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1 Some examples

The principle of maximum entropy yields an inference method that allows us to construct models (in
the form of probability distributions) consistent with certain observations (means of observables). The
idea is to impose the least possible structure or bias in the model, apart from the consistency with
these observations. Formally, this corresponds to maximizing the entropy under constraints imposed
by the observations. This is very useful when one has a partial knowledge of the studied system, i.e.
only some data are known.

a) Consider a discrete random variable X that can take all non-negative integer values. Assume
that we have measured its mean m experimentally. What is the maximum-entropy probability
distribution consistent with this measurement? Express P (x) as a function of m and x only.

b) For a continuous random variable X, the results we obtained for discrete ones can be generalized,
and the maximum-entropy probability density p(x) takes the same form as P (x) in the discrete
case. Given this, write down the form of the maximum-entropy probability density p(x) for a
continuous random variable with measured mean m. Assume that x can take all positive real
values. Imposing the normalization and mean constraints, express it as a function of m and x only.
What is the name of the distribution obtained?

c) Still for a continuous random variable X, assume that you have measured not only 〈x〉 = m but also
〈x2〉 = q. Also assume that x can take all real values. What is the form of the maximum-entropy
probability density p(x)? What is its variance?

2 Maximum entropy modeling of neuroscience data

In Ref. [1], the activity of 40 neurons from the salamander retina was analyzed while visualizing
repetitions of a movie, in the spirit of the experiments discussed in previous lectures. The movie
lasting T = 26.5 s was repeated Nr = 120 times during the recording.

a) In Python, load the data in the text file Data11.dat. It contains a list of numbers (in a single
column) in the following order: for each neuron, first the number 4000 is written, then an integer
labeling the neuron (we will not use these two rows in our analysis), and then, the successive
spiking times of the neuron considered are given in seconds. These times can range from 0 to 3180
s, which is the total time of the recording, namely Nr × T . Then for the next neuron we have the
same data (two useless rows, and then successive spiking times).

Given this, produce an array containing the row indices where the data shifts from one neuron to
the next one. You can then use it to extract the data for each neuron.

b) Extract the spiking times of the first neuron in the data. As the experiment comprises Nr repeats
of movies lasting time T , use the modulo and floor operations on this data to obtain respectively:

• an array x containing the times of firing with respect to the beginning of the movie repetition
(i.e. with time origin being the beginning of the particular movie repetition), and

• an array y containing the indices of the repetitions of the movie corresponding to each data
point in x.
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Make a scatter plot of y versus x and comment. You can look at the whole plot and then zoom to
see individual markers corresponding to spikes.

c) Do the same thing for the second neuron in the dataset and compare the activity of these two
neurons. Also bin the data with bins of duration 10 ms and plot a histogram of the number of bins
where this second neuron is active versus time after the beginning of the movie.

d) For each neuron in the dataset, bin the data with bins of duration 10 ms. For each bin in the
movie, obtain the frequency that the neuron spikes in this bin (recall that there are Nr repeats of
the movie), ignoring the possibility that more than two spikes may occur in the same time bin.
Store the data in an array freqs where each row is a time bin, and each column is a different
neuron.

e) Does it happen that two spikes may occur in the same time bin? If yes, replace by one the
frequencies that are larger than one.

f) We will now make the following mapping: a value 1 will be associated to a spiking neuron and a
value −1 to an inactive neuron. Hence, the activity of neuron i is represented by a random variable
Xi that can take values in {−1, 1}. Express the mean of Xi as a function of the probability that
the neuron is active. Use this to produce an array containing the mean values of the activity of
each neuron in each time bin.

g) Compute the mean activity over time for each neuron, averaged over bins b from 1 to B (the total
number of bins) as

〈xi〉 =
1

B

B∑
b=1

xi(b) . (1)

Comment on the values, and make a scatter plot of these mean activities.

h) Compute the covariance of neuron activities for all pairs of neurons i and j, defined as:

Cij = cov(Xi, Xj) = 〈xixj〉 − 〈xi〉〈xj〉 =
1

B

B∑
b=1

xi(b)xj(b)− 〈xi〉〈xj〉 . (2)

Plot the matrix of covariances in color, with the diagonal and then setting the diagonal elements
to zero, and comment.

Also compute the matrix of correlation coefficients, and compute the mean correlation coefficient
between two different neurons. Comment on the value obtained: do correlations appear important
in this system?

i) The maximum entropy distribution consistent with the measurements of the mean activity of each
neuron and of their covariances reads

P (x1, x2, . . . , xN ) =
1

Z
exp

− N∑
i=1

hixi −
N∑
i=1

∑
j<i

Jijxixj

 , (3)

where Z is a normalization constant. Comment on this formula.

Generally, inferring the values of the parameters hi and Jij consistent with the measurements is a
difficult task. Thus, approximations have been developed. In one of them, known as the “small-
coupling approximation” or the “mean-field approximation”, the parameters Jij are simply minus
the elements of the inverse covariance matrix:

Jij = C−1
ij . (4)

Estimate the parameters Jij in this approximation. Plot their matrix in color, setting the diagonal
elements to zero, and comment.
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j) In Ref. [1], the parameters were estimated more precisely for groups of 10 neurons, and predictions
from the maximum entropy distribution consistent with means and covariances was compared to
those from a maximum entropy distribution that is just consistent with means. What would be
the form of the probability distribution in such a model?

In particular, predictions were made from these two models for the rate at which each binary word
or pattern of ten letters is observed. Here, ten successive time bins for a given neuron give a word.
The results are shown in Fig. 1. Compare the performance of the two models, and conclude about
the importance of covariances in this system.

Figure 1: Quality of predictions from maximum entropy inference. The rate of occurrence of
each firing pattern predicted from the maximum entropy model that takes into account means and
covariances (red) and just means (blue) are plotted against the measured rate. The black line shows
equality. Reproduced from Ref. [1].
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