
Course: BIO-341 Dynamical systems in Biology

Professor: Julian Shillcock & Felix Naef

SSV, BA5, 2024

Note that this document is primarily aimed at being consulted as a Jupyter notebook,

the PDF rendering being not optimal.

/var/folders/yf/q5hy0j9s5td1mjcljsx68fxh0000gq/T/ipykernel_88620/1076716760.p
y:9: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython
7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats
()`
 set_matplotlib_formats('png', 'pdf')

A. Consider the following two-dimensional model (the van der Pol oscillator):

where is a real constant (positive or negative). This question explores some of the

conditions for there to be a bifurcation at = 0, in which a stable spiral changes to an

unstable spiral and a limit cycle appears as the parameter is varied (but we are not

looking at the limit cycle in this problem.)

1. The origin (0,0) is a fixed point for any value of . Find the Jacobian at the origin,

and evaluate its trace and determinant in terms of

#import some of the libraries you'll need
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import set_matplotlib_formats
from ipywidgets import interact
from scipy.integrate import odeint
import plotly.graph_objects as go

set_matplotlib_formats('png', 'pdf')

= ydx

dt

= −x + µ(1 − x2)y
dy

dt

µ

µ

µ

µ

µ

https://moodle.epfl.ch/course/info.php?id=14291
https://moodle.epfl.ch/course/info.php?id=14291
https://moodle.epfl.ch/course/info.php?id=14291

(0,0) is a fixed point

, det=1

2. State why that the origin cannot be a saddlepoint for any value of .

det=1 > 0 so it is never a saddlepoint

3. On the Tau-Delta plot, mark the location of the fixed point for the following values of

 = -3, -2, -1, 0, 1, 3. Label each point with the type/stability of the fixed point. For

the case = -2, find the eigenvalue(s) and eigenvector(s) and determine if the fixed

point is a star or degenerate node.

J = (0 1
−1 − 2uxy µ(1 − x2)

)

J(0, 0) = (0 1
−1 µ

)
tr = µ

µ

µ

µ

=-3, tr=-3, det=1, -4det = 5 > 0

=-2, tr=-2, det=1, -4det = 0; -> one

eigenvalue Eigenvector for :

because there is only one vector, it is a degenerate node

=-1, tr=-1, det=1, -> stable spiral

=0, tr=0, det=1, -> A center because tr=0

=1, tr=1, det=1, -> unstable spiral

=2, tr=2, det=1, ; only one eigenvalue Eigenvector

for :

because there is only one vector, it is a degenerate node

=3, tr=3, det=1, -> unstable node

µ tr2

µ tr2 λ = = −1
−2+/−sqrt(4−4)

2

λ = −1

ν1 = (1
−1

)

µ tr2 − 4det = −3

µ tr2 − 4det = −4

µ tr2 − 4det = −3

µ tr2 − 4det = 0 λ = 1
λ = 1

ν1 = (1
1

)

µ tr2 − 4det = 5

import matplotlib.pyplot as plt
import numpy as np

Create the figure and axis
fig, ax = plt.subplots(figsize=(8, 6))

Plot the x and y nullclines
ax.plot([0, 0], [-20, 20], color='steelblue', linewidth=1.5)
ax.plot([-20, 20], [0, 0], color='steelblue', linewidth=1.5)

Plot the curves without adding them to the legend
x_ = np.linspace(0, 20, 1000)
y_ = np.sqrt(4 * x_)
ax.plot(x_, y_, color='slategrey', linewidth=1.5) # Curve 1
ax.plot(x_, -y_, color='slategrey', linewidth=1.5) # Curve 2

Add individual red dots and include them in the legend
ax.scatter(1, -3, color='red', s=50, label="u=-3")
ax.scatter(1, -2, color='pink', s=50, label="u=-2")
ax.scatter(1, -1, color='purple', s=50, label="u=-1")
ax.scatter(1, 0, color='blue', s=50, label="u=0")
ax.scatter(1, 1, color='lightgreen', s=50, label="u=1")
ax.scatter(1, 2, color='green', s=50, label="u=2")
ax.scatter(1, 3, color='darkgreen', s=50, label="u=3")

Add text annotations
ax.text(5, 8, 'Unstable FPs', fontsize=14, color='black')
ax.text(5, -8, 'Stable FPs', fontsize=14, color='black')
ax.text(10, 2.5, 'Unstable spirals', fontsize=14, color='black')
ax.text(10, -2.5, 'Stable spirals', fontsize=14, color='black')
ax.text(-7, 2.5, 'Saddle points', fontsize=14, color='black')
ax.text(13, 9, r'$\tau^2 - 4\Delta > 0$', fontsize=14, color='darkslategrey'
ax.text(13, 5.5, r'$\tau^2 - 4\Delta < 0$', fontsize=14, color='darkslategrey'

Set axis labels
ax.set_xlabel('Delta')
ax.set_ylabel(r'τ')

Configure the legend to be horizontal and above the plot
ax.legend(loc='upper left')

Set axis limits and ticks
ax.set_xlim([-10, 20])
ax.set_ylim([-10, 10])
ax.xaxis.set_major_locator(plt.MaxNLocator(7))
ax.yaxis.set_major_locator(plt.MaxNLocator(7))

Set grid and border styles
ax.grid(False)
ax.spines['top'].set_linewidth(2)
ax.spines['bottom'].set_linewidth(2)
ax.spines['left'].set_linewidth(2)
ax.spines['right'].set_linewidth(2)
ax.spines['top'].set_color('black')
ax.spines['bottom'].set_color('black')
ax.spines['left'].set_color('black')

4. For the case = -1, draw the phase portrait including only the nullclines (with the

direction of the other vector field dx/dt and dy/dt along them) and some typical

trajectories (don’t spend too long on the trajectories!). Can you infer the type of the

fixed point from the phase portrait?

spines set_color
ax.spines['right'].set_color('black')

Show the plot
plt.tight_layout()
plt.show()

µ

Nullclines:

 i.e x axis

 ->

What is along ?

What is along ?

= y = 0dx

dt

= −x + µ(1 − x2)y = 0dy

dt
y = x

x2−1

dy

dt
= 0dx

dt

= −x
dy

dt

dx

dt
= 0dy

dt

=dx

dt

x

x2−1

u=-1
def model(s,t=0):

x,y=s
x_dot=y
y_dot=-x+u*(1-x**2)*y
return x_dot, y_dot

Time domain
tspan = np.linspace(0, 10, 10000)

Initial conditions
X0s = [(0,-2), (-3,1),(3,-2),(3.1,-3.5),(-5,5.01)]

X0s = [(1,-2), (2,-0.9),(1,2), (1,-2.8), (-4,0), (1,-2.5), (1,-2.3), (1,-2.66

plt.figure(figsize=(7,7)) # create an empty figure

Fixed points
plt.scatter(x = [0], y = [0], c = 'pink', s = 50, label = 'fixed point')

Define the nullclines
x1 = np.arange(-7,7,0.01)
y1 = 0*x1
x2 = np.arange(-7,7,0.001)
y2 = x2 / (x2**2-1)
plt.plot(x1,y1,'r', label='x nullcline')
plt.plot(x2,y2,'.b',markersize=2, label='y nullcline')

Vector field
q = np.arange(-7,7.1,0.5)
xp, yp = np.meshgrid(q,q)
dx, dy = model([xp,yp])
normalise the arrow length

dx, dy = dx/np.sqrt(dx**2+dy**2), dy/np.sqrt(dx**2+dy**2)
plt.quiver(xp,yp,dx,dy) # plot the vector field

Trajectories
sols = []
for X0 in X0s: # different initial conditions

sol = odeint(model,X0, tspan) # solve the differential equation using an ODE solver "odei
sols.append(sol)
plt.plot(sol[:,0],sol[:,1],'.g',markersize=2) # plot the trajectories

Adjust the plot
plt.xlim(-5,5)
plt.ylim(-5,5)
plt.xlabel('x')
plt.ylabel('y')
plt.title('phase portrait mu=-1')
plt.legend()
plt.show()

/var/folders/yf/q5hy0j9s5td1mjcljsx68fxh0000gq/T/ipykernel_88620/2970768913.p
y:36: RuntimeWarning: invalid value encountered in divide
 dx, dy = dx/np.sqrt(dx**2+dy**2), dy/np.sqrt(dx**2+dy**2)
/Users/duperrex/anaconda3/envs/bio_341/lib/python3.11/site-packages/scipy/int
egrate/_odepack_py.py:248: ODEintWarning: Excess work done on this call (perh
aps wrong Dfun type). Run with full_output = 1 to get quantitative informatio
n.
 warnings.warn(warning_msg, ODEintWarning)
 lsoda-- warning..internal t (=r1) and h (=r2) are
 such that in the machine, t + h = t on the next step
 (h = step size). solver will continue anyway
 in above, r1 = 0.2382264443449D+01 r2 = 0.1906564606017D-15
 lsoda-- warning..internal t (=r1) and h (=r2) are
 such that in the machine, t + h = t on the next step
 (h = step size). solver will continue anyway
 in above, r1 = 0.2382264443449D+01 r2 = 0.1906564606017D-15
 lsoda-- warning..internal t (=r1) and h (=r2) are
 such that in the machine, t + h = t on the next step
 (h = step size). solver will continue anyway
 in above, r1 = 0.2382264443449D+01 r2 = 0.1906564606017D-15
 lsoda-- warning..internal t (=r1) and h (=r2) are
 such that in the machine, t + h = t on the next step
 (h = step size). solver will continue anyway
 in above, r1 = 0.2382264443449D+01 r2 = 0.1906564606017D-15
 lsoda-- warning..internal t (=r1) and h (=r2) are
 such that in the machine, t + h = t on the next step
 (h = step size). solver will continue anyway
 in above, r1 = 0.2382264443449D+01 r2 = 0.1546835275897D-15
 lsoda-- warning..internal t (=r1) and h (=r2) are
 such that in the machine, t + h = t on the next step
 (h = step size). solver will continue anyway
 in above, r1 = 0.2382264443449D+01 r2 = 0.1546835275897D-15
 lsoda-- warning..internal t (=r1) and h (=r2) are
 such that in the machine, t + h = t on the next step
 (h = step size). solver will continue anyway
 in above, r1 = 0.2382264443449D+01 r2 = 0.1546835275897D-15
 lsoda-- warning..internal t (=r1) and h (=r2) are
 such that in the machine, t + h = t on the next step
 (h = step size). solver will continue anyway
 in above, r1 = 0.2382264443449D+01 r2 = 0.1546835275897D-15
 lsoda-- warning..internal t (=r1) and h (=r2) are
 such that in the machine, t + h = t on the next step
 (h = step size). solver will continue anyway
 in above, r1 = 0.2382264443449D+01 r2 = 0.1254979434646D-15
 lsoda-- warning..internal t (=r1) and h (=r2) are
 such that in the machine, t + h = t on the next step
 (h = step size). solver will continue anyway
 in above, r1 = 0.2382264443449D+01 r2 = 0.1254979434646D-15
 lsoda-- above warning has been issued i1 times.
 it will not be issued again for this problem
 in above message, i1 = 10

5. How does the fixed point change character as increases from negative to positive

values?

The fixed point changes from a stable spiral to an unstable spiral as

passes through zero to positive values

B. Now consider the similar equations:

µ

µ

= y + µxdx

dt

= −x + µ(1 − x2)y
dy

dt

1. Find the Jacobian for the fixed point at the origin, and the fixed point’s type and

stability for = -3, -1, 0, 1, 3. What is different from the previous case?

(0,0) is a fixed point

, , for all ,

as det>0 -> it is never a saddlepoint for all

, tr=-6, det=10

, tr=-2, det=2

, tr=0, det=1

, tr=2, det=2

, tr=6, det=10

µ

J = (µ 1

−1 − 2µxy µ(1 − x2)
)

J(0, 0) = (µ 1
−1 µ

)
tr = 2µ det = µ2 + 1 tr2 − 4det = 4µ2 − 4(µ2 + 1) = −4 µ

µ

µ = −3

µ = −1

µ = 0

µ = 1

µ = 3

import matplotlib.pyplot as plt
import numpy as np

Create the figure and axis
fig, ax = plt.subplots(figsize=(8, 6))

Plot the x and y nullclines
ax.plot([0, 0], [-20, 20], color='steelblue', linewidth=1.5)
ax.plot([-20, 20], [0, 0], color='steelblue', linewidth=1.5)

Plot the curves without adding them to the legend
x_ = np.linspace(0, 20, 1000)
y_ = np.sqrt(4 * x_)
ax.plot(x_, y_, color='slategrey', linewidth=1.5) # Curve 1
ax.plot(x_, -y_, color='slategrey', linewidth=1.5) # Curve 2

Add individual red dots and include them in the legend
ax.scatter(10, -6, color='red', s=50, label="u=-3")
ax.scatter(2, -2, color='pink', s=50, label="u=-1")
ax.scatter(1, 0, color='blue', s=50, label="u=0")
ax.scatter(2, 2, color='lightgreen', s=50, label="u=1")
ax.scatter(10, 6, color='green', s=50, label="u=3")

Add text annotations
ax.text(5, 8, 'Unstable FPs', fontsize=14, color='black')
ax.text(5, -8, 'Stable FPs', fontsize=14, color='black')
ax.text(10, 2.5, 'Unstable spirals', fontsize=14, color='black')
ax.text(10, -2.5, 'Stable spirals', fontsize=14, color='black')
ax.text(-10, 2.5, 'Saddle points', fontsize=14, color='black')
ax.text(13, 9, r'$\tau^2 - 4\Delta > 0$', fontsize=14, color='darkslategrey'
ax.text(13, 5.5, r'$\tau^2 - 4\Delta < 0$', fontsize=14, color='darkslategrey'

Set axis labels
ax.set_xlabel('Delta')
ax.set_ylabel(r'τ')

Configure the legend to be horizontal and above the plot
ax.legend(loc='upper left')

Set axis limits and ticks
ax.set_xlim([-20, 20])
ax.set_ylim([-10, 10])
ax.xaxis.set_major_locator(plt.MaxNLocator(7))
ax.yaxis.set_major_locator(plt.MaxNLocator(7))

Set grid and border styles
ax.grid(False)
ax.spines['top'].set_linewidth(2)
ax.spines['bottom'].set_linewidth(2)
ax.spines['left'].set_linewidth(2)
ax.spines['right'].set_linewidth(2)
ax.spines['top'].set_color('black')
ax.spines['bottom'].set_color('black')
ax.spines['left'].set_color('black')
ax.spines['right'].set_color('black')

2. Are there other fixed points than the origin for this model? If so, find their

coordinates (x, y) as a function of . Set = 0.1 and find the coordinates of any

non-zero fixed points.

There are non-zero fixed points

 and

3. For the value = 0.1, draw the phase portrait including: the nullclines, fixed point(s),

and direction of the vector field on the nullclines (not trajectories). How is the phase

portrait different from the previous case?

Show the plot
plt.tight_layout()
plt.show()

µ µ

(−√1 + , µ√1 +)1
µ2

1
µ2 (√1 + , −µ√1 +)1

µ2

1
µ2

µ

Nullclines:

 ->

 ->

What is along ?

What is along ?

= 0dx

dt
y = −0.1x

= 0dy

dt
y = 10x

1−x2

dy

dt
= 0dx

dt

= 0.01x(x2 − 101)dy

dt

dx

dt
= 0dy

dt

= 0.1xdx

dt

101−x2

1−x2

u=0.1
def model(s,t=0):

x,y=s
x_dot=y +u*x
y_dot=-x+u*(1-x**2)*y
return x_dot, y_dot

Time domain
tspan = np.linspace(0,30, 100000)

Initial conditions
X0s = [(0,-2), (-3,1),(3,-2),(3.1,-3.5),(-5,5.01)]

X0s = [(3.1,-1.5), (6,-6),(-6,6), (-4,-6), (4,6), (0.5,0.5)]

plt.figure(figsize=(7,7)) # create an empty figure

Fixed points
plt.scatter(x = [0], y = [0], c = 'pink', s = 50, label = 'fixed point')

Define the nullclines
x1 = np.arange(-15,15,0.01)
y1 = -0.1*x1
x2 = np.arange(-15,15,0.001)
y2 = 10*x2 / (1-x2**2)
plt.plot(x1,y1,'r', label='x nullcline')
plt.plot(x2,y2,'.b',markersize=2, label='y nullcline')

Vector field
q = np.arange(-7.1,7.1,0.5)
xp, yp = np.meshgrid(q,q)
dx, dy = model([xp,yp])
normalise the arrow length

dx, dy = dx/np.sqrt(dx**2+dy**2), dy/np.sqrt(dx**2+dy**2)
plt.quiver(xp,yp,dx,dy) # plot the vector field

Trajectories
sols = []
for X0 in X0s: # different initial conditions

sol = odeint(model,X0, tspan) # solve the differential equation\musing an ODE solver "ode
sols.append(sol)
plt.plot(sol[:,0],sol[:,1],'g') # plot the trajectories

Adjust the plot
plt.xlim(-7,7)
plt.ylim(-7,7)
plt.xlabel('x')
plt.ylabel('y')
plt.title('phase portrait mu=0.1')
plt.legend()
plt.show()

