

∑
i ni
λ

, (8)

and setting this to zero gives the maximum-likelihood estimate of λ as

λ =

∑
i ni
K

, (9)

which is the regular expectation for the mean of the data.

c) The maximum value taken by the reduced log-likelihood is obtained from Eq. 7 for λ in Eq. 9,
yielding

maxL(n1, . . . , nK |λ) =

(∑
i

ni

)[
log

(∑
i ni
K

)
− 1

]
. (10)

See Jupyter notebook. Given the plot, the range of credible values of λ is approximately 20 to 24,
since the likelihood is much smaller than its maximum value outside of this range.

3 Luria-Delbrück experiment, revisited

a) Here the data is a set of K numbers m of observed mutants, one per replicate culture. Since
replicates are independent, the likelihood of the data given a model reads

P (m1, . . . ,mK |model) =

K∏
i=1

P (mi|model) , (11)

and its logarithm reads

log [P (m1, . . . ,mK |model)] =

K∑
i=1

log [P (mi|model)] =
∑
m

∑
i such that mi=m

log [P (m|model)]

=
∑
m

n(m) log [P (m|model)] , (12)

where we have separated experimental replicates i according to the number m of resistant cells
that were observed in m and then introduced n(m), the number of replicates where m resistant
cells are observed. Thus, if we now consider two different models, the logarithm of the ratio of
likelihoods for these two models can be expressed as

log

[
P (data|model)

P (data|model′)

]
=
∑
m

n(m)
[
logP (m|model)− logP (m|model′)

]
, (13)

where n(m) is the number of replicates of the experiment where m resistant bacteria were observed.
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b) For each value of m, and using the logarithm with base 10,
[
logP (m|model)− logP (m|model′)

]
can be read directly from the plot by looking at the height between the gray and the red dots, for
instance when m is between 11 and 20, the gray dot is around 10−10 and the red one around 10−2,
so the logarithms in base 10 of the probabilities according to each models are −10 and −2, and
their difference is 8. There are 6 replicates that fall in this category, so already the contribution of
this point to the log-likelihood ratio is 48. This is a lower bound for the logarithm of the ratio of
likelihoods for the two models, we can make it larger by considering other data points, but this is
sufficient to see that the likelihood ratio is huge (more than 1048).

c) Even if we initially thought the Lamarckian hypothesis was five times more probable than the
Darwinian, the likelihood ratio completely overwhelms the prior ratio, and we conclude in favor of
the Darwinian hypothesis after the experiment.

4 Additional problem: Luria-Delbrück experiment again

a) Each bacteria exposed to phage has a probability µ of becoming resistant and 1− µ of remaining
sensitive to phage under the Lamarckian hypothesis. The probability distribution of the random
variable X characterizing whether one bacteria is resistant or not is a Bernoulli distribution with
parameter µ.

b) In a culture containing N bacteria that is exposed to phage, the probability that m of them become
resistant under the Lamarckian hypothesis is given by the binomial distribution:

P (m) =

(
N

m

)
µm(1− µ)N−m . (14)

c) If µ� 1 and N � 1 but Nµ = λ is of order one, this distribution becomes the Poisson distribution
with parameter λ = Nµ,

P (m) = e−λ
λm

m!
. (15)

The mean value of m reads:

〈m〉 =

∞∑
m=0

m
λme−λ

m!
=

∞∑
m=1

m
λme−λ

m!
=

∞∑
m=1

λme−λ

(m− 1)!
= λe−λ

∞∑
m=1

λm−1

(m− 1)!
. (16)

Introducing k = m− 1, we obtain

〈m〉 = λe−λ
∞∑
k=0

λk

k!
= λe−λeλ = λ , (17)

where we have used the series expansion of the exponential function

ex =

∞∑
k=0

xk

k!
. (18)

In addition, for a Poisson distribution, the variance is equal to the mean, so it is also equal to λ.

d) Under the Darwinian hypothesis where phage resistance mutations can be acquired randomly at
any time during growth of the bacterial cultures (before exposure to phage), if a mutation occurs
early in the growth process, then the culture will comprise many mutants as all descendants of the
mutant are mutant too. Thus, the number of colonies with large numbers of mutants (albeit small)
is much larger under the Darwinian hypothesis than under the Lamarckian one. These events are
called “jackpots”.

e) If µD = 0, there is no Darwinian mutation, so we recover the Lamarckian model. If µL = 0, there
is no Lamarckian mutation, so we recover the Darwinian model. Since both the Lamarckian and
the Darwinian model are included in the Combined model for specific values of the parameters, the
Combined model cannot fit the data less well than the pure Darwinian and the pure Lamarckian
model.
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f) The link is given by Bayes theorem:

P (model|data) = P (data|model)× P (model)

P (data)
, (19)

where P (model|data) is the posterior, P (data|model) is the likelihood and P (model) is the prior.

g) To compare two models with a fixed dataset, one should in principle compare the posterior of each
model given that data. We have

P (model 1|data)

P (model 2|data)
=
P (data|model 1)

P (data|model 2)
× P (model 1)

P (model 2)
, (20)

Since the data is the same in both cases, the term P (data) has vanished here. If the two models
have the same prior, then the ratio of the posteriors is equal to the ratio of the likelihoods, and
this reduces to a maximum likelihood analysis. One should choose the model that has the largest
likelihood among the 2 possible models. More generally, under the uniform prior, finding the model
that maximizes the posterior is equivalent to finding the model that maximizes the likelihood.

h) The drawback of the Combined model is that it has 2 free parameters that will have to be fitted to
the data, µD and µL. It is thus a more complex models than the other two, that aims to explain
the same data. If we want to penalize the Combined model for its complexity, we could possibly
decrease its prior.

i) In a maximum likelihood analysis, having more replicates can make the likelihoods more distinct
and allows to better distinguish between models. Indeed, the product of the likelihood ratios of
each replicate will yield the overall likelihood ratio. If for instance there are multiple small terms
there, then the overall likelihood ratio will be smaller.

[Detailed analysis below not required.] Technically, if the data is a set of K numbers m of observed
mutants, one per replicate culture. Since replicates are independent, the likelihood of the data
given a model reads

P (m1, . . . ,mK |model) =

K∏
i=1

P (mi|model) , (21)

and if comparing two models, we should focus on

P (m1, . . . ,mK |model 1)

P (m1, . . . ,mK |model 2)
=

K∏
i=1

P (mi|model 1)

P (mi|model 2)
, (22)

which for instance becomes very small if many of the terms of the product are small.

j) The figure shows that the fit represents well the data, with only some fluctuations of one with
respect to the other but no visible systematic difference. The jackpot events with large m in
particular are well captured by the model (as shown in the inset). This seems to indicate that
there is some Lamarckian component in the process, since the best fit value for µL is not zero.
However, we see that the adjusted values satisfy µL < µD, meaning that the Darwinian mechanism
appears dominant from the analysis of this experiment.

k) Here the fit is far less good, and in particular the jackpot events do not appear to be well-captured
by the fit, since we see that the experimental data features higher frequencies for large values of m
than the fit. We see that the fit gave µL = 0 here (no Lamarckian component),and we know that
jackpots arise from Darwinian mutations. Here, even the purely Darwinian hypothesis does not
yield large enough jackpots to explain the data. There could have been an additional phenomenon
at play in this particular experiment, for instance a contamination by a resistant strain.

l) From these two results, we see that in one case the best fit has a nonzero µL, but with µL < µD.
In the other case the best fit is purely Darwinian, but it explains the data less well then in the
first case. Overall, based on these results alone, we cannot exclude the Combined or the Darwinian
models, but it seems reasonable to exclude the Lamarckian one because in both cases, µL < µD
and µD is nonzero. To gain more insight, it would be good to perform additional experiments with
more replicates.
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