
Problem set 7:

Information in DNA sequence data

BIO-369

Prof. Anne-Florence Bitbol
EPFL

This problem was given as part of a graded numerical project for this class.

1 DNA sequence logo

In this problem, we will consider the data in the file crp sites.fa, which contains DNA sequences
of various binding sites of the same transcriptional regulator CRP in the Escherichia coli genome. If
you open this file, which is in a format called fasta, you will see that, for each entry, there is first
a header line starting with “>”, and then the next line is the sequence itself as a string of letters A,
T, C and G. These sequences are already aligned, meaning that they all have the same length and
that the first nucleotide in the first sequence has the same role as the first nucleotide in the second
sequence, and so on. We will call these positions in the alignment the columns of the alignment.

We would like to understand the conserved features of CRP binding sites from these examples of
different binding site sequences. For this, we will first compute the frequency of occurrence of each
nucleotide (A, T, C, G) in each column. The frequency of A in the first column is the number of
sequences where there is an A in the first column divided by the total number of sequences in the
alignment.

a) In Python, load the file crp sites.fa and extract all the sequences in it as an array of strings.
We will not need the headers for this analysis, so you can discard them.

There are different ways to do this, and for instance you may use the function SeqIO.parse from
Bio, and use list to transform its output into a list. Once you have obtained this list, sequences
without headers can be obtained from it using the method seq, for instance if your list is called
mylist, you can obtain the first sequence as a string from it by using str(mylist[0].seq). Again,
this is just one possible method, there are other possibilities.

b) Next, in order to be able to count the nucleotides in each column, transform the array of strings
you obtained into a Numpy array of integer numbers, by using the mapping that A is 0, C is 1, G
is 2 and T is 3.

Again, there are different ways to do this, but one of them is to define the mapping as a Python
dictionary using dict, and then to use it for each character in each row of the array of strings to
replace it by the appropriate integer number.

c) Produce a Numpy array called frequencies that contains the frequency of each nucleotide in each
column of the alignment. Each column should correspond to a nucleotide, and each row should
correspond to a column of the alignment.

d) Produce a Numpy array called entropies that contains the entropy of each column of the align-
ment, computed from the frequencies determined before. Each row should correspond to a column
of the alignment.

e) Plot entropy versus column index, using a bar plot. What is the maximum possible value that
entropy could theoretically take for such a column? Which distribution would it correspond to?
Compare columns 8 and 11 (where the first column is numbered 0 as per Python convention):
which one has the largest entropy?

1



f) In light of the previous problem set, how much are you concerned about finite size effects in
your entropy estimates for question 2e? What would change for these finite size effects if protein
sequences were considered instead of DNA sequences?

g) Plot the difference between the maximal possible value of entropy and the actual value of entropy
versus column index, using a bar plot. We will call this quantity the “height” of each column of the
alignment, as it will become the height in a new logo we will construct later. How is this quantity
related to conservation (a column is said to be highly conserved if it features the same amino acid
in most sequences)? What are the minimum and maximum possible values of the height? Compare
columns 8 and 11 again.

h) Produce a Numpy array called products that contains, for each nucleotide and each column of the
alignment, the product of the frequency of each nucleotide in each column of the alignment and of
the quantity “height” defined just before for each column of the alignment. Each column should
correspond to a nucleotide, and each row should correspond to a column of the alignment.

i) Now we will make a graphical representation of the data, by using logomaker [1]. For this, first
install logomaker e.g. from PyPI by executing pip install logomaker at the command line.
Next, execute the following Python commands in your Jupyter notebook:
products pd = pd.DataFrame(data=products,columns=["A","C","G","T"])

lm.Logo(products pd)

You should now see a sequence logo, where the total height of each column (the total height of
the stack of four letters) is the quantity that we called “height”. In addition, at each site (in each
column) the height of each letter is proportional to the frequency of the corresponding nucleotide,
and the most frequent nucleotide is on top, the next frequent one just below, and so on.

j) The consensus sequence is the sequence that has the most frequent nucleotide at each site. How
can you see the consensus sequence in the logo you just produced?

k) In what sense is this new logo a good representation of the data in the alignment?

l) Where on the DNA sequences studied here do you think the strongest binding of CRP to DNA
occurs?

References

[1] A. Tareen and J. B. Kinney. Logomaker: beautiful sequence logos in Python. Bioinformatics,
36(7):2272–2274, 04 2020.

2


