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Outline of the course

Extracting information from biological data

Quantifying randomness and information in data: entropy

1.1  Notion of entropy

1.2  Interpretation of entropy

1.3 Entropy in neuroscience data: response of a neuron to a sensory input
Quantifying statistical dependence

2.1  Covariance and correlation

2.2  Mutual information

2.3  Identifying coevolving sites in interacting proteins using sequence data
Inferring probability distributions from data

3.1  Model selection and parameter estimation: maximum likelihood

3.2 Introduction to maximum entropy inference
3.3  Predicting protein structure from sequence data

Finding relevant dimensions in data: dimension reduction
4.1 Principal component analysis
4.2  Beyond principal component analysis
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Here we maximized entropy at fixed average energy. What do you think this
procedure is equivalent to?

A. Maximizing the energy
Minimizing the energy
Maximizing the free energy
Minimizing the free energy

OOow

To answer, please:

« Connect to http://ttpoll.eu

* Enter the session ID bio369
« Select your answer



http://ttpoll.eu/

Which of the following assertions is true?

0% A P(X) = Zx,y P X’y)

0% B. P(x) =%, P(x,y)

0% C. P(x)=Z, P(x]ly)
D. P(x) =2, P(y|x)

0%

To answer, please:

« Connect to http://ttpoll.eu

* Enter the session ID bio369
« Select your answer



http://ttpoll.eu/

Some applications of maximum entropy modeling

« Neuroscience data:
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Protein sequence data

= Inferring structure and function from sequences

« Data-driven approaches
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Evolutionary coupling between interacting residues
— correlations in multiple sequence alignments inform us about structure and function
BUT... observed correlations can be indirect A« B« C

homologs -

a protein family



Maximum entropy model of protein sequence data
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- Goal: joint probability distribution R D
P(a1,az,...,ar) probability of a sequence R g
in the protein family
. Observations retained: one- and two-body frequencies ﬁ g
correlation
CISHEL. ) e (L)
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.. .VSHEL. ..

. Maximum entropy model consistent with these observations

P(ai,...,ar) = % exp {— [S: hi(ai) H y: ei; (i, Oéj)]] } — Potts model

one-body terms - fields two-body terms - (direct) couplings



Maximum entropy model of protein sequence data

« Pairwise maximum entropy model and direct couplings:

P(ai,...,ar) = exp{ !Zh Q) +Zew (o, ] }

1<Jg

One needs to determine the fields and couplings consistent with the observations

Y Pla) = fi(a).

o such that a; =«

— very hard problem! (inverse problem)
Z Pla) = fij(a, B) — many approximation methods

a such that a; =« and a. =8 Cocco et al. (2017) - in the context of proteins
(e ’ C A q — L C » .] il

Mean-field approximation: ¢;;(a, ) = ( . B)
Cij(a, B) = fij(a,ﬁ) — fi(a) f;(B)

« Simplest approximation, can be derived through a small-coupling expansion

« Has proved rather good in the case of proteins Morcos, Pagnani et al. (2011)
Marks, Colwell et al. (2011)

(20 L x 20 L matrix)



6z'j(04, [3) much better predictor of 3D contact than
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Gray: experimental contacts (cutoff: 8 A)
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Weigt, White et al. (2009)
Morcos, Pagnani et al. (2011)
Marks, Colwell et al. (2011)

Contact map prediction
for the eukaryotic
signaling protein Ras

Mutual information (left)
Direct couplings (right)

Morcos, Pagnani
et al (2011)



Structure prediction

eij (o, B) much better predictor of 3D contact than | C;(c, 3)

\J

top DI pairs top Ml pairs

Bacterial Sigma factor region 2.
Top 20 DI / MI predictions

(distance along the backbone > 4).
Red: distance <8 A; green: others.

Weigt, White et al. (2009)
Morcos, Pagnani et al. (2011)

Mutual Information  Marks, Colwell et al. (2011)
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Analyze the highest scoring pairs to produce

ranked list of residue pairs which we predict to be e

close in 3D space. Use these pairs as predicted a0 (-

close “evolutionary inferred contacts” , EICs, in  sssin rese 11 and name G fresld 82 and name Sl
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fOldlng calculations assign {resid 92 and name CA) [resid 11 and name CA] 44 3
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Start with extended structure

use distance geometry and simulated
annealing with predicted constraints, EICs,
to fold the chain

Rank predicted structures using quality 5
measure of backbone alpha torsion and E"
beta sheet twist i ’

Structure prediction
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Structure prediction

predicted observed
blind top ranked crystal structure

e

Results for 3 proteins:

- predicted top ranked 3D
structure (left)

- experimentally observed
structure (right)
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Marks, Colwell et al (2011)
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Maximum entropy model of sequence data

= Limitations of the structure prediction method

« Requires large alignments of homologous proteins (~ a few hundreds)
- Requires a high diversity within these alignments
— cannot be used for small protein families (recall: one model per family)

= Other applications of the maximum entropy model for protein sequences

- Mutation effect prediction
« Protein-protein interaction prediction
« Protein design

= Conclusion on the applications of maximum entropy models

« Neuroscience data (infer connections, predict pattern rates, study collective behavior)
« Protein sequences (predict structure, mutation effects, interactions, model evolution)
But also:

« Reconstruction of signaling pathways from expression data

. Predicting response to multidrug combinations in bacteria, etc.

« Useful in signal processing (ex. MNR data)



=« CASP14 and AlphaFold2

Recent developments in protein structure prediction
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A few words about AlphaFold
= Architecture of AlphaFold2 — Jumper et al 2021

. Deep learning approach — one large model for many protein families
. Starts from multiple sequence alignments of homologous sequences & from structures
« Uses natural language processing methods:

. Attention (Bahdanau et al 2014), transformer architecture (Vaswani et al 2017)

. Specifically, part of AlphaFold is a protein language model trained on MSAs
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Recent developments in protein structure prediction

= Recent unsupervised models (transformers)

L 60 « One model for all families / all proteins
« Performs better than maximum entropy
5 models for alignments with relatively few
e sequences
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/ Potts Rives et al 2021
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Sequence-based module (EvoFormer): inspired by natural language processing

= Masked Language Modeling objective: self-supervised learning — Devlin et al 2018

Randomly mask a fraction of the words and train the model to predict them using the
surrounding context

store liter

MODEL

The man went to the [MASK] and bought a [MASK] of milk.

The model is trained to minimize a pseudo-likelihood loss:

Lyu(x,0) = — D logp(x, | X;6) with X :masked sentence

m € mask



MSA Transformer (similar to AlphaFold’s EvoFormer, but not supervised)

= Masked Language Modeling (MLM) objective on protein MSAs — Rao et al 2021

Randomly mask (#) a fraction of the amino acids and train the model to predict them, using the
surrounding context

VSH#LRTPLT-VRG VSHELRTPLT-VRG

AS#-LRSPLTAI#T
TSH-F#TPLATI#S
VSH-L#APLRAIAN
#CHEFRNPL#NIA-
VAH-LKTPLTSI- -
ASH#LRTPL#VIKT
LAH-LN#PLTA#AN

MSA Transformer

ASH-LRSPLTAIAT
TSH-FRTPLATI-S
VSH-LRAPLRAIAN
ACHEFRNPLANIA-
VAH-LKTPLTSI- -
ASHELRTPLTVIKT
LAH-LNTPLTAIAN

The model is trained to minimize a pseudo-likelihood loss:
M MSA

Loina(M, M;0) = = "log p(am,i | M; 6)

i) € mask
(1m4) € mas M masked MSA

MSA Transformer is similar to AlphaFold’s EvoFormer, but it is self-supervised



Architecture of MSA Transformer

= Adapting the transformer architecture to protein MSAs — Rao et al 2021
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- 26M MSAs corresponding to UniRef50 clusters
- average depth of MSAs: 1192



Unsupervised structural contact prediction by MSA Transformer

= (Tied) row attentions capture structural contacts — Rao et al 2021

« Simple combinations of the row attention softmax matrices allow contact prediction
. State-of-the-art unsupervised contact prediction

Contact prediction
performance
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ESM-1b DCA [Weigt, White et al 2009)]
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For unsupervised contact prediction, MSA Transformer outperforms:
- Potts models
- BERT-like single-sequence models (ESM-1b, still true with ESM-2)



Are MSAs really necessary?
= Structure prediction based on single-sequence language models

Motivations:
- Some proteins have few homologs
- MSA construction is imperfect and slow

- Predicting structure from a single sequence would bring us closer to “understanding protein folding”

Strategy:

- Train language models on large ensembles of non-aligned single sequences

- Add a structure module inspired by the one of AlphaFold2

AminoBERT — RGN2 (Chowdhury et al 2021); OmegaPLM — OmegaFold (Wu et al 2022);
ESM-2 — ESMFold (Lin et al 2023)

MMSeqs Hits w/ E-Value < 1
10 10° 10° ESM-2 & ESMFold (Lin et al 2023):

(Unsupervised) contact prediction:

- slightly less good than with MSA Transformer,
even with many more parameters (15B vs. 100M)

- still very strongly affected by the number of
existing homologs!

(Supervised) structure prediction:
- less good than AlphaFold2

- much faster — enabled structure prediction at
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