
Exercise 6: Population dynamics model with a limit cycle

October 24, 2023

Course: BIO-341 Dynamical systems in biology

Professor: Julian Shillcock & Felix Naef

SSV, BA5, 2023

Note that this document is primarily aimed at being consulted as a Jupyter notebook, the PDF
rendering being not optimal.

[3]: #import important libraries
import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact
from scipy.integrate import odeint
from IPython.display import set_matplotlib_formats
from matplotlib.markers import MarkerStyle
set_matplotlib_formats('png', 'pdf')

/var/folders/yf/q5hy0j9s5td1mjcljsx68fxh0000gq/T/ipykernel_24339/3074590393.py:8
: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23,
directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`

set_matplotlib_formats('png', 'pdf')

1 Population dynamics model with a limit cycle

In the course, we studied predator-prey models with a stable spiral, which means that the two
populations settle to coexist after the oscillatory transient decay.

Here, we study the following model:

dN

dt
= aN(K −N)− c P

N

N +R
(1)

dP

dt
= b P (sN − P) (2)

where the predators P might represent C. Elegans worms feeding on E. Coli bacteria N (typically
used as food in laboratory dishes). All parameters should be taken positive (> 0).

1) Explain the different parameters in the model (a,b, c, R, K, s). What are their
units?

1

https://moodle.epfl.ch/course/info.php?id=14291

Hint: Make the connection with the logistic growth model.

Solution

a and b have units of 1/(time · number of individuals). aK represents the preys relative
growth rate when N is small, and bsN represents the relative growth rate of the predators
when P is small.

c has unit of 1/time, and it defines the rate of interaction between predators and preys.

K is the carrying capacity of the environment for the preys, its unit is
number of individuals.

R ‘protects’ the preys from being eaten by the predators (it can represents an alternative
food resource for the predators, for example), its unit is number of individuals.

s is adimensional and it is a scaling parameter.

2) Calculate and plot the nullclines for the following values of the parameters:

a = b = 0.01

c = 1.

K = 200

R = 50

s = 5

Plot the fixed points and qualitatively describe their meanings in terms of populations
of predators and preys

Solution

[4]: #nice color palette
import seaborn as sn
col = sn.color_palette("Blues",3)

N = np.linspace(0,200,500)

paramters:
a = b = 0.01
c = 1
K = 200
R = 50
s = 5

plt.plot(N, a/c*(K-N)*(N+R), color='dodgerblue', label = 'N-nullcline', lw=2)
plt.axvline(x=0, color = 'dodgerblue', label = 'N=0 nullcline', lw=2)

plt.plot(N,s*N, color='palevioletred', label = 'P-nullcline', lw=2)
plt.axhline(y=0, color = 'palevioletred', label = 'P=0 nullcline', lw=2)

2

plt.plot(K,0, marker='o', color='k')

Q = c*s/a
N0 = (-(R-K+Q) + np.sqrt((R-K+Q)**2 + 4*K*R)) / 2
plt.plot(N0,s*N0,'ko')

plt.legend()
plt.xlabel('N')
plt.ylabel('P')
plt.show()

0 25 50 75 100 125 150 175 200
N

0

200

400

600

800

1000

P

N-nullcline
N=0 nullcline
P-nullcline
P=0 nullcline

3) Plot the stability of the fixed point with both N,P ̸= 0 in the R-K plane (for K, R
in [5, 500])

[5]: def trace(M):
return M[0,0]+M[1,1]

def determinant(M):
return M[0,0]*M[1,1]-M[1,0]*M[0,1]

3

def stability(M):
tau = trace(M)
delta = determinant(M)
if delta < 0:

type_fp = 'saddle point'
elif delta == 0:

type_fp = 'non-isolated FP'
else:

if tau**2-4*delta < 0:
type_fp_2 = 'spiral'

elif tau**2-4*delta == 0:
type_fp_2 = 'star'

else:
type_fp_2 = 'FP'

if tau < 0:
type_fp = 'stable ' + type_fp_2

elif tau == 0:
type_fp = 'center'

else:
type_fp = 'unstable ' + type_fp_2

return type_fp

[6]: from time import time
import seaborn as sns

palette = sns.color_palette("Paired")

colorandum = {'saddle point':palette[4], 'unstable FP':palette[1], 'stable FP':
↪→palette[0], 'unstable spiral':palette[9], 'stable spiral':palette[8], 'center':
↪→'k'}

def matrix(R,K):
Q = c*s/a
N = (-(R-K+Q) + np.sqrt((R-K+Q)**2 + 4*K*R)) / 2
P=s*N
return np.array([[a*(K-2*N) - c*P/(N+R) * (1-N/(N+R)),

-c*N/(N+R)],
[b*s*P,
b*(s*N-2*P)]])

start = time()

First, store the fixed points
dic_result = {'center':[], 'saddle point':[], 'unstable FP':[], 'stable FP':[],␣
↪→'unstable spiral':[], 'stable spiral':[]}

4

K = np.arange(5,500,1)
R = np.arange(5,500,1)

for k in K:
for r in R:

M = matrix(r,k)
type_fp = stability(M)
dic_result[type_fp].append([r,k])

Then, plot

for type_fp, coordinates in dic_result.items():
convert the list of coordinates into a 2d-array
coordinates = np.array(coordinates)
if coordinates.size!=0:

make a scatterplot for all coordinates of a given type of fp
plt.scatter(coordinates[:,0], coordinates[:,1], label = type_fp,␣

↪→color=colorandum[type_fp])

plt.xlabel(r'R')
plt.ylabel(r'K')
plt.axhline(200, c = 'k')
plt.scatter(x=np.array([10,30,500]), y=np.array([200,200,200]), c = 'k')

plt.show()

end = time()

print("Total time: {:.1f}s".format(end-start))

5

0 100 200 300 400 500
R

0

100

200

300

400

500
K

Total time: 7.3s

4) Fix K, and use the same values of the parameters for a,b,c and s as above. Choose
3 values of R for which you have respectively a stable f.p., a stable spiral and a limit
cycle.

Simulate the trajectories (of N and P) using a python solver (ex: odeint). Plot the tra-
jectories in function of time and the phase portrait (P in function of N) (use subplots)
for the three cases with different initial conditions.

In the case of the limit cycle, what is the stability of the fixed point?

In the case of the limit cycle, the PF is unstable

[7]: # paramters:
a = 0.01
b = 0.01
c = 1
K = 200
s = 5
tspan = np.linspace(0,100, 10000)

6

[8]: #2D differential equation
def Xdot(X, t):

N = X[0]
P = X[1]
return np.array([a*N*(K-N)-c*P*N/(N+R), b*P*(s*N-P)])

f, axs = plt.subplots(3, 3, figsize=(15,15))
colormap=['forestgreen','lightseagreen','dodgerblue']

R_list = [10,30,500]
title_list = ["limit cycle", "stable spiral", "stable f.p."]

for j,R in enumerate(R_list):
for n,X0 in enumerate([np.array([15,60]), np.array([10,30]), np.

↪→array([30,20])]):
x = odeint(Xdot, X0, tspan)

axs[0,j].plot(tspan, x[:,0], c=colormap[n], lw=2)
axs[1,j].plot(tspan, x[:,1], c=colormap[n], lw=2)
axs[2,j].plot(x[:,0], x[:,1], c=colormap[n], lw=2)

axs[0,j].plot(tspan[0],x[0,0], c=colormap[n], marker='o')
axs[1,j].plot(tspan[0],x[0,1], c=colormap[n], marker='o')
axs[2,j].plot(x[0,0], x[0,1], c=colormap[n], marker='o')

axs[0,j].set_ylabel("preys")
axs[1,j].set_ylabel("predators")

axs[0,j].set_title(title_list[j])

plt.show()
plt.close()

7

0 20 40 60 80 100

0

10

20

30

40

50

60

pr
ey

s

limit cycle

0 20 40 60 80 100

10

20

30

40

50

60

pr
ey

s

stable spiral

0 20 40 60 80 100

20

40

60

80

100

120

pr
ey

s

stable f.p.

0 20 40 60 80 100
0

25

50

75

100

125

150

175

pr
ed

at
or

s

0 20 40 60 80 100

25

50

75

100

125

150

175

200

225

pr
ed

at
or

s

0 20 40 60 80 100
0

100

200

300

400

500

pr
ed

at
or

s

0 10 20 30 40 50 60
0

25

50

75

100

125

150

175

10 20 30 40 50 60

25

50

75

100

125

150

175

200

225

20 40 60 80 100 120
0

100

200

300

400

500

5) Describe in words the behavior of the trajectories in terms of the number of preda-
tors and preys for each case.

In the case of stable FP, predators and preys rapidly converge to a stable coexistence,
while in the case of a stable spiral, they first oscillate for a while before reaching the
stable point.

In the case of a limit cycle the oscillations settle to constant amplitude and slope. The
trajectory always reaches the same limit cycle independently of the starting point. First,
the preys population N grows happily. But the more preys there are, the more food the
predators have, and the population P increases. Then, the predators eat so much preys
N that at a certain point, there are almost no more preys. Suddenly, the predators
population shrinks and the cycle starts a new round with preys N growing happily.

6. (OPTIONAL): Check your answers using euler’s method

8

Euler’s method is the simplest way to solve a differential equation numerically. In order to approx-
imate the solution of :

ẋ = F (x(t)) , x(t0) = x0

We can write one step of the method as :

x(t + dt) ≃ x(t) + dt F (x(t))

for a specific timestep size dt.

a) Implement your own Euler method using Python to solve numerically the following
differential equation:

[9]: #Euler's method
def Euler(xdot, x0, dt, T):

x = x0
t = 0
l_x = [x0]
l_t = [0]
while t<T:

x = x + xdot(x, t)*dt
t+=dt
l_x.append(x)
l_t.append(t)

return l_t, np.array(l_x)

b) Simulate the same trajectories than in 4) using the Euler’s method.

[10]: def Euler(xdot, x0, dt, T):
x = x0
t = 0
l_x = [x0]
l_t = [0]
while t<T:

x = x + xdot(x, t)*dt
t+=dt
l_x.append(x)
l_t.append(t)

return l_t, np.array(l_x) #array for l_x so it can easily be sliced for 2D␣
↪→systems

#2D differential equation
def Xdot(X, t):

N = X[0]
P = X[1]
return np.array([a*N*(K-N)-c*P*N/(N+R), b*P*(s*N-P)])

9

paramters:

a = 0.01
b = 0.01
c = 1
K = 200
s = 5

#simulation parameters
dt = 0.01
T = 100

f, axs = plt.subplots(3, 3, figsize=(15,15))
colormap=['forestgreen','lightseagreen','dodgerblue']

R_list = [15,30,500]
title_list = ["limit cycle", "stable spiral", "stable f.p."]

for j,R in enumerate(R_list):
for n,X0 in enumerate([np.array([15,60]), np.array([10,30]), np.

↪→array([30,20])]):
t, x = Euler(Xdot, X0, dt, T)
axs[0,j].plot(t, x[:,0], c=colormap[n], lw=2)
axs[1,j].plot(t, x[:,1], c=colormap[n], lw=2)
axs[2,j].plot(x[:,0], x[:,1], c=colormap[n], lw=2)

axs[0,j].plot(t[0],x[0,0], c=colormap[n], marker='o')
axs[1,j].plot(t[0],x[0,1], c=colormap[n], marker='o')
axs[2,j].plot(x[0,0], x[0,1], c=colormap[n], marker='o')

axs[0,j].set_ylabel("preys")
axs[1,j].set_ylabel("predators")

axs[0,j].set_title(title_list[j])

plt.show()
plt.close()

10

0 20 40 60 80 100

0

10

20

30

40

50

60

pr
ey

s

limit cycle

0 20 40 60 80 100

10

20

30

40

50

60

70

pr
ey

s

stable spiral

0 20 40 60 80 100

20

40

60

80

100

120

pr
ey

s

stable f.p.

0 20 40 60 80 100

25

50

75

100

125

150

175

pr
ed

at
or

s

0 20 40 60 80 100

50

100

150

200
pr

ed
at

or
s

0 20 40 60 80 100
0

100

200

300

400

500

pr
ed

at
or

s

0 10 20 30 40 50 60

25

50

75

100

125

150

175

10 20 30 40 50 60 70

50

100

150

200

20 40 60 80 100 120
0

100

200

300

400

500

[]:

11

