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In this problem set, we will first derive the Gillespie algorithm. Then, we will use it to simulate
the simple gene expression model studied in the lecture. We will also elaborate on how to analyze and
model experimental data regarding gene expression.

1 Gillespie algorithm

The aim of this problem is to introduce the Gillespie algorithm, an exact algorithm allowing to
simulate a process where independent reactions occur randomly with given rates [1]. This algorithm
is extremely useful to simulate chemical systems where reactions occur, taking into account finite size
effects. Its scope is general, and for instance it can also be employed to simulate microbial populations
(we could use it to simulate a birth-death process similar to the Moran process but with continuous
time instead of discrete time).

a) Consider an event that happens randomly with constant rate k. Consider a small time interval
δt such that at most one event happens during it. What is the probability that one event occurs
during one such time interval? What is the name of the probability distribution describing the
number of events occurring during one such time interval? Assume that one event occurred between
0 and δt. Explain why this does not affect the probability that one event occurs between δt and
2δt.

b) Denoting by N(t) the number of events that happen between time 0 and time t, explain why the
probability distribution of N(t) is the Poisson distribution with mean kt. For this, you can cut the
time interval [0, t] in small time intervals of duration δt and use the result of the previous question.

c) Starting at time 0, let T denote the first time (after time 0) when the event happens. Note that
T is a random variable because the event happens at random times. Consider t > 0. Explain why
the probability P (T > t) that T is larger than t is equal to the probability P (N(t) = 0). Give the
expression of P (T > t).

d) What is the probability density p(t) of the first time when the event happens? Recall that, by
definition, p(t) is such that P (t < T ≤ t + dt) = p(t) dt. What is the name of this probability
distribution?

Here, we just demonstrated a fundamental point of the Gillespie algorithm: at each time point,
the time at which the next event happens can just be drawn in the distribution found in the last
question.

e) Now assume that two different and independent events 1 and 2 can happen, one with rate k1 and
the other with rate k2. What is the probability that one event (whatever its type) occurs in a small
time interval δt? How should we draw the time at which the next event, whatever its type, occurs?

f) Now we know how to figure out when the next event happens. How should we decide which of the
two possible events (1 or 2) is the one that happens at this time? How can this be implemented in
a simulation, starting from drawing a random number between 0 and 1 in a uniform distribution?
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g) How would you simulate the process and the trajectory of the system (showing the state of the
system versus time), performing events one after the other?

2 Simple gene expression model: simulation and data analysis

First, assume the following gene expression system:

∅ kRNA−−−−→ RNA

RNA
kdecay−−−−→ ∅

a) Write the master equation on the probability Pn(t) to be have n RNA molecules (with n =
0, 1, 2, . . . ) at time t for this model. Give the expression of the distribution Pn satisfying this
equation at steady state. What are the mean, the variance and the Fano factor of this distribu-
tion?

b) Using Python, write a Gillespie algorithm to simulate the previous system. You can initialize the
number of RNAs to 0 and use kRNA = 17.370molecules.h−1 and kdecay = 0.1368h−1. You can
simulate the system for 150 hours. Use the algorithm to generate ten trajectories, and plot them.

c) Modify your previous algorithm so that it only returns the number of RNA molecules at the
final timepoint tf (using the same parameters as previously, i.e kRNA = 17.370molecules.h−1,
kdecay = 0.1368h−1 and tf = 150h). Plot the histogram of the number of RNA molecules at the
final timepoint, using at least 500 trajectories. Compute the mean, the variance and the Fano
factor of these results. Compare with your theoretical predictions from question 1a.

d) In a recent paper Desai et al. [2] inferred the dynamics of gene expression for a given gene
(Nanog) using single-molecule fluorescence in-situ hybridization (smFISH), a method allowing to
quantify the number of a target mRNA in single cells. The data they obtained are given in
smFISH_data.csv. You can use the following command to import the data as a numpy array:
data = np.genfromtxt("smFISH_data.csv", skip_header=1, delimiter="\n").

Using the data, plot the histogram of the number of RNA molecules at equilibrium. Compute the
average, variance and Fano factor. Are the results consistent with the previous model (questions
1a-c)?

3 Modeling gene expression systems beyond the Poisson model

A widely used model for gene expression in mammalian cells is the random telegraph model [3], where
the gene can be in two distinct states, namely ON and OFF. The set of reactions can be written as
follows:

OFF
kON−−−→ ON

ON
kOFF−−−−→ OFF

ON
kRNA−−−−→ ON +RNA

RNA
kdecay−−−−→ ∅

a) Write down the master equations for this system. For this, you will need to take into account the
fact that the state of the systems needs to be described by two variables. The first one is the gene
state (OFF or ON), which you can denote by a binary variable i, with i = 0 meaning OFF and
i = 1 meaning ON. The second one is n, the number of RNA molecules. Thus, you can enumerate
the possible transitions from state (0, n), leading to an equation on P0,n, and then do the same for
P1,n, which will yield two different equations for each n.

Let us introduce

νON
.
=

kON

kON + kOFF
. (1)
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Let us admit (see [3] for a proof) that, at equilibrium, the average number of RNA molecules
〈RNA〉, and the Fano factor FF of the system are given by:

〈RNA〉 = νON ×
kRNA

kdecay
,

FF = 1 +
(1− νON )× kRNA

kON + kOFF + kdecay
.

b) How can the previous equation for the average number of RNA molecules be interpreted?

Hint: first think about the interpretation of νON , and then use question 1 a to interpret kRNA/kdecay.

c) In Python, write a Gillespie algorithm to simulate the system. To do so, you can modify the
algorithm from question 1c to incorporate the new states and transitions.

Desai et al. [2] used maximum likelihood estimation (we will study this method later in this class)
to infer the parameters kON , kOFF , kRNA, kdecay from the data, assuming the random telegraph
model. The inferred parameter values are given in Table 1.

Parameter Value

kON 0.572
kOFF 0.758
kRNA 40.389
kdecay 0.1368

Table 1: Kinetic rates values inferred from data using maximum likelihood estimation [2]. All the
kinetic rates are given in h−1 or in molecules.h−1 .

d) Simulate the system using these parameter values and, as previously, plot the histogram of the
number of RNA molecules at the final timepoint. Here, take tf = 75h. Also plot the experimental
data on the same graph. Compute the average, variance and Fano factor. How does it compare to
the experimental data?

e) Setting kON � kOFF , what do you expect? Simulate and conclude.

Hint: you can compare the random telegraph model with kON � kOFF to a Poisson model with
the same average, and use 2a.

4 Additional problem: Population dynamics

This problem was previously given as part of the final exam of this class.

In this problem, we are going to consider a simple model that describes the dynamics of a population
of bacteria. Let n be the number of bacteria in our population. All bacteria are assumed to be identical.
Each bacteria can reproduce with division rate b and die with rate d. Let Pn(t) be the probability
that n bacteria exist at time t. Consider a very small time interval δt, such that at most one event
occurs during this time.

a) During δt, how can the number n vary? List all possibilities, giving the probability that each of
them happens.

b) What happens if n hits 0?

c) What algorithm would you propose to use to simulate this model? You do not need to describe it
in detail.

d) What are the similarities and differences between this model and the simplest model of gene
expression where the protein synthesis reaction has rate k and each protein has a decay rate d?
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e) Assuming n ≥ 1, write down a differential equation on Pn(t). Justify. How is this type of equation
called?

f) Write down a differential equation on P0(t). Justify.

g) At steady state, what is P1 equal to? What about Pn for n > 1? And P0? Given this, what do
you expect to happen to the population at long times?

h) Show that the average number 〈n〉 of bacteria satisfies the equation

d〈n〉
dt

= (b− d)〈n〉 . (2)

i) Solve Eq. 2 to obtain the time evolution of 〈n〉. From this result, what do you expect to happen
to the population at long times? Compare to your result from question g) and discuss.

j) What is the equation satisfied by n if it is very large? Compare it to Eq. 2 and comment.

k) What changes if n is not very large compared to the case where it is very large?

l) Instead of taking a constant division rate b, another possibility is to assume a division rate written
as b(1 − n/K), where K is a constant. The death rate d remains constant. What is the equation
satisfied by n if it is very large? What would n be equal to at steady state? Comment on the effect
of this modification of the division rate.
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