Randomness and information in biological data

BIO-369

Prof. Anne-Florence Bitbol

=PFL

Lecture 5



Outline of the course

I Randomness in biological processes and biological data
1 Randomness and random variables
1.1  Coins and dice: discrete random variables
1.2  Medical testing and conditional probabilities
1.3  Luna-Delbruck experiment: Poisson distribution vs. jackpot distribution
2 Importance of thermal fluctuations at the cellular scale
2.1  Thermal fluctuations and associated energy scale
2.2  Strength of various chemical bonds
2.3 Flexability of biopolymers and biomembranes

3  Random walks
3.1 Population genetics

3.2 Protein abundances in single cells
3.3 Importance of random walks in biological systems



Random walks — Reminder

= The Moran model in population genetics

Selection Elimination

Reproduction

Schematic of one step of the Moran process
The population comprises two types of individuals, type A (orange) and type B (green)
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What is the average number of copies of a given protein per cell in bacteria?

A few copies

A few dozens of copies

A few hundreds of copies

A few thousands of copies

A few tens of thousands of copies
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A few hundreds of thousands of copies

To answer, please:

« Connect to http://ttpoll.eu

* Enter the session ID bio369
« Select your answer



http://ttpoll.eu/

Motivation
= Protein abundances are heterogeneous across cells

Expression of fluorescently labeled chemotaxis proteins with inducible promoters under two conditions
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Motivation

= Protein abundances can have major consequences

Noise in the expression of the gene comK determines the transition to competence for DNA uptake in
Bacillus subtilis as it enters the stationary growth phase (left and middle: model; right: scale bars 4 um)
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During dt, how can the number n of protein copies vary?

It stays constant
It increases by 1
It decreases by 1
A, B and C are all possible
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B and C are possible, but not A

To answer, please:
* Connect to http://ttpoll.eu

 Enter the session ID bio369
« Select your answer
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After a long time, what will happen to the number of protein copies?

It will either go to 0 or reach a maximum value and stay there forever
It will stabilize at a steady-state value

It will fluctuate around a steady-state mean value

It depends
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To answer, please:

« Connect to http://ttpoll.eu

* Enter the session ID bio369
« Select your answer
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Protein abundances in single cells

= Protein abundance as a random walk
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Simulation of a simple model for the abundance of a protein expressed in small copy numbers
Orange / blue: number of proteins versus time in individual realizations ¢ starting from 0 protein
Green: mean over 200 such replicates; Black: deterministic approximation



Gene expression and protein abundances

= Transcription and translation Raj & van Oudenaarden 2008
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Noise in prokaryotic gene expression depends on the rates of transcription and translation
Translation is bursty



Gene expression and protein abundances

= Gene regulation: expressed and repressed gene states Raj & van Oudenaarden 2008
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In eukaryotes, genes can be in ON (expressed) or OFF (repressed) states, i.e. be transcribed
or not. Transcription is bursty because of the existence of these two states (— problem class)



Random walks
« Bacterial chemotaxis

« Motion of swimming, flagellated bacteria: 3D random walk with “runs” and “tumbles”
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« Runs — CCW rotation of the flagella

Turner et al. (2000)
« Tumbles — CW rotation of the flagella

 Gradients of chemicals can induce a change of tumbling frequency & CW bias
— Chemotaxis: bacteria are attracted or repelled by various chemicals



Random walks

= Chemotaxis transduction pathway in Escherichia coli
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Outline of the course

Extracting information from biological data

Quantifying randomness and information in data: entropy

1.1  Notion of entropy

1.2  Interpretation of entropy

1.3  Entropy in neuroscience data: response of a neuron to a sensory input
Quantifying statistical dependence

2.1 Covariance and correlation

2.2 Mutual information

2.3  Identifying coevolving sites in interacting proteins using sequence data
Inferring probability distributions from data

3.1  Model selection and parameter estimation: maximum likelihood

3.2 Introduction to maximum entropy inference

3.3  Predicting protein structure from sequence data
Finding relevant dimensions in data: dimension reduction

4.1 Principal component analysis

4.2 Beyond principal component analysis
Introduction to Bayesian inference



