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Announcements

- Documents and grades:
« Full typed notes + mock exam now available on Moodle
. Project solution and grades now available on Moodle

« Extra problem session during exam preparation: Friday June 20 at 10:15am, room TBD
. Please fill in the in-depth evaluation of the class (closes on June 8 at midnight)

— Moodle homepage/dashboard, « in-depth evaluation » tile, or EPFL Campus App
(cf. email)

Thank you very much!



About the exam

» Written exam (60% of the final grade)

* One “formula sheet” (formulaire) allowed:
- Hand-written (can be hand-written on a tablet and printed, but not typed)
- Maximum size: one two-sided standard A4 sheet

* No other documents allowed

 Calculator allowed, no other electronic device allowed

» Date and place: June 30, 9:15am to 12:15pm, rooms CE 1 104-5-6 (see IS-Academia)

* Format:
» Classic written exam, problems with questions related to lectures and problem classes
» Afew « coding questions » that can be answered in Python or in pseudocode, but this
will remain a small proportion of the questions



Outline of the course

I Randomness in biological processes and biological data

1 Randomness and random variables

1.1  Coins and dice: discrete random variables

1.2 Medical testing and conditional probabilities

1.3 Luria-Delbriick experiment: Poisson distribution vs. jackpot distribution
2  Importance of thermal fluctuations at the cellular scale

2.1  Thermal fluctuations and associated energy scale

2.2 Strength of various chemical bonds

2.3  Flexibility of biopolymers and biomembranes
3  Random walks

3.1 Protein abundances in single cells

3.2  Population genetics

3.3 Importance of random walks in biological systems



IT

1

Outline of the course

Extracting information from biological data

Quantifying randomness and information in data: entropy

1.1  Notion of entropy

1.2  Interpretation of entropy

1.3  Entropy in neuroscience data: response of a neuron to a sensory input
Quantifying statistical dependence

2.1  Covariance and correlation

2.2 Mutual information

2.3 Identifying coevolving sites in interacting proteins using sequence data
Inferring probability distributions from data

3.1  Model selection and parameter estimation: maximum likelihood

3.2  Introduction to maximum entropy inference

3.3  Predicting protein structure from sequence data
Finding relevant dimensions in data: dimension reduction

4.1  Principal component analysis

4.2  Beyond principal component analysis



Motivation

= Biology is becoming more and more a data science

. Example: sequencing
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— Great opportunity to learn about proteins employing inference, machine learning, '
statistical physics, information theory



Motivation

= Biological data can be viewed as sampled from distributions of random variables

« Neuroscience data:
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Luria-Delbruck experiment

= Use of probabilities to test hypotheses about evolution

Viral RNA or
-~ DNA

Bacteriophage
Phage and bacteria ‘
(phage T1, obligately
lytic virus of E. coli)

Viral genome
injected into cell

Bacteria can develop
resistance to phage |
infection Bacterial cell

bacterial genome

. Is resistance to phage in bacteria a trait that:
- appears randomly and is then selected upon exposure of bacteria to phage, or
- appears upon exposure of bacteria to phage (in response to it)?
« Each hypothesis yields a different probability distribution for the number of phage-resistant bacteria

— Quantitative test



Importance of thermal fluctuations at the cellular scale

« Kinesin walking on a microtubule

« Brownian dynamics simulation (Zhang & Thirumalai 2012)
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Protein abundances
= Protein abundances are heterogeneous across cells

« Expression of fluorescently labeled chemotaxis proteins with inducible promoters under two conditions
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Random walks

= Protein abundance as a random walk
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« Simulation of a simple model for the abundance of a protein expressed in small copy numbers
. Orange / blue: number of proteins versus time in individual realizations ¢ starting from 0 protein
. Green: mean over 200 such replicates; Black: deterministic approximation



Random walks

= The Moran model in population genetics

Selection Elimination

Reproduction

« Schematic of one step of the Moran process
« The population comprises two types of individuals, type A (orange) and type B (green)



Random walks

« Bacterial chemotaxis

« Motion of swimming, flagellated bacteria: 3D random walk with “runs” and “tumbles”
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« Runs — CCW rotation of the flagella

Turner et al. (2000)
« Tumbles — CW rotation of the flagella

« Gradients of chemicals can induce a change of tumbling frequency & CW bias
— Chemotaxis: bacteria are attracted or repelled by various chemicals



Quantifying randomness and information in data: entropy

Questions:
« “How random” is a random variable?

« How much information are we missing when we don’t know the outcome of a random variable
(but know its distribution)?

« How much information do we gain when learning about the outcome of a random variable
(if we know its distribution)?

— Can we quantify randomness and information?

And also...
. How different are two probability distributions?

. Can we quantify statistical dependence between two random variables?



Information in neuroscience data

@ | How do sequences of spikes represent
L the sensory world?
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Y Variable

Quantifying statistical dependence

Model 1 Model 2 Model 3 Correlation and
A Linear Interaction Nonlinear Interaction Nonlinear Interaction B Mutual Information
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Correlation and mutual information between random variables X and Y
Different draws are performed, yielding values x and y, and the correlation and mutual

information are estimated

Mutual information is able to detect some nonlinear forms of statistical dependence
that are missed by correlation



Identifying coevolving sites in interacting proteins
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Top: Sequence alignment of the histidine kinases EnvZ, RstB, and CpxA with the histidine
phosphotransferase Spo0OB
Bottom: Sequence alignment of their cognate response regulators SpoOF, OmpR, RstA, CpxR



Rewiring two-component systems
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Experimental assay of phosphotransfer specificity of EnvZ, RstB, and mutants Mut1-Mut5

In each case, the kinase was autophosphorylated and then incubated alone or examined for
phosphotransfer to RstA, OmpR, and CpxR after 10 s incubations

Black or gray bands = RR-P or HK-P is present (3P, radioactive; electrophoresis + radiography)



Maximum likelihood

= Likelihood analysis of the bias of a coin

posterior probability density

1000 flips
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Posterior probability distributions P (model, p | data) for the probability p of getting “heads”
upon a flip

Black is 10 flips, of which 6 were heads; red is 100 flips, of which 60 were heads; blue is
1000 flips, of which 600 were heads



Protein sequence data

= Inferring structure and function from sequences

« Recent data-driven approaches
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Maximum entropy model of protein sequence data
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6z'j(04, [3) much better predictor of 3D contact than
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Some applications of maximum entropy modeling

.Protein sequence data:
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Some applications of maximum entropy modeling

« Neuroscience data:
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Dimension reduction: principal component analysis

« Two-dimensional data
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Dimension reduction: nonlinear methods

= Single-cell RNA sequencing (sc-RNA) and cell types | 5 Manno et al 2018
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Dimension reduction: nonlinear methods

= RNA velocity and cell differentiation trajectories La Manno et al 2018
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Diffusion
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Unspliced vs. spliced RNA — time

@, Densiy evolution of gene expression: RNA
Low High velocity
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(root)

Velocity field (arrows) projected onto
the t-SNE plot

Top inset, differentiation endpoints
(mature cell types) and root
(progenitor cells)

Bottom inset, summary schematic of
the RNA velocity field



