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Principal component analysis

n Two-dimensional data



If you had to reduce this data to one dimension, what 
direction would you choose to project the data onto?

A. The x axis
B. The y axis
C. The arrow pointing to the right
D. The arrow pointing to the left

To answer, please: 
• Connect to http://ttpoll.eu
• Enter the session ID bio369
• Select your answer

http://ttpoll.eu/


Principal component analysis

n Two-dimensional data



Principal component analysis

n Matrix factorization
X: n.p data matrix
Each column = a feature; p(=6) features
Each row = a measurement; n(=9) measurements

X: n.p matrix Y: n.p matrix

Pt: p.p matrix

Change basis:
Y = X P    =>   X = Y Pt

← PC 1 
← PC 2 

← PC p 

← PC 3 

…



To make a d-dimension approximation of the data 
X = Y Pt, should we focus on:

A. The first d rows of Pt

B. The first d columns of Pt

C. The first d rows of Y
D. The first d columns of Y
E. The first d rows of Pt and the first d columns of Y
F. The first d columns of Pt and the first d rows of Y

To answer, please: 
• Connect to http://ttpoll.eu
• Enter the session ID bio369
• Select your answer

http://ttpoll.eu/
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Principal component analysis

n Matrix factorization
X: n.p data matrix
Each column = a feature; p(=6) features
Each row = a measurement; n(=9) measurements

X: n.p matrix Ỹ: n.d matrix: coordinates of the data on the d (=3) top PCs

Pt: d.p matrix (d=3)

Change basis:
Y = X P    =>   X = Y Pt  ≈ Ỹ Pt~

~

← PC 1 
← PC 2 
← PC 3 



Principal component analysis

n Matrix factorization
X: n.p data matrix
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Pt: d.p matrix

Change basis:
Y = X P    =>   X = Y Pt  ≈ Ỹ Pt~

~

← PC 1 
← PC 2 
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Reminder

Correlation between random variables X and Y
Different draws are performed, yielding values x and y, and the correlation and mutual
information are estimated

Some nonlinear forms of statistical dependence are missed by correlation



Do you think PCA can well reduce to one dimension 
the data:

A. Of no model
B. Of model 1 but not others
C. Of models 1 and 2 but not 3
D. Of models 1 and 3 but not 2
E. Of models 2 and 3 but not 1
F. Of all models

To answer, please: 
• Connect to http://ttpoll.eu
• Enter the session ID bio369
• Select your answer

http://ttpoll.eu/


n Applying PCA to the Swiss roll dataset

Swiss roll

2D surface rolled in 3D space



n Applying PCA to the Swiss roll dataset

Swiss roll

2D surface rolled in 3D space PCA → 2 top PCs:



n Nonlinear dimension reduction methods based on neighbor graphs

Swiss roll

Shortest distance
vs. shortest distance along 
     the 2D structure



n Nonlinear dimension reduction methods based on neighbor graphs

Swiss roll

Focus on (k) nearest neighbors
by constructing a neighbor graph



n Nonlinear dimension reduction methods based on neighbor graphs

Swiss roll

Preserve the structure of the 
neighbor graph when reducing
the dimension



Swiss roll

n Nonlinear dimension reduction methods based on neighbor graphs

Preserve the structure of the 
neighbor graph when reducing
the dimension



How is this transformation done in practice?

n Force directed graph layout (t-SNE, UMAP)

→ Preserve the structure of the 
neighbor graph when reducing
the dimension

Attraction along the edges (springs)
Repulsion between vertices otherwise



Applications

n Single-cell RNA sequencing (sc-RNA) and cell types La Manno et al 2018

t-SNE plot of developing mouse 
hippocampus cells (18,213 
cells), showing major transient 
and mature subpopulations



Applications

n RNA velocity and cell differentiation trajectories La Manno et al 2018

Velocity field (arrows) projected onto 
the t-SNE plot
Top inset, differentiation endpoints 
(mature cell types) and root 
(progenitor cells)
Bottom inset, summary schematic of 
the RNA velocity field

Unspliced vs. spliced RNA → time 
evolution of gene expression: RNA 
velocity



Applications

n Animal behavior Berman et al 2014



Applications

n Animal behavior Berman et al 2014

https://mediaspace.epfl.ch/media/Gordon%20Berman%2C%20Emory%20University%20-
%20Measuring%20the%20hidden%20dynamics%20of%20animal%20behavior/0_opd7gmv3
21:10 → 21:55

https://mediaspace.epfl.ch/media/Gordon%20Berman%252C%20Emory%20University%20-%20Measuring%20the%20hidden%20dynamics%20of%20animal%20behavior/0_opd7gmv3
https://mediaspace.epfl.ch/media/Gordon%20Berman%252C%20Emory%20University%20-%20Measuring%20the%20hidden%20dynamics%20of%20animal%20behavior/0_opd7gmv3


Announcements

l Next week: exam preparation & review session
• Problem class on May 26 at 3:15pm: working on the mock exam
• Lecture on May 28 at 10:15pm: review session

l Extra problem session during exam preparation period – week of June 3, please 
answer the poll at https://forms.gle/CotgTneH5krGk6kA8

l Please fill in the in-depth evaluation of the class (closes on June 8 at midnight) –
you should have received an email about it

Thank you very much!


