

Randomness and information in biological data

BIO-369

Prof. Anne-Florence Bitbol

EPFL

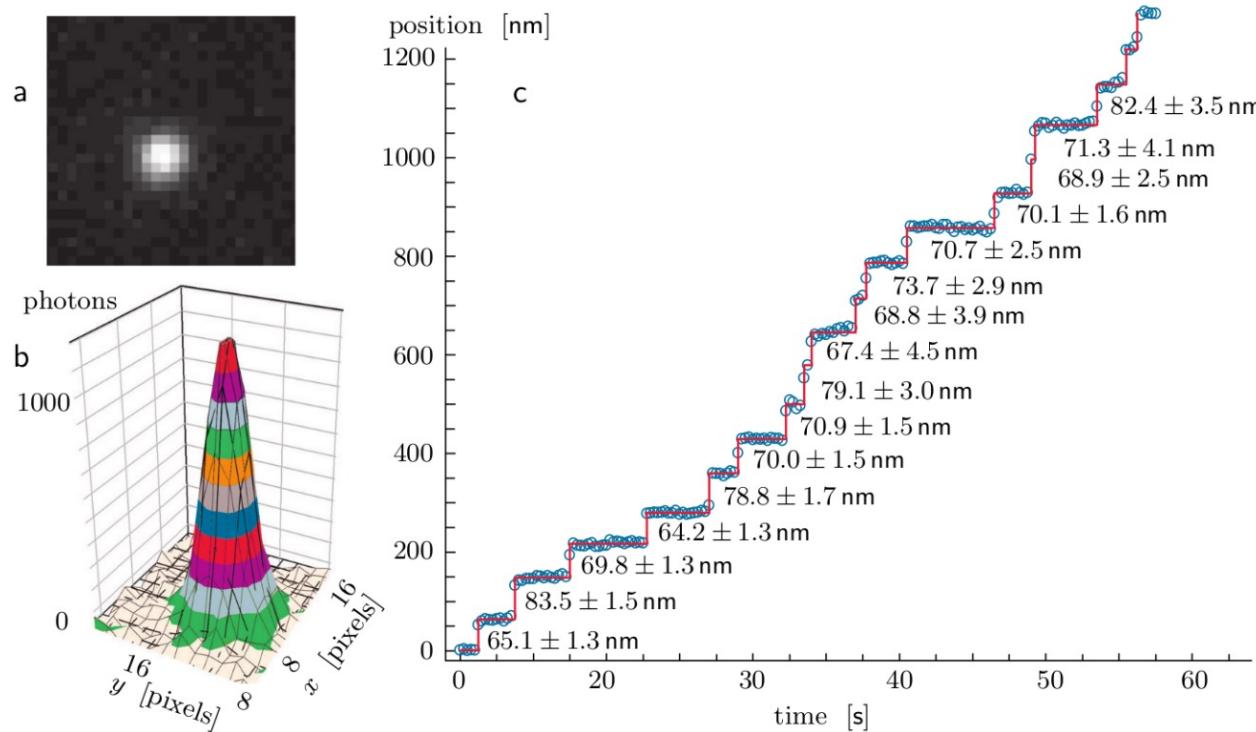
Lecture 11

Organization

▪ Reminder: evaluation

- **Numerical mini-project** (40% of the final grade)
 - Three problem sessions devoted to working on the mini-project (weeks 10-11):
 - **Monday April 28 at 3:15pm** in room CE1106
 - **Monday May 5 at 10:15am** in room BS170
 - **Wednesday May 7 at 3:15pm** in room CE1106 (lecture slot)
 - Deadline to hand in the mini-project: **Friday May 9 (11:59pm)**
- **Written exam** during the exam session (60% of the final grade) – **Monday June 30 from 9:15 to 12:15**
- Extra problem session during exam preparation period?

Superresolution microscopy: FIONA



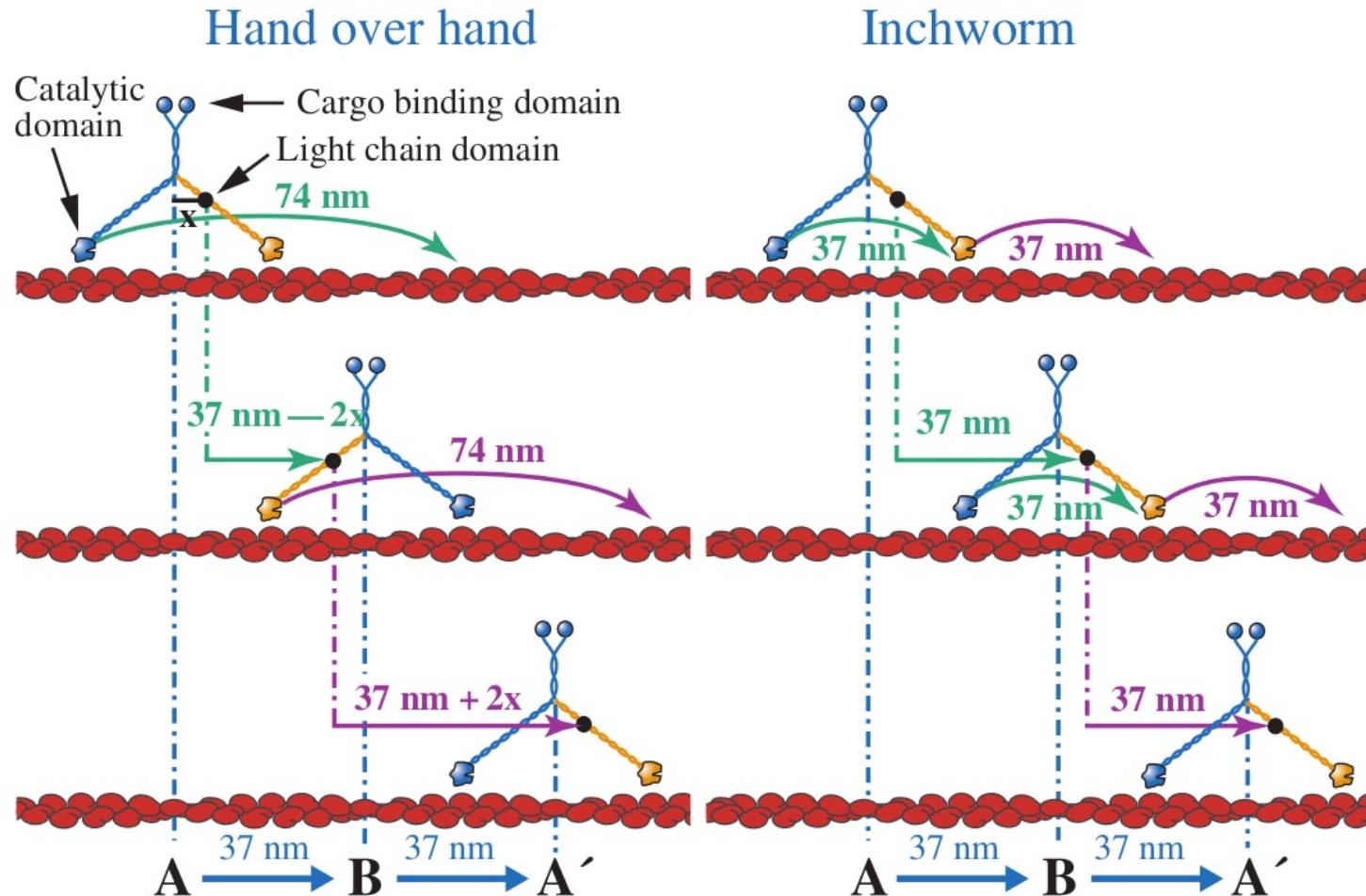
Yildiz et al, 2003

a: Single image of a single fluorophore attached to the molecular motor protein myosin-V. Each camera pixel represents 86 nm in the system

b: Number of photons collected in each pixel for the image in (a)

c: Maximum likelihood estimates of the position of the fluorophore versus time, revealing a sequence of ~74 nm steps

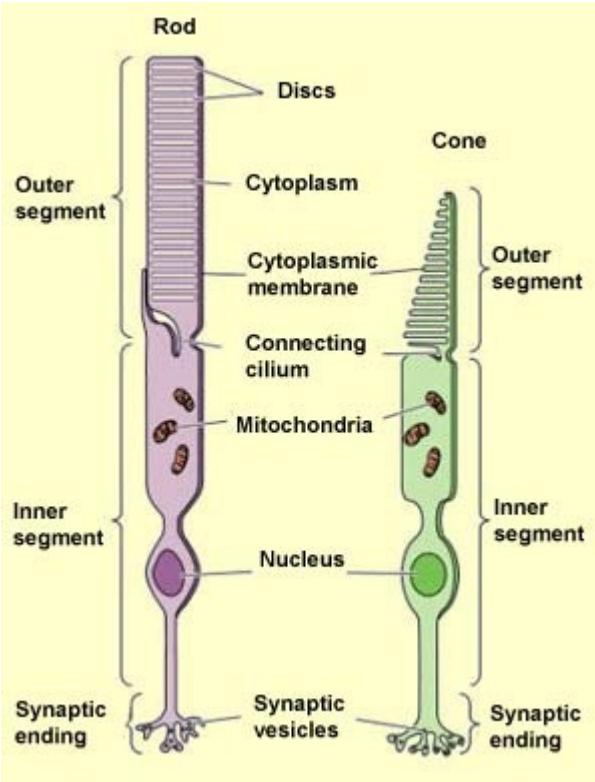
Superresolution microscopy: FIONA



Yildiz et al, 2003

Allowed to settle how myosin “walks” on actin filaments

Photoreceptor cells in the retina

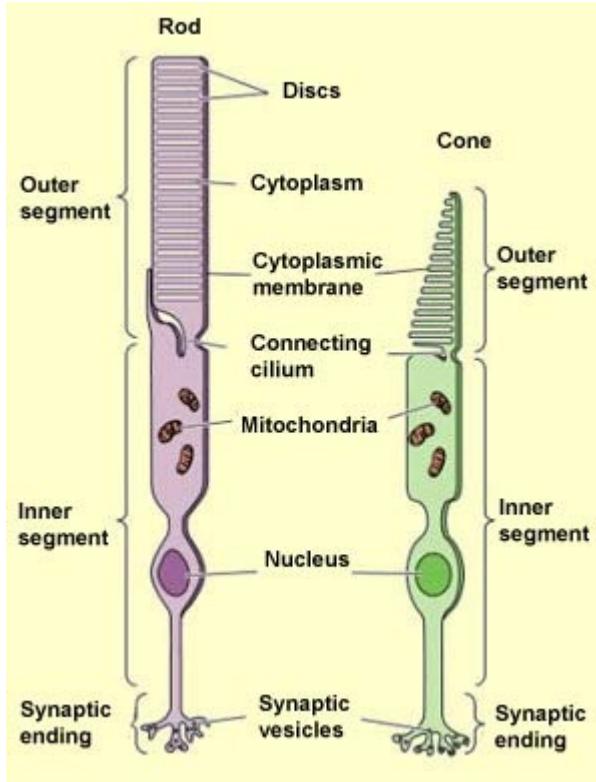


The outer segment consists of a stack of discs embedded in the cell membrane

Light-sensitive pigments are located on these discs

Rod cells can function in lower light better than cone cells, but have little role in color vision

Photoreceptor cells in the retina



The outer segment consists of a stack of discs embedded in the cell membrane

Light-sensitive pigments are located on these discs

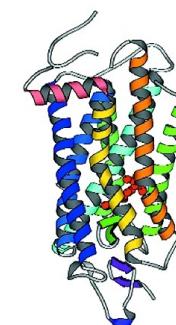
Rod cells can function in lower light better than cone cells, but have little role in color vision

Rod cells contain rhodopsin, a light-sensitive transmembrane protein (and a GPCR)

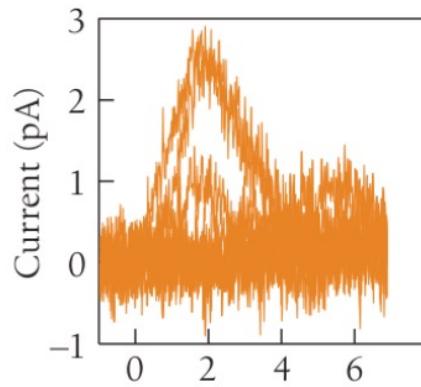
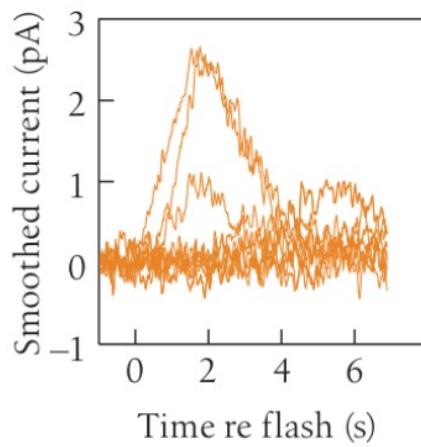
Light → structural change that increases its affinity for another protein and triggers a signaling pathway

→ closing of ion channels and hyperpolarization

→ change in the current across the membrane of the rod cell

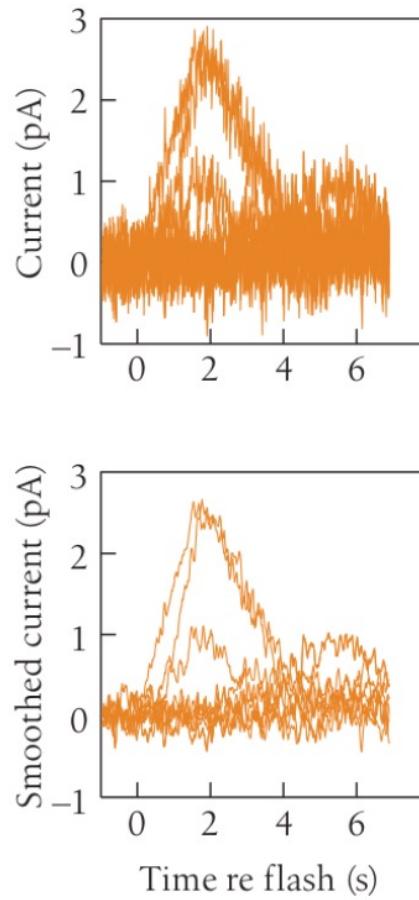
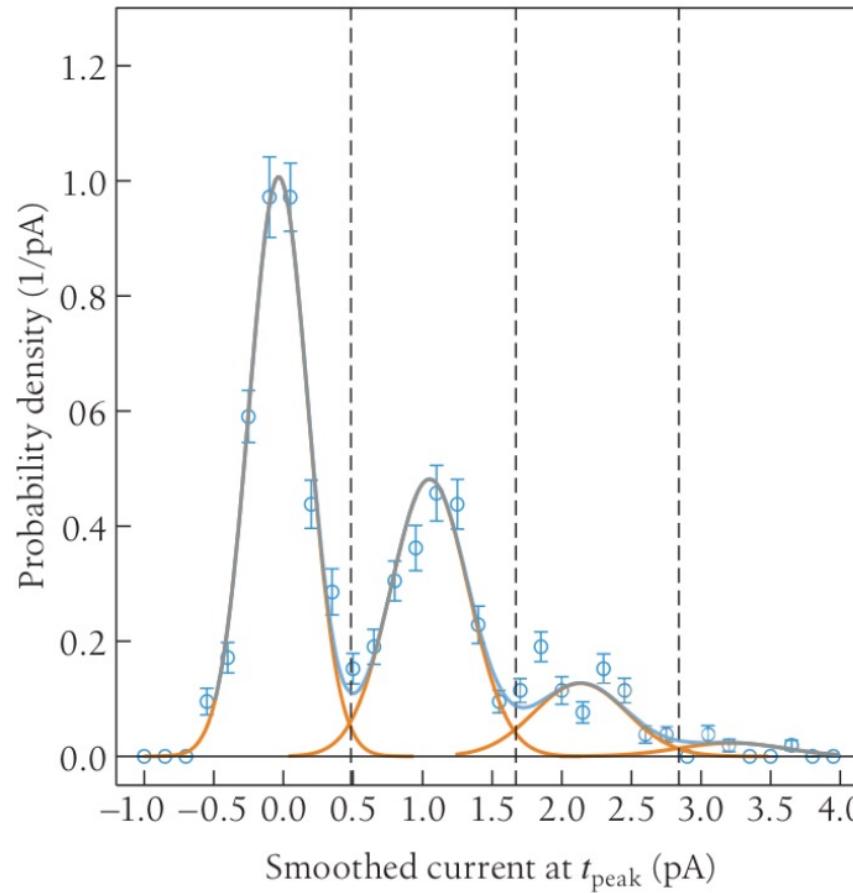


Current in a rod cell exposed to a dim flash of light



Left panels (top: raw data; bottom: data smoothed by moving average on a 100 ms window): 5 instances in which the rod cell is exposed to a dim flash at $t = 0$

Current in a rod cell exposed to a dim flash of light



Left panels (top: raw data; bottom: data smoothed by moving average on a 100 ms window): 5 instances in which the rod cell is exposed to a dim flash at $t = 0$

Right panel: distribution of smoothed currents at t_{peak} , mean and standard error from 350 flashes in one cell
Blue line: fit to distribution, composed of contributions from $N = 0, 1, \dots$ (orange)

The probability density p of observing a given intensity i for a dim flash can be expressed as the sum over the number N of photons received by the rod cell of:

0%

0%

0%

A. $p(N)$

B. $p(N,i)$

C. $p(N|i)$

To answer, please:

- Connect to <http://tppoll.eu>
- Enter the session ID **bio369**
- Select your answer

Assume that the number of photons is 0 or 1. If we choose a threshold theta to decide this, then the probability of making an error on our conclusion on the number of photons is:

- 0% A. $P(\text{conclude that } N=0 \mid N=1)$
- 0% B. $P(\text{conclude that } N=0, N=1)$
- 0% C. $P(\text{conclude that } N=0 \mid N=1) + P(\text{conclude that } N=1 \mid N=0)$
- 0% D. $P(\text{conclude that } N=0, N=1) + P(\text{conclude that } N=1, N=0)$

To answer, please:

- Connect to <http://tppoll.eu>
- Enter the session ID **bio369**
- Select your answer

What do you expect the optimal threshold theta to satisfy?

0%

A. $P(i=\text{theta} | N=0) = P(i=\text{theta} | N=1)$

0%

B. $P(i=\text{theta}, N=0) = P(i=\text{theta}, N=1)$

0%

C. $P(N=0 | i=\text{theta}) = P(N=1 | i=\text{theta})$

0%

D. $P(i=\text{theta}) = 1/2$

To answer, please:

- Connect to <http://tppoll.eu>
- Enter the session ID **bio369**
- Select your answer

Outline of the course

II Extracting information from biological data

- 1 Quantifying randomness and information in data: entropy
 - 1.1 Notion of entropy
 - 1.2 Interpretation of entropy
 - 1.3 Entropy in neuroscience data: response of a neuron to a sensory input
- 2 Quantifying statistical dependence
 - 2.1 Covariance and correlation
 - 2.2 Mutual information
 - 2.3 Identifying coevolving sites in interacting proteins using sequence data
- 3 Inferring probability distributions from data
 - 3.1 Model selection and parameter estimation: maximum likelihood
 - 3.2 Introduction to maximum entropy inference
 - 3.3 Predicting protein structure from sequence data
- 4 Finding relevant dimensions in data: dimension reduction
 - 4.1 Principal component analysis
 - 4.2 Beyond principal component analysis
- 5 Introduction to Bayesian inference

Now that we have found the form of $P(x)$, what should we do?

- 0% A. We are done, this probability distribution works for any lambda
- 0% B. We should choose the value of lambda such that the distribution is normalized
- 0% C. There is only one value of lambda that works, and it depends on the data

To answer, please:

- Connect to <http://tppoll.eu>
- Enter the session ID **bio369**
- Select your answer

Outline of the course

II Extracting information from biological data

- 1 Quantifying randomness and information in data: entropy
 - 1.1 Notion of entropy
 - 1.2 Interpretation of entropy
 - 1.3 Entropy in neuroscience data: response of a neuron to a sensory input
- 2 Quantifying statistical dependence
 - 2.1 Covariance and correlation
 - 2.2 Mutual information
 - 2.3 Identifying coevolving sites in interacting proteins using sequence data
- 3 Inferring probability distributions from data
 - 3.1 Model selection and parameter estimation: maximum likelihood
 - 3.2 Introduction to maximum entropy inference
 - 3.3 Predicting protein structure from sequence data
- 4 Finding relevant dimensions in data: dimension reduction
 - 4.1 Principal component analysis
 - 4.2 Beyond principal component analysis

Here we maximized entropy at fixed average energy. What do you think this procedure is equivalent to?

0% A. Maximizing the energy

0% B. Minimizing the energy

0% C. Maximizing the free energy

0% D. Minimizing the free energy

To answer, please:

- Connect to <http://tppoll.eu>
- Enter the session ID **bio369**
- Select your answer

Which of the following assertions is true?

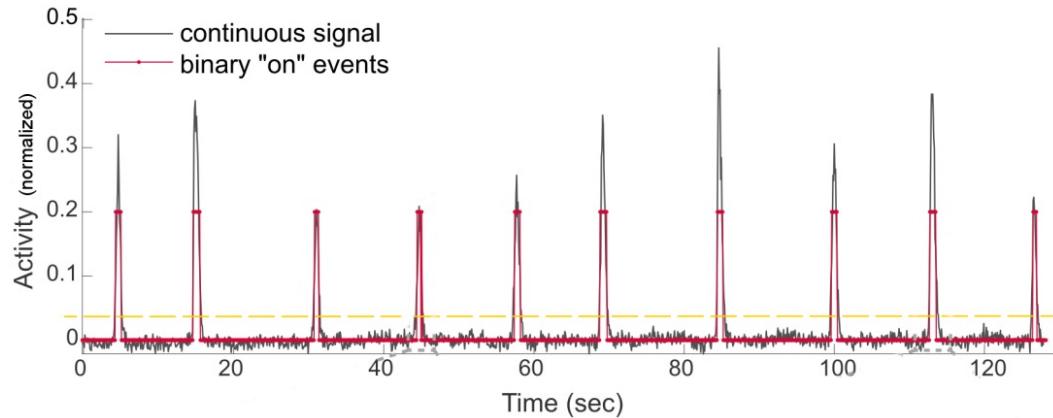
- 0% A. $P(x) = \sum_{x,y} P(x,y)$
- 0% B. $P(x) = \sum_y P(x,y)$
- 0% C. $P(x) = \sum_y P(x|y)$
- 0% D. $P(x) = \sum_y P(y|x)$

To answer, please:

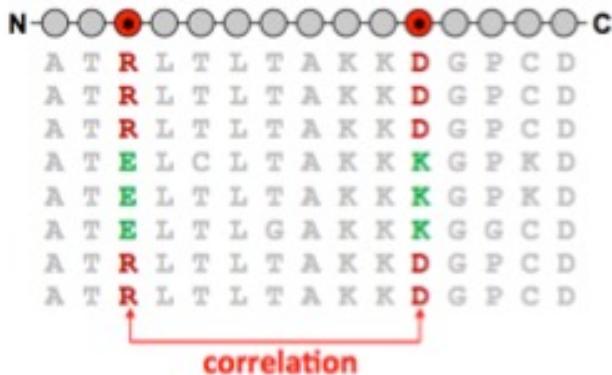
- Connect to <http://tppoll.eu>
- Enter the session ID **bio369**
- Select your answer

Some applications of maximum entropy modeling

- Neuroscience data:



- Protein sequence data:



$$P(\{\sigma_i\}) = \frac{1}{Z} \exp[-E(\{\sigma_i\})].$$

$$E(\{\sigma_i\}) = - \sum_{i=1}^N h_i \sigma_i - \frac{1}{2} \sum_{i,j=1}^N J_{ij} \sigma_i \sigma_j$$

$$P(\alpha_1, \dots, \alpha_L) = \frac{1}{Z} \exp \left\{ - \left[\sum_{i=1}^L h_i(\alpha_i) + \sum_{i < j} e_{ij}(\alpha_i, \alpha_j) \right] \right\}$$