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Announcements

l Documents and grades: 
l Full typed notes + mock exam now available on Moodle
l Project solution and grades now available on Moodle

l Extra problem session during exam preparation: Friday June 20 at 10:15am, room TBD

l Please fill in the in-depth evaluation of the class (closes on June 8 at midnight)
→ Moodle homepage/dashboard, « in-depth evaluation » tile, or EPFL Campus App 

(cf. email)

Thank you very much!



About the exam

• Written exam (60% of the final grade)

• One “formula sheet” (formulaire) allowed: 
 - Hand-written (can be hand-written on a tablet and printed, but not typed)
 - Maximum size: one two-sided standard A4 sheet 

• No other documents allowed
• Calculator allowed, no other electronic device allowed

• Date and place: June 30, 9:15am to 12:15pm, rooms CE 1 104-5-6 (see IS-Academia)

• Format:
• Classic written exam, problems with questions related to lectures and problem classes
• A few « coding questions » that can be answered in Python or in pseudocode, but this 
will remain a small proportion of the questions
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n Biology is becoming more and more a data science

Motivation

l Example: sequencing

l Sequence data

Structures from experiments
Manually annotated sequences
Sequences

l Accumulating unannotated sequence data (currently > 109 sequences)

→ Great opportunity to learn about proteins employing inference, machine learning, 
     statistical physics, information theory



n Biological data can be viewed as sampled from distributions of random variables

Motivation

l Neuroscience data:

Meshulam et al. (2017)

l Protein sequence data:

Weigt, White et al. (2009)
Morcos et al. (2011)
Marks, Colwell et al. (2011)



n Use of probabilities to test hypotheses about evolution

Luria-Delbrück experiment

l Is resistance to phage in bacteria a trait that: 
        - appears randomly and is then selected upon exposure of bacteria to phage, or 
  - appears upon exposure of bacteria to phage (in response to it)?

l Each hypothesis yields a different probability distribution for the number of phage-resistant bacteria

→ Quantitative test

Phage and bacteria
(phage T1, obligately 
lytic virus of E. coli)

Bacteria can develop
resistance to phage
infection



Importance of thermal fluctuations at the cellular scale

l Brownian dynamics simulation (Zhang & Thirumalai 2012)
l Kinesin walking on a microtubule

Time-dependent 
changes in the center 
of mass of the TH as 
a function of t for a 
sample trajectory

Histograms, based on 
99 trajectories, of the 
TH (trailing head) 
movement



n Protein abundances are heterogeneous across cells

Protein abundances

l Expression of fluorescently labeled chemotaxis proteins with inducible promoters under two conditions

Dufour et al 2016



n Protein abundance as a random walk

Random walks

l Simulation of a simple model for the abundance of a protein expressed in small copy numbers
l Orange / blue: number of proteins versus time in individual realizations    starting from 0 protein
l Green: mean over 200 such replicates; Black: deterministic approximation



n The Moran model in population genetics

Random walks

l Schematic of one step of the Moran process
l The population comprises two types of individuals, type A (orange) and type B (green)



n Bacterial chemotaxis

Random walks

l Motion of swimming, flagellated bacteria: 3D random walk with “runs” and “tumbles”

l Gradients of chemicals can induce a change of tumbling frequency & CW bias
→ Chemotaxis: bacteria are attracted or repelled by various chemicals

Berg & Brown (1972)

l Runs → CCW rotation of the flagella
l Tumbles → CW rotation of the flagella

Turner et al. (2000)



Quantifying randomness and information in data: entropy
Questions:

l ‘‘How random’’ is a random variable?

l How much information are we missing when we don’t know the outcome of a random variable
(but know its distribution)?

l How much information do we gain when learning about the outcome of a random variable 
(if we know its distribution)?

→ Can we quantify randomness and information?

And also...

l How different are two probability distributions?

l Can we quantify statistical dependence between two random variables? 



Information in neuroscience data

Study of the motion-sensitive neuron
H1 in the fly’s visual system while a fly
is shown the same movie several
times (a pattern of random bars that
moves across the visual field at 
variable velocity)

‘‘Words’’ of 10 characters correspond 
to t = 30 ms (~ behavior reaction
time), with each binary character
corresponding to Dt = 3 ms

The distribution of words that occur at 
a particular moment in the movie, 
P(W|t), is shown for t = 600 ms and t = 
1800 ms de Ruyter et al, 1997

How do sequences of spikes represent
the sensory world?



Quantifying statistical dependence

Correlation and mutual information between random variables X and Y
Different draws are performed, yielding values x and y, and the correlation and mutual
information are estimated

Mutual information is able to detect some nonlinear forms of statistical dependence 
that are missed by correlation



Identifying coevolving sites in interacting proteins

Top: Sequence alignment of the histidine kinases EnvZ, RstB, and CpxA with the histidine 
phosphotransferase Spo0B
Bottom: Sequence alignment of their cognate response regulators Spo0F, OmpR, RstA, CpxR

Skerker et al, 2008



Rewiring two-component systems

Experimental assay of phosphotransfer specificity of EnvZ, RstB, and mutants Mut1-Mut5 
In each case, the kinase was autophosphorylated and then incubated alone or examined for 
phosphotransfer to RstA, OmpR, and CpxR after 10 s incubations 
Black or gray bands = RR-P or HK-P is present (32P, radioactive; electrophoresis + radiography)

Skerker et al, 2008



Maximum likelihood

Posterior probability distributions P (model, p | data) for the probability p of getting “heads” 
upon a flip
Black is 10 flips, of which 6 were heads; red is 100 flips, of which 60 were heads; blue is 
1000 flips, of which 600 were heads

n Likelihood analysis of the bias of a coin



l Recent data-driven approaches

Evolutionary coupling between interacting residues 
→ correlations in multiple sequence alignments inform us about structure and function

BUT... observed correlations can be indirect
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A ↔ B ↔ C

Protein sequence data
n Inferring structure and function from sequences



→
...ISHEL...
...VSHDI...
...VSHEL...

l Goal: joint probability distribution
probability of a sequence 
 in the protein family

l Observations retained: one- and two-body frequencies

l Maximum entropy model consistent with these observations

→ Potts model

one-body terms - fields two-body terms - (direct) couplings

Maximum entropy model of protein sequence data



Morcos, Pagnani 
et al (2011)

Gray: experimental contacts (cutoff: 8 A)
Red: correct predictions; green: incorrect ones

much better predictor of 3D contact than Weigt, White et al. (2009)
Morcos, Pagnani et al. (2011)
Marks, Colwell et al. (2011)Mutual Information

Structure prediction

Contact map prediction
for the eukaryotic
signaling protein Ras

Mutual information (left) 
Direct couplings (right)



Some applications of maximum entropy modeling

lNeuroscience data:

Meshulam et al. (2017)

lProtein sequence data:



Some applications of maximum entropy modeling

l Neuroscience data:

Meshulam et al. (2017)

Inferred Jij values for a set of 10 neurons

Schneidman et al, 2006



Dimension reduction: principal component analysis

n Two-dimensional data



Dimension reduction: nonlinear methods

n Single-cell RNA sequencing (sc-RNA) and cell types La Manno et al 2018

t-SNE plot of developing mouse 
hippocampus cells (18,213 
cells), showing major transient 
and mature subpopulations



Dimension reduction: nonlinear methods

n RNA velocity and cell differentiation trajectories La Manno et al 2018

Velocity field (arrows) projected onto 
the t-SNE plot
Top inset, differentiation endpoints 
(mature cell types) and root 
(progenitor cells)
Bottom inset, summary schematic of 
the RNA velocity field

Unspliced vs. spliced RNA → time 
evolution of gene expression: RNA 
velocity


