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1 Luria-Delbrück experiment

a) Each bacteria exposed to phage has a probability µ of becoming resistant and 1− µ of remaining
sensitive to phage under the Lamarckian hypothesis. The probability distribution of the random
variable X characterizing whether one bacteria is resistant or not is a Bernoulli distribution with
parameter µ.

b) In a culture containing N bacteria that is exposed to phage, the probability that m of them become
resistant under the Lamarckian hypothesis is given by the binomial distribution:

P (m) =

(
N

m

)
µm(1− µ)N−m . (1)

c) If µ� 1 and N � 1 but Nµ = λ is of order one, this distribution becomes the Poisson distribution
with parameter λ = Nµ,

P (m) = e−λ
λm

m!
. (2)

The mean value of m reads:

〈m〉 =

∞∑
m=0

m
λme−λ

m!
=

∞∑
m=1

m
λme−λ

m!
=

∞∑
m=1

λme−λ

(m− 1)!
= λe−λ

∞∑
m=1

λm−1

(m− 1)!
. (3)

Introducing k = m− 1, we obtain

〈m〉 = λe−λ
∞∑
k=0

λk

k!
= λe−λeλ = λ , (4)

where we have used the series expansion of the exponential function

ex =

∞∑
k=0

xk

k!
. (5)

In addition, for a Poisson distribution, the variance is equal to the mean, so it is also equal to λ.

d) Under the Darwinian hypothesis where phage resistance mutations can be acquired randomly at
any time during growth of the bacterial cultures (before exposure to phage), if a mutation occurs
early in the growth process, then the culture will comprise many mutants as all descendants of the
mutant are mutant too. Thus, the number of colonies with large numbers of mutants (albeit small)
is much larger under the Darwinian hypothesis than under the Lamarckian one. These events are
called “jackpots”.

e) If the number m of resistant bacteria is counted in many replicate cultures, we can use the maximum
likelihood method to quantitatively compare the two hypotheses and decide which of these two
models best describes the data. It amounts to comparing the probability that the data actually
observed can be obtained under the two hypotheses. In practice, we would study the (logarithm
of the) ratio of likelihoods for these two models,

log

[
P (data|model)

P (data|model′)

]
. (6)
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2 Protein sequences

a) We can compute the covariance from such data using the definition of covariance, cov(Xi, Xj) =
〈xixj〉− 〈xi〉〈xj〉. To construct the covariance matrix of sites, we can employ this definition, where
Xi is column i (site i) of the data. This yields a matrix C with L rows and L columns and elements

Cij = cov(Xi, Xj) = 〈xixj〉 − 〈xi〉〈xj〉 , (7)

where averages denoted by 〈.〉 are over all sequences (all rows) of the alignment.

b) Sequences are rows of the alignment. To construct the covariance matrix of sequences, we can
employ the definition of covariance, where Yi is row i (site i) of the data. This yields a matrix M
with N rows and N columns and elements

Mij = cov(Yi, Yj) = 〈yiyj〉 − 〈yi〉〈yj〉 , (8)

where averages denoted by 〈.〉 are over all sites (all columns) of the alignment.

c) If we applied PCA to the covariance matrix of sites, and used this to represent the data in two
dimensions as we did in the lectures and in problem series 11, each marker in the plot would
represent a sequence. Looking at this data, we may identify clusters of sequences that tend to be
correlated and to have common points.

d) If we applied PCA to the covariance matrix of sequences, and used this to represent the data in
two dimensions as we did in the lectures and in problem series 11, each marker in the plot would
represent a site. Looking at this data, we may identify clusters of sites that tend to be correlated
and to have common points.

3 Evolution and SARS-CoV-2 variants

a) In the Moran model, the number i can take values from 0 to N . Upon each step, the number i can
either:

• increase by 1, if an individual of type A divides while a B dies;

• decrease by 1, if an individual of type B divides while an A dies;

• stay constant, if the individual that divides and the one that dies are of the same type.

b) At each time step, i either increases or decreases by one, or stays constant, with given probabilities.
Thus it is a rugged trajectory with steps of size one up or down, and plateaus. Such a trajectory is
a random walk (biased by fitness differences between A and B). A protein diffusing in the cell also
undergoes a random walk due to the multiple hits of smaller molecules that constantly move due
thermal fluctuations. The global behavior is similar to the Moran process but there are differences,
especially the origin of randomness. For the protein in the cell, it arises from thermal fluctuations
while for the Moran process it arises from the finite size of the system and the randomness in the
birth-death process. (Another difference is dimension, the Moran process is 1D, the protein in
the cell performs a 3D random walk.) A bacteria performing chemotaxis also undergoes a random
walk, etc.

c) The fitness difference between A and B biases the random walk, e.g. if A has a higher fitness
than B, then it will be more likely that i increases than that it decreases. After a sufficiently long
amount of time, either A or B will take over and fix in the population. The fixation probabilities
can be computed analytically. The two types cannot coexist indefinitely. Fixation probabilities are
impacted by fitnesses, e.g. if A has higher fitness than B, then the fixation probability of A will be
larger than if A has lower fitness than B (for the same N and initial i).

d) In Fig. 1, a mutation occurred each time a new variant appeared. Mutation appearance is not
described in the framework of the Moran process. Mutations affect the composition of the popu-
lation by increasing diversity, while in the Moran process diversity can only decrease (fixation, cf.
before).

2



e) In Fig. 1, the frequency of variant Alpha on 2020-11-21 was roughly 0.12. In February 2021 it had
substantially increased to about 0.9. This time evolution may mean that variant Alpha is fitter
than the other strains existing during this time period. The trajectory of the frequency of variant
Alpha is quite different from that of the variants that were present on 2020-08-09, as it grew and
became dominant while those earlier variants never became dominant and decayed. Those variants
may not have had substantial fitness advantages, contrary to variant Alpha.

f) On 2021-05-17, variant Delta had frequency 0.73, and variant Alpha had frequency 0.26.

g) The definition of entropy is

H(X) = −
∑
x∈Ω

P (x) log2[P (x)] , (9)

where Ω is the set of possible values x that can be taken by the random variable X, and where
P (x) is the probability that X takes the value x. Here, frequencies are used instead of probabilities,
which is appropriate in the limit of large populations.
On 2020-08-17, the entropy value was 1.74 bit. On 2021-05-17, it was 0.90 bit. For a population
of viruses, entropy quantifies diversity. Consistently, the higher value on 2020-08-17 reflects the
higher diversity at that time point, which was then lost as variants Alpha and Delta progressed
through the population.

4 Diagnosing the strep throat disease

The population can be partitioned in two different ways:

• people who are sick with strep throat (s) and people who are healthy (h),

• people who are tested positive (p) and people who are tested negative (n).

a) The sensitivity α is the probability that a person is tested positive given that they are really sick.
Thus, we can write

α = P (p|s) , (10)

which is the probability that one is tested p knowing that one is s. Similarly, the specificity β is
the probability that a person is tested negative given that they are really healthy, and we have

β = P (n|h) , (11)

which is the probability of being tested n conditioned being h.
For the throat swab, their values are α = 0.7 and β = 0.9.

b) We know P (s), α = P (p|s) and β = P (n|h), and we want to calculate P (s|p). Using Bayes’
theorem, we can write

P (s|p) =
P (p|s)P (s)

P (p)
. (12)

But, because an individual tested positive can be either sick or healthy (no third choice), we can
write

P (p) = P (p, s) + P (p, h) = P (p|s)P (s) + P (p|h)P (h) = P (p|s)P (s) + P (p|h) [1− P (s)] . (13)

Using Eq. 13, Eq. 12 becomes

P (s|p) =
P (p|s)P (s)

P (p|s)P (s) + P (p|h) [1− P (s)]
. (14)

Because an individual that is healthy is either tested positive or negative (no third choice), we have

P (p|h) = 1− P (n|h) , (15)

and thus

P (s|p) =
P (p|s)P (s)

P (p|s)P (s) + [1− P (n|h)] [1− P (s)]
. (16)
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Using α = P (p|s) and β = P (n|h), this yields

P (s|p) =
αP (s)

αP (s) + [1− β] [1− P (s)]
. (17)

With α = 0.7, β = 0.9 and P (s) = 0.8, this gives P (s|p) = 0.97. This value is quite high, and much
higher than that before the test result was known (0.8): the test has improved our knowledge, and
now it sounds OK to prescribe antibiotics (only 3% chance of them being useless), but still the
possibility of mis-diagnosing is not completely negligible.

c) Using the definition of conditional probability and Bayes’ theorem, we can write

P (t1, t2|s) =
P (t1, t2, s)

P (s)
=
P (t1|s, t2)P (s, t2)

P (s)
= P (t1|s, t2)P (t2|s) . (18)

d) Because successive test results (performed on the same patient) can be considered independent
from one another, we have P (t1|s, t2) = (t1|s): indeed, t2 gives no information on t1 (but s does).
Thus, Eq. 18 becomes

P (t1, t2|s) = P (t1|s)P (t2|s) . (19)

e) Using Eq. 19, we can write

P (p, n, p, n, p|s) = P (p|s)3P (n|s)2 = α3(1− α)2 = 0.031 . (20)

The probability of obtaining these (extremely mixed!) test results is rather small if the patient is
sick (3.1%).

f) Similarly, using Eq. 19, we can write

P (p, n, p, n, p|h) = P (p|h)3P (n|h)2 = (1− β)3β2 = 0.00081 . (21)

The probability of obtaining these test results is much smaller if the patient is healthy (0.081%)
than if the patient is sick. This is because β is closer to 1 than α.

g) Denoting by t the test results (t = p, n, p, n, p) and using Bayes’ theorem, we can write as before

P (s|t) =
P (t|s)P (s)

P (t)
=

P (t|s)P (s)

P (t|s)P (s) + P (t|h) [1− P (s)]
. (22)

In the previous questions, we calculated P (t|s) and P (t|h), and we know P (s). Then, we obtain:
P (s|t) = 0.993. Thus, despite the apparently mixed test results, these tests provided a lot of
information and essentially allow us to say that the patient is sick. We should definitely recommend
the antibiotic treatment at this point.

h) Here we need to redo the same calculation as above but with P (s) = 0.5 instead of 0.8. In this
case, we obtain P (s|t) = 0.97, which is quite large too. However, the probability that the patient
is not sick is far less negligible, and this is due to our less certain prior.

5 Analyzing neuroscience data

5.1 Activity of one neuron

a) Based on Fig. 2, and assuming that activity is never more frequent than in the right panel, the
discretized data is not going to be binary if we choose ∆τ = 100 ms, but it is going to be binary
if we choose ∆τ = 5 ms. Indeed, the smallest time intervals between spikes appear to be of the
order of 0.025 s or 25 ms on the right panel of Fig. 2.

b) The definition of entropy applied to binary data reads

H(X) = −
∑

x∈{0,1}

P (x) log2[P (x)] = −p log2(p)− (1− p) log2(1− p) , (23)
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where we denote by p the probability that the neuron is active in the time bin considered. The
maximum possible value that this entropy can take is 1 bit, and it is obtained for p = 1/2, i.e.
in the case of the uniform distribution. The minimum possible value is 0, obtained for p = 0 and
p = 1, i.e. when one outcome is certain.

c) Using the formula above, we obtain for p = 110/120 an entropy of 0.41 bit, and we obtain the
exact same result for p = 10/120. The results are the same because of the symmetry of the above
formula when p and 1− p are exchanged.

d) The value of the entropy in a given time bin is telling us whether the activity of the neuron
considered at this particular time of the movie is stereotypical (almost always the same) or almost
uniformly random, depending whether it is small or large. The heterogeneity of the values of
entropy in different time bins is informing us about how the activity of this neuron is impacted by
the movie (if there was no impact of the stimulus, entropy would remain the same throughout the
movie).

e) The probability P (m) that the neuron is active in this time bin in m repetitions of the movie out
of N total repetitions is given by the binomial distribution:

P (m) =

(
N

m

)
pm(1− p)N−m . (24)

f) The likelihood that the neuron is active in this time bin in m repetitions of the movie out of N
total repetitions given the model above and the value p is P (data|model, p) = P (m). In order to
find the maximum-likelihood estimate of p as a function of m and N , we need to differentiate the
log-likelihood versus p at N and m constant. Thus, we need to solve

0 =
d

dp
ln [P (data|model, p)] =

d

dp
[m ln p+ (N −m) ln(1− p)] =

m

p
− N −m

1− p
, (25)

which gives p = m/N . This is the natural expectation for p.

5.2 Activities of two neurons

a) The mutual information between two binary random variables X and Y reads

I(X;Y ) =
∑

x∈{0,1},y∈{0,1}

P (x, y) log2

[
P (x, y)

P (x)P (y)

]
. (26)

b) The minimum possible value of I(X;Y ) is zero. It would be reached if X and Y were independent
variables. Indeed, then, P (x, y) = P (x)P (y) for all x, y.

c) The value of I(X;Y ) informs us about the statistical dependence between X and Y , and thus here
between the activities of the two neurons considered. In particular, a large value of I(X;Y ) would
mean that the activities of the two neurons considered are highly statistically dependent.

5.3 Maximum entropy model of neuron activity

a) We have measured the average value of X, obtaining m. We need to find a distribution that
satisfies the constraints ∑

x∈{−1,1}

P (x) = P (1) + P (−1) = 1 , (27)

and ∑
x∈{−1,1}

xP (x) = P (1)− P (−1) = m. (28)

We thus need to maximize the function

H̃(X) = −
∑

x∈{−1,1}

P (x) log2 P (x) +
λ

ln(2)

1−
∑

x∈{−1,1}

P (x)

+
µ

ln(2)

m− ∑
x∈{−1,1}

xP (x)

 ,
(29)
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which gives for all x ∈ {−1, 1}:

P (x) =
e−µx

e1+λ
, (30)

and thus explicitly

P (1) =
e−µ

e1+λ
, (31)

and

P (−1) =
eµ

e1+λ
. (32)

Next, we need to use the constraints in Eqs. 27 and 28 to find the values of λ and µ.

b) Denoting by λ the parameter associated to the normalization constraint, by µ and ν those associated
respectively to the means of X and Y and my ξ that associated to the mean of XY , we have, by
analogy with the previous formula, for all x ∈ {−1, 1} and y ∈ {−1, 1}:

P (x, y) =
e−µx−νy−ξxy

e1+λ
. (33)

c) The formula given for N neurons indexed by i ranging from 1 to N is a generalization of Eq. 33 to
N random variables. In order to compute the values of Z, hi and Jij , we would need to solve the
system of equations given by the constraints (normalization, mean of each random variable and
mean of each product of two random variables). This calculation is difficult in practice as all these
equations are coupled and they are strongly non-linear.

d) A large absolute value of Jij mean for a pair of neurons i, j means that they are strongly coupled
and that their activities are statistically dependent. A small one means that their coupling is small.
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