
Solution_11_24

November 25, 2024

0.0.1 Course: BIO-341 Dynamical systems in biology

Professor: Julian Shillcock & Felix Naef

SSV, BA5, 2024

[1]: #import important libraries
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from IPython.display import set_matplotlib_formats
from scipy.integrate import odeint
import math as mt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.lines import Line2D
import random

1 Circadian oscillators
1.1 1. Sample exam question: Coupled oscillators (Paper and pencil)
The phases of these two oscillators with natural frequency (fréquence propre) 𝜔1 and 𝜔2 are written
𝜙1(𝑡) and 𝜙2(𝑡).
They are coupled according to the following model:

𝑑𝜙1
𝑑𝑡 = 𝜔1 + 𝐾𝑓(𝜙2 − 𝜙1) (1)

𝑑𝜙2
𝑑𝑡 = 𝜔2 + 𝐾𝑓(𝜙1 − 𝜙2) (2)

with 𝑓(𝑥) = sin(2𝑥)
Determine whether the two phases synchronise, i.e. whether the phase difference 𝛼 = 𝜙2 − 𝜙1
reaches a stable fixed point.

1. Form the differential equation for the phase difference 𝛼 = 𝜙2 − 𝜙1.

𝑑𝛼
𝑑𝑡 = 𝑑𝜙2

𝑑𝑡 − 𝑑𝜙1
𝑑𝑡 = 𝜔2 − 𝜔1 − 2𝐾 sin(2𝛼) (3)

1

https://moodle.epfl.ch/course/info.php?id=14291

2. Explain whether this model allows the two phases to be synchronised, and if so, under what
conditions. conditions.

Synchronisation means that there is a stable fixed point (FP) Condition to have a FP :

𝜔2 − 𝜔1 − 2𝐾𝑠𝑖𝑛(2𝛼∗) = 0 (4)

𝑠𝑖𝑛(2𝛼∗) = 𝜔2 − 𝜔1
2𝐾 (5)

For this equation to have a solution: −1 ≤ 𝜔2−𝜔1
2𝐾 ≤ 1, so −2𝐾 ≤ 𝜔2 − 𝜔1 ≤ 2𝐾.

For |𝜔2−𝜔1
2𝐾 | = 1 the model has 2 semi-stable fixed points. For −1 < 𝜔2−𝜔1

2𝐾 < 1, the
model has 4 fixed points, two of which are stable.

Condition to have a stable PF: 𝐹 ′(𝑥) = −4𝐾 cos(2𝛼∗) < 0, so cos(2𝛼∗) > 0. If the
model has 4 fixed point, the condition is always respected for 2 out of 4 fixed points, so
the only condition for synchronisation is that −2𝐾 < 𝜔2 − 𝜔1 < 2𝐾.

3. What happens to 𝛼 when 𝐾 goes to infinity?

When 𝐾 goes to infinity, sin(2𝛼) goes to 0, and so does 𝛼, the difference between the
phases. So when K goes to infinity, the oscillators are synchronised and have the same
phase.

1.2 2. Circadian oscillators of a generic non-linear oscillator (Python)
Here, we first simulate a toy model of the circadian clock consisting of three variables that imple-
ments the now famous negative feedback loop oscillator (See the 2017 Nobel price in Physiology
and Medicine).

1.3 A three-variable model of a circadian oscillator
This is a highly simplified model of a circadian oscillator (see Feedback of the Drosophila period
gene product on circadian cycling of its messenger RNA levels, Hardin P, Hall JC and Rosbash M,
Nature 1990). It takes into account some basic ingredients, notably the negative feedback loop.
A clock gene mRNA (X) produces a clock protein (Y) which, in turn, activates a transcriptional
inhibitor (Z) of gene X.

𝑑𝑋
𝑑𝑡 = 𝑣1

𝐾4
1

𝐾4
1 + 𝑍4 − 𝑣2

𝑋
𝐾2 + 𝑋 (6)

𝑑𝑌
𝑑𝑡 = 𝑘3𝑋 − 𝑣4

𝑌
𝐾4 + 𝑌 (7)

𝑑𝑍
𝑑𝑡 = 𝑘5𝑌 − 𝑣6

𝑍
𝐾6 + 𝑍 (8)

2

1.3.1 The Model

1) Explain the different terms in the equations, and all the parameters. In particular explain
the terms containing the fractions.

1)

• In the first equation (𝑑𝑋
𝑑𝑡) we find the production of mRNA (transcription) which

is regulated by 4 binding sites for the repressor Z and the degradation of X (a
first order enzymatic reaction). 𝑣1 is the maximum transcription rate when the
promoter is fully unnoccupied. 𝑣2 is the maximal degraddatipon rate.

• In the second equation (𝑑𝑌
𝑑𝑡), the translation (production of protein Y) is linearly

dependent on X, and again a degradation term is present, with 𝑣4 the maximal
degradation rate.

• In the third equation (𝑑𝑍
𝑑𝑡) the activation of Z is linearly dependent on Y, and a

degradation term is present. The degrdation terms for X,Y and Z saturate for
large values. 𝐾2, 𝐾4 and 𝐾6 represent the concentrations at which the degradtion
is half the maximum value. 𝐾1, represent the concentration of Z at which the
promoter of X is half repressed.

2) Based on the literature, discuss plausible genes/proteins that could represent the 𝑋, 𝑌 , 𝑍
variables.

2) In Drosophila Melanogaster: X = Per mRNA, Y = PER protein, and Z = TIM
protein, dimerize with PER, and repress the transcription of PER.

3) Discuss/criticize the main assumptions of the model.

3) One of the main assumption of the model is the linear nature of the relationship
between the activation of Z and the Y is not reflecting a typical biochemical process.

1.3.2 Simulation of the Model

4) Using the values 𝑣1 = 0.7 𝑛𝑀ℎ−1, 𝑣2 = 𝑣4 = 𝑣6 = 0.35 𝑛𝑀ℎ−1, 𝐾1 = 𝐾2 = 𝐾4 = 𝐾6 = 1 𝑛𝑀
and 𝑘3 = 𝑘5 = 0.7 ℎ−1, simulate the model: set appropriate initial conditions and time
integration parameters to obtain a limit cycle. Plot some representative trajectories in 2D (x
VS time, y VS time or z VS time) or 3D.

Hint: to visualise the trajectories, plot only the last 5 % of the solution

[2]: #Solving the differential equations

Tmax=5000
dt=0.01
tspan = np.arange(0, Tmax, dt)

Initial conditions setting
X0=[0.14,0.18,1.8]

[3]: #Definition of the model

def model(s, t):

3

Parameters
v1=0.7
v2=v4=v6=0.35
k3=k5=0.7
Variables
x,y,z=s
Equations
x_dot=v1*(1/(1+z**4))-v2*(x/(1+x))
y_dot=k3*x-v4*(y/(1+y))
z_dot=k5*y-v6*(z/(1+z))
return x_dot, y_dot, z_dot

[4]: # 2D Plot of the trajectories (X,Y or Z vs T)

This is used in order to take only a certain portion of the signal: indeed a␣
↪limit cycle is an asymptotic behavior!

samp_frac= 0.05
lastpart=int(len(tspan)*samp_frac)

Please note that the solution is containing both x,y and z.
sol=odeint(model, X0, tspan)

plt.figure()
We plot the trajectories for x,y and z, so we iterate over these 3
for i in range(sol.shape[1]):

take the last 5% of the signal
plt.plot(tspan[-lastpart:], sol[-lastpart:,i])

plt.xlabel("time")
plt.ylabel("x, y, and z trajectories")
plt.show()

4

[5]: # 3D plot
ax = plt.axes(projection='3d')
ax.plot(*sol.T)

ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")

ax.set_title("3D visualization of motion")
plt.show()
plt.close()

2D plot
fig,ax1 = plt.subplots()
ax1.plot(sol[:,0], sol[:,1])
ax1.set_xlabel("x")
ax1.set_ylabel("y")
fig,ax1 = plt.subplots()

ax1.plot(sol[:,1], sol[:,2])
ax1.set_xlabel("y")

5

ax1.set_ylabel("z")

[5]: Text(0, 0.5, 'z')

6

7

5) Use Period_finder on a long (many periods) trajectory on x. Comment the period distribution
you find and its point estimate. What happens if you use the y or z trajectory to evaluate
the period?

The Period_finder function takes as an imput the x (or y or z) vector of coordinates
and a vector of equally spaced times at wich the given coordinate was obtained with a
simulation. It takes the x limits of the plot as a possible input, with default values of 0
to 50. It returns a plot of the period distribution and a point estimate for the period. If
you want to understand how this function was built, read “A. few words on the discrete
Fourier transform”.

Hint: to calculate the period, use the last 20 % of the solution

[6]: def Period_finder(x, tspan, xlim=[0,50], ToPrint=True):

signal = x

omega = np.fft.fft(signal)

modes = np.arange(omega.size)

t_dist = (tspan[-1]-tspan[0])

8

omega_cut = len(omega)//2

modes = modes[1:omega_cut]
omega = omega[1:omega_cut]

periods = t_dist/modes

abs_o = np.absolute(omega)
max_o = np.argmax(abs_o)

period_estimate = periods[max_o]

if ToPrint:
plot_period(period_estimate, periods, abs_o)
print("the period value is about " + str(round(period_estimate,2)) + "␣

↪hours")

return (period_estimate, periods, abs_o)

def plot_period(period_estimate, periods, abs_o,xlim=[0,50]):
fig,ax= plt.subplots()

ax.axvline(period_estimate, ls='--', c='k')

ax.plot(periods,abs_o/np.sum(abs_o))

ax.set_xlim(xlim)
ax.set_xlabel("period")
ax.set_ylabel("propobabilty density")

return (fig ,ax)

[7]: samp_frac=0.2
lastpart=int(len(tspan)*samp_frac)
_ = Period_finder(sol[-lastpart:,0],tspan[-lastpart:])

the period value is about 23.81 hours

9

5) If we only consider the peak we find a period of 23.81 hours, which is a reasonable
value for a circadian oscillator.

Hopf bifurcation.

6) Vary the value of the transcription rate 𝑣1 in the interval (0, 5] 𝑛𝑀ℎ−1. You can plot some
representative trajectories (see the code before and replace the 𝑣1). Plot and discuss the
bifurcation diagram (show 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 in function of 𝑣1 ∈ (0, 5]).

[8]: sample_frac=0.05

def model(s, t, v):
Parameters
v1=v
v2=v4=v6=0.35
k3=k5=0.7
Variable
x,y,z=s
Model
x_dot=v1*(1/(1+z**4))-v2*(x/(1+x))
y_dot=k3*x-v4*(y/(1+y))
z_dot=k5*y-v6*(z/(1+z))

10

return x_dot, y_dot, z_dot

f, axs = plt.subplots(4,5, figsize=(20,10))
axs=axs.flatten()
cmap = matplotlib.cm.viridis

We define a range in which we vary v
vspan=np.linspace(0.1,5,20)

lastpart=int(len(tspan)*samp_frac)

X_lims=[]
for n,v in enumerate(vspan):

Initial Conditions
X0=[0.14,0.18,1.8]
Solutions
sol=odeint(model, X0, tspan, args=(v,))
X-Solution
sol_x=sol[-lastpart:,0]
We append the max and the min of the solution according to every␣

↪different value of v
X_lims.append([v, np.max(sol_x),np.min(sol_x)])

axs[n].plot(sol[:,0],sol[:,1],c=cmap.colors[n])
axs[n].set_title("v = "+str(round(v,2)))
axs[n].set_xlim(0,0.8)
axs[n].set_xlim(0,0.5)

X_lims=np.array(X_lims)

11

[9]: # We plot the minimum and the maximum of the solution according to v
plt.plot(X_lims[:,0], X_lims[:,1], label='X max')
plt.plot(X_lims[:,0], X_lims[:,2], label='X min')
plt.legend()
plt.xlabel("v")
plt.ylabel("X max, X min")
plt.show()

12

6) As we vary v, we see that there is a change in the nature of the fixed point. For
low and high values of v, there is NO limit cycle (maximum and minimum of x
coincide). In the middle range instead, the maximum of the function is different
from the minimum, meaning that a limit cycle is present.

1.4 3. Entrainement of a generic non-linear oscillator (Python)
Let’s take the model of exercise 2 and add an external periodic entrainement with period 𝑇 as
follows:

𝑑𝑋
𝑑𝑡 = 𝑣1_𝑒𝑛𝑡(𝑡) ∗ 𝐾4

1
𝐾4

1 + 𝑍4 − 𝑣2
𝑋

𝐾2 + 𝑋 (9)

𝑑𝑌
𝑑𝑡 = 𝑘3𝑋 − 𝑣4

𝑌
𝐾4 + 𝑌 (10)

𝑑𝑍
𝑑𝑡 = 𝑘5𝑌 − 𝑣6

𝑍
𝐾6 + 𝑍 (11)

where 𝑣1_𝑒𝑛𝑡(𝑡) = 𝑣1 ∗ 𝐴(1 + sin(2𝜋
𝑇 𝑡))

13

1. Implement the entrainment in the model with 𝐴 = 0.01 and 𝐴 = 0.2. Is the oscilaltor stably
entrained? If, what period do you expect then? Verify your prediction by simulation.

Hint: to calculate the period, use the last 20 % of the solution and to visualise the
trajectories, plot only the last 5 % of the solution

[10]: T_external = 25
Tmax=T_external * 100
dt=0.01
tspan = np.arange(0, Tmax, dt)
Initial conditions setting
X0=[0.14,0.18,1.8]

[11]: #Definition of the model with entrainment
def model(s, t, A, T_external=25):

Parameters
v1=0.7
v2=v4=v6=0.35
k3=k5=0.7
Variables
x,y,z=s
Equations
v1_entrained = v1 * (1+A*np.sin(2*np.pi*t/T_external))
x_dot=v1_entrained*(1/(1+z**4))-v2*(x/(1+x))
y_dot=k3*x-v4*(y/(1+y))
z_dot=k5*y-v6*(z/(1+z))
return x_dot, y_dot, z_dot

𝐴 = 0.01

[12]: A = 0.01

Please note that the solution is containing both x,y and z.
sol=odeint(model, X0, tspan, args=(A,))

2D Plot of the trajectories (X,Y or Z vs T)

This is used in order to take only a certain portion of the signal
samp_frac= 0.05

lastpart=int(len(tspan)*samp_frac)

plt.figure()

We plot the trajectories for x,y and z, so we iterate over these 3
for i in range(sol.shape[1]):

plt.plot(tspan[-lastpart:], sol[-lastpart:,i])

14

plt.xlabel("time")
plt.ylabel("x, y, and z trajectories")
plt.show()

3D plot
ax = plt.axes(projection='3d')
ax.plot(*sol.T)

ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")

ax.set_title("3D visualization of motion")
plt.show()
plt.close()

samp_frac=0.2
_ = Period_finder(sol[-int(Tmax/dt*samp_frac):,0],tspan[-int(Tmax/dt*samp_frac):

↪])

15

the period value is about 23.81 hours

16

𝐴 = 0.2

[13]: A = 0.2

Please note that the solution is containing both x,y and z.
sol=odeint(model, X0, tspan, args=(A,))

This is used in order to take only a certain portion of the signal
samp_frac= 0.05

lastpart=int(len(tspan)*samp_frac)

plt.figure()

We plot the trajectories for x,y and z, so we iterate over these 3
for i in range(sol.shape[1]):

plt.plot(tspan[-lastpart:], sol[-lastpart:,i])

plt.xlabel("time")
plt.ylabel("x, y, and z trajectories")
plt.show()

17

3D plot
ax = plt.axes(projection='3d')
ax.plot(*sol.T)

ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")

ax.set_title("3D visualization of motion")
plt.show()
plt.close()

samp_frac=0.2
_ = Period_finder(sol[-int(Tmax/dt*samp_frac):,0],tspan[-int(Tmax/dt*samp_frac):

↪])

18

the period value is about 25.0 hours

19

2. Vary the value of the entrainment strength 𝐴 in the interval [0, 0.1]. Which approximative
value of A induces a change in period in the model? You can plot representative trajectories
and period diagram using the 𝑝𝑒𝑟𝑖𝑜𝑑_𝑓𝑖𝑛𝑑𝑒𝑟 provided function. Discuss your findings.

Hint: to calculate the period, use the last 20 % of the solution and to visualise the
trajectories, plot only the last 5 % of the solution

[14]: T_external=25
Tmax = T_external * 100
dt=0.01
tspan = np.arange(0, Tmax, dt)

this tspan is used to calculate the period
tspan_20percent = int(0.2*len(tspan))

this tspan is used for the plotting of the solution
tspan_5percent = int(0.05*len(tspan))

Initial Conditions
X0=[0.15, 0.3, 1.8]

20

[15]: f, axs = plt.subplots(2,5, figsize=(20,8))
axs=axs.flatten()

f2, axs2 = plt.subplots(2,5, figsize=(20,8))
axs2=axs2.flatten()

We define a range in which we vary A
A=np.linspace(0, 0.1, 10)

for n,a in enumerate(A):

Solutions
sol=odeint(model, X0, tspan, args=(a,))

axs[n].plot(sol[-tspan_5percent:,0],sol[-tspan_5percent:,1])
axs[n].set_title("a = "+str(round(a,2)))
axs[n].set_xlim(0,0.5)

period_estimate, periods, abs_o = Period_finder(sol[-tspan_20percent:,0],␣
↪tspan[-tspan_20percent:], ToPrint=False)

axs2[n].axvline(period_estimate, ls='--')
axs2[n].plot(periods,abs_o/np.sum(abs_o))
axs2[n].set_xlim([15,30])
axs2[n].set_xlabel("period")
axs2[n].set_ylabel("propobabilty density")
axs2[n].set_title(str(round(a,2)))

21

3. To analyse the change of period in relation to the entrainment strength 𝐴, simulate the model
without entrainment for a time 𝑇 0 and then switch on the entrainment. Vary the strength of
the entrainment as in 3.2. Discuss the effect of the strength of the entrainment on the period
(compare the period before and after switching the entrainment). Discuss you findings.

Hint: to calculate the period, here use the last 40 % of the solution and to visualise the
trajectories, plot only the last 5 % of the solution

[16]: T_external=25

Total time of the simulation of the model
Tmax = T_external * 1000 #here we simulate a total of 100 cycles, you can also␣

↪change this value
dt=0.01

Time after the entrainment should start
T0 = T_external * 40
n_entrain= int(T0 / dt)

Initial Conditions
X0=[0.15, 0.3, 1.8]

[17]: f, axs = plt.subplots(2,5, figsize=(20,8))
axs=axs.flatten()

f2, axs2 = plt.subplots(2,5, figsize=(20,8))
axs2=axs2.flatten()

We define a range in which we vary A
A=np.linspace(0, 0.1, 10)

tspan = np.arange(0, Tmax, dt)

22

tspan_1 = tspan[:n_entrain]
tspan_2 = tspan[n_entrain:]

these tspan are used to calculate the period
we skip the first oscillations of the system to calculate the period
tspan1_40percent = int(0.4*len(tspan_1))
tspan2_40percent = int(0.4*len(tspan_2))

for n,a in enumerate(A):

Initial Conditions
X0=[0.15, 0.3, 1.8]

Solutions
a1=0.0
sol1=odeint(model, X0, tspan_1, args=(a1,))

X0=sol1[-1,:]
sol2=odeint(model, X0, tspan_2, args=(a,))

axs[n].plot(sol1[-10000:,0],sol1[-10000:,1],c='b')
axs[n].plot(sol2[-10000:,0],sol2[-10000:,1],c='r')
axs[n].set_title("a = "+str(round(a,2)))
axs[n].set_xlim(0,0.5)

period_estimate1, periods1, abs_o1 = Period_finder(sol1[-tspan1_40percent:
↪,0], tspan_1[-tspan1_40percent:], ToPrint=False)

period_estimate2, periods2, abs_o2 = Period_finder(sol2[-tspan2_40percent:
↪,0], tspan_2[-tspan2_40percent:], ToPrint=False)

axs2[n].axvline(period_estimate1, ls='--', c='b', label="not entrained")
axs2[n].axvline(period_estimate2, ls='--', c='r', label="entrained")
axs2[n].plot(periods1,abs_o1/np.sum(abs_o1), c='b')
axs2[n].plot(periods2,abs_o2/np.sum(abs_o2), c='r')
axs2[n].set_xlim([15,30])
axs2[n].set_xlabel("period")
axs2[n].set_ylabel("propobabilty density")
axs2[n].set_title(str(round(a,2)))
axs2[n].legend(loc="upper left")

23

[]:

24

	Course: BIO-341 Dynamical systems in biology
	Circadian oscillators
	1. Sample exam question: Coupled oscillators (Paper and pencil)
	2. Circadian oscillators of a generic non-linear oscillator (Python)
	A three-variable model of a circadian oscillator
	The Model
	Simulation of the Model

	3. Entrainement of a generic non-linear oscillator (Python)

