[3]:

Exercise 6: Population dynamics model with a limit cycle

October 24, 2023

Course: BIO-341 Dynamical systems in biology
Professor: Julian Shillcock & Felix Naef
SSV, BA5, 2023

Note that this document is primarily aimed at being consulted as a Jupyter notebook, the PDF
rendering being not optimal.

#import important libraries

import numpy as np

import matplotlib.pyplot as plt

from ipywidgets import interact

from scipy.integrate import odeint

from IPython.display import set_matplotlib_formats
from matplotlib.markers import MarkerStyle
set_matplotlib_formats('png', 'pdf')

/var/folders/yf/qbhy0j9s5tdimjcljsx68fxh0000gq/T/ipykernel _24339/3074590393.py:8

: DeprecationWarning: “set_matplotlib_formats™ is deprecated since IPython 7.23,

directly use “matplotlib_inline.backend_inline.set_matplotlib_formats()"
set_matplotlib_formats('png', 'pdf')

1 Population dynamics model with a limit cycle

In the course, we studied predator-prey models with a stable spiral, which means that the two
populations settle to coexist after the oscillatory transient decay.

Here, we study the following model:

dN
P
CﬁTt _ )P (sN — P) 2)

where the predators P might represent C. Elegans worms feeding on E. Coli bacteria N (typically
used as food in laboratory dishes). All parameters should be taken positive (> 0).

1) Explain the different parameters in the model (a,b, ¢, R, K, s). What are their
units?


https://moodle.epfl.ch/course/info.php?id=14291

Hint: Make the connection with the logistic growth model.
Solution

a and b have units of 1/(time - number of individuals). aK represents the preys relative
growth rate when N is small, and bsN represents the relative growth rate of the predators
when P is small.

¢ has unit of 1/time, and it defines the rate of interaction between predators and preys.

K is the carrying capacity of the environment for the preys, its unit is
number of individuals.

R ‘protects’ the preys from being eaten by the predators (it can represents an alternative
food resource for the predators, for example), its unit is number of individuals.

s is adimensional and it is a scaling parameter.

2) Calculate and plot the nullclines for the following values of the parameters:

a=>b=0.01
c=1.

K = 200
R =50
s=25

Plot the fixed points and qualitatively describe their meanings in terms of populations
of predators and preys

Solution

[4]: | #nice color palette
import seaborn as sn
col = sn.color_palette("Blues",3)

N = np.linspace(0,200,500)

# paramters:

a=b=0.01
c=1
K = 200
R = 50
s =5

plt.plot(N, a/c*x(K-N)*(N+R), color='dodgerblue', label = 'N-nullcline', lw=2)
plt.axvline(x=0, color = 'dodgerblue', label = 'N=0 nullcline', lw=2)

plt.plot(N,s*N, color='palevioletred', label = 'P-nullcline', lw=2)
plt.axhline(y=0, color = 'palevioletred', label = 'P=0 nullcline', 1lw=2)



plt . PlOt (K’ 0 ) marker='o' 5 color="k' )

Q = c*s/a
NO = ( -(R-K+Q) + np.sqrt((R-K+Q)**2 + 4*K*R) ) / 2
plt.plot(NO,s*NO, 'ko')

plt.legend()
plt.xlabel('N')
plt.ylabel('P")

plt.show()
1000
800 A
600 A = N-nullcline
= N=0 nullcline
[a W
- P-nullcline
400 A - P=0 nullcline
200 ~
0 \
0 25 50 75 100 125 150 175 200
N

3) Plot the stability of the fixed point with both N,P # 0 in the R-K plane ( for K, R
in [5, 500])

[56]: def trace(M):
return M[0,0]+M[1,1]

def determinant(M):
return M[0,0]*M[1,1]-M[1,0]*M[0,1]



def stability(M):
tau = trace(M)
delta = determinant (M)
if delta < O:
type_£fp 'saddle point'
elif delta == O:
type_fp = 'non-isolated FP'

else:
if taux*2-4xdelta < O:
type_fp_2 = 'spiral'
elif taux*2-4xdelta ==
type_fp_2 = 'star'

else:
type_fp_2 = 'FP'

if tau < O:

type_fp = 'stable ' + type_fp_2
elif tau == 0:

type_fp = 'center'
else:

type_fp = 'unstable ' + type_fp_2

return type_fp

[6]: | from time import time
import seaborn as sns

palette = sns.color_palette("Paired")
colorandum = {'saddle point':palette[4], 'unstable FP':palette[1], 'stable FP':
—palette[0], 'unstable spiral':palette[9], 'stable spiral':palette[8], 'center':

<'k'}

def matrix(R,K):

Q = c*s/a
N = ( -(R-K+Q) + np.sqrt((R-K+Q)**2 + 4%K*R) ) / 2
P=s*N
return np.array([[a*(K-2*N) - c*P/(N+R) * (1-N/(N+R)),
-c*N/(N+R) 1,
[bxs*P,

b* (s*N-2*P)1])
start = time()
# First, store the fized points

dic_result = {'center':[], 'saddle point':[], 'unstable FP':[], 'stable FP':[],
—'unstable spiral':[], 'stable spiral':[]}



o=
|

for

np.arange(5,500,1)
np.arange(5,500,1)

k in K:

for r in R:
M = matrix(r,k)
type_fp = stability(M)
dic_result[type_£fp] .append([r,k])

# Then, plot

for

type_fp, coordinates in dic_result.items():

# convert the list of coordinates into a 2d-array

coordinates = np.array(coordinates)

if coordinates.size!=0:
# make a scatterplot for all coordinates of a given type of fp
plt.scatter(coordinates[:,0], coordinates[:,1], label = type_fp,

—scolor=colorandum[type_fp])

plt.
plt.
plt.
plt.

plt

end

xlabel(r'$R$"')

ylabel(r'$K$"')

axhline (200, ¢ = 'k')

scatter(x=np.array([10,30,500]), y=np.array([200,200,200]), ¢ = 'k')

.show()

= time()

print("Total time: {:.1f}s".format(end-start))



[7]:

500 ~

400 -

300 ~

200 ~

100 A

0 100 200 300 400 500

Total time: 7.3s

4) Fix K, and use the same values of the parameters for a,b,c and s as above. Choose
3 values of R for which you have respectively a stable f.p., a stable spiral and a limit
cycle.

Simulate the trajectories (of N and P) using a python solver (ex: odeint). Plot the tra-
jectories in function of time and the phase portrait (P in function of N) (use subplots)
for the three cases with different initial conditions.

In the case of the limit cycle, what is the stability of the fixed point?
In the case of the limit cycle, the PF is unstable

paramters:

= 0.01

0.01

Sl

= 200

= B

tspan = np.linspace(0,100, 10000)

#
a
b
8
K
s




[8]: | #2D differential equation
def Xdot(X, t):
N = X[0]
P = X[1]
return np.array([a*N#*(K-N)-c*P*N/(N+R), b*P*(s*N-P)])

f, axs = plt.subplots(3, 3, figsize=(15,15))
colormap=['forestgreen', 'lightseagreen', 'dodgerblue']

R_list = [10,30,500]
title_list = ["limit cycle", "stable spiral", "stable f.p."]

for j,R in enumerate(R_list):
for n,X0 in enumerate([np.array([15,60]), np.array([10,30]), np.
—array([30,20])]):
x = odeint(Xdot, X0, tspan)

axs[0,j] .plot(tspan, x[:,0], c=colormap[n], lw=2)
axs[1,j].plot(tspan, x[:,1], c=colormap[n], lw=2)
axs[2,j] .plot(x[:,0], x[:,1], c=colormap[n], 1lw=2)

axs[0,j] .plot(tspan[0],x[0,0], c=colormap[n], marker='o')
axs[1,j] .plot(tspan[0],x[0,1], c=colormap[n], marker='o')
axs[2,j] .plot(x[0,0], x[0,1], c=colormap[n], marker='o')

axs[0,j] .set_ylabel("preys")
axs[1,j].set_ylabel("predators")

axs[0,j] .set_title(title_list[j])

plt.show()
plt.close()



25 A

150 -

125 A

100 -

75 A

50 A

25 A

limit cycle stable spiral stable f.p.
120
60 4
60
100 +
501
501
801
40
w w 404 "
v v v
£ 30 g £ 60
301
201 40 1
201
P
104
104 201 i
04
T v T T v T v v T T v v v v T
0 20 100 0 20 40 60 80 100 0 20 40 60 80 100
225
1754
200 5001
150 4
50 175
400 +
1254 150
o 4 4
o o o
© 100 - © 125 ® 300
o o o
L o o
S 75 S 100 a
W 200 1
50 1 75
501 100 +
q
| sy {
T T T T T T T T T T T T 04 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
2254
2001 5001
1754
400
1501
125 300 A
1001
2001
754
501 100 +
254
v y v v T T v 0 v T v T T
0 10 20 30 40 50 60 10 20 30 40 50 60 20 40 60 80 100 120

5) Describe in words the behavior of the trajectories in terms of the number of preda-

tors and preys for each case.

In the case of stable FP, predators and preys rapidly converge to a stable coexistence,
while in the case of a stable spiral, they first oscillate for a while before reaching the

stable point.

In the case of a limit cycle the oscillations settle to constant amplitude and slope. The
trajectory always reaches the same limit cycle independently of the starting point. First,
the preys population N grows happily. But the more preys there are, the more food the
predators have, and the population P increases. Then, the predators eat so much preys
N that at a certain point, there are almost no more preys.
population shrinks and the cycle starts a new round with preys N growing happily.

6. (OPTIONAL): Check your answers using euler’s method

Suddenly, the predators



Euler’s method is the simplest way to solve a differential equation numerically. In order to approx-
imate the solution of :

&= F(x(t)), z(ty) = xo

We can write one step of the method as :

x(t + dt) >~ x(t) + dt F(z(t))

for a specific timestep size dt.

a) Implement your own Euler method using Python to solve numerically the following
differential equation:

[9]:  #Euler's method
def Euler(xdot, x0, dt, T):

x = x0

t =0

1_x = [x0]

1_t = [0]

while t<T:
x = x + xdot(x, t)*dt
t+=dt
1_x.append(x)
1_t.append(t)

return 1_t, np.array(l_x)

b) Simulate the same trajectories than in 4) using the Euler’s method.

[10]: def Euler(xdot, x0, dt, T):

x = x0

t=0

1_x = [x0]

1_t = [0]

while t<T:
x = x + xdot(x, t)*dt
t+=dt
1_x.append (x)
1_t.append(t)

return 1_t, np.array(l_x) #array for l_z so it can easily be sliced for 2D,

—systems

#2D differential equation
def Xdot(X, t):
N = X[0]
P = X[1]
return np.array([a*N*(K-N)-c*xP+N/(N+R), b*P*(s*N-P)])



# paramters:

a =0.01
b =20.01
c =1
K = 200
s =5

#simulation parameters
dt = 0.01
T = 100

f, axs = plt.subplots(3, 3, figsize=(15,15))
colormap=['forestgreen', 'lightseagreen', 'dodgerblue']

R_list = [15,30,500]
title_list = ["limit cycle", "stable spiral", "stable f.p."]

for j,R in enumerate(R_list):
for n,X0 in enumerate([np.array([15,60]), np.array([10,30]), np.
—array([30,20]1)]):
t, x = Euler(Xdot, X0, dt, T)
axs[0,j] .plot(t, x[:,0], c=colormap[n], 1lw=2)
axs[1,j].plot(t, x[:,1], c=colormap[n], 1lw=2)
axs[2,j] .plot(x[:,0], x[:,1], c=colormap[n], lw=2)

axs[0,j] .plot(t[0],x[0,0], c=colormap[n], marker='o')
axs[1,j].plot(t[0],x[0,1], c=colormap[n], marker='o')
axs[2,j] .plot(x[0,0], x[0,1], c=colormap[n], marker='o')

axs [0, j].set_ylabel("preys")
axs[1,j].set_ylabel("predators")

axs[0,j] .set_title(title_list[j])

plt.show()
plt.close()

10



L]

predators

limit cycle stable spiral stable f.p.
70 120 §
60
60
501 100 4
50 4
40 80 4
g 2407 ¢
30 @ @
a a 5 601
30
204
40
204
P
10 4
104 20 4 i
04
T v T v v T T v T v v T
0 20 40 60 80 100 0 20 40 60 80 100
175
200 500
150
400 4
125 150 4
o o
2 2
100 K & 300
g g
75 2100+ e
WV 200
50 4
501 100 1
251 i
v T v v T T v T v v T 01 v T v v T
20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
175
200 4 500 4
150
400 4
1254 150 4
100 3007
] 100
7 200 1
50 4
50 4 100 4
25
T v T T T T T v v T v v 0 v v T v T .
10 20 30 40 50 60 10 20 30 40 50 60 70 20 40 60 80 100 120

11



