[17:

Solution 11 24

November 25, 2024

0.0.1 Course: BIO-341 Dynamical systems in biology
Professor: Julian Shillcock & Felixz Naef
SSV, BA5, 2024

#import important libraries

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

from IPython.display import set_matplotlib_formats
from scipy.integrate import odeint

import math as mt

from mpl_toolkits.mplot3d import Axes3D

from matplotlib.lines import Line2D

import random

1 Circadian oscillators

1.1 1. Sample exam question: Coupled oscillators (Paper and pencil)

The phases of these two oscillators with natural frequency (fréquence propre) w, and w, are written
$1(t) and ¢o(1).

They are coupled according to the following model:

d
W1 i+ K02~ 00) (1)
d
W2 — oy K161~ 02))

with f(z) = sin(2z)

Determine whether the two phases synchronise, i.e. whether the phase difference a@ = ¢4 — ¢,
reaches a stable fixed point.

1. Form the differential equation for the phase difference a = ¢ — .

da doy, do; ,
— =" — =w, —w; — 2K 2
T 7t T Wy — Wy sin(2«) (3)

https://moodle.epfl.ch/course/info.php?id=14291

2. Explain whether this model allows the two phases to be synchronised, and if so, under what
conditions. conditions.

Synchronisation means that there is a stable fixed point (FP) Condition to have a FP :
wy —wy — 2K sin(2a*) =0 (4)
Wy — W

2K

For this equation to have a solution: —1 < #2242 <1, s0 —2K < w, —w; < 2K.

()

sin(2a*) =

For |*2721| = 1 the model has 2 semi-stable fixed points. For —1 < #2221 < 1, the
model has 4 fixed points, two of which are stable.

Condition to have a stable PF: F'(z) = —4K cos(2a*) < 0, so cos(2a*) > 0. If the
model has 4 fixed point, the condition is always respected for 2 out of 4 fixed points, so
the only condition for synchronisation is that —2K < w, —w; < 2K.

3. What happens to @ when K goes to infinity?

When K goes to infinity, sin(2a) goes to 0, and so does «, the difference between the
phases. So when K goes to infinity, the oscillators are synchronised and have the same
phase.

1.2 2. Circadian oscillators of a generic non-linear oscillator (Python)

Here, we first simulate a toy model of the circadian clock consisting of three variables that imple-
ments the now famous negative feedback loop oscillator (See the 2017 Nobel price in Physiology
and Medicine).

1.3 A three-variable model of a circadian oscillator

This is a highly simplified model of a circadian oscillator (see Feedback of the Drosophila period
gene product on circadian cycling of its messenger RNA levels, Hardin P, Hall JC and Rosbash M,
Nature 1990). It takes into account some basic ingredients, notably the negative feedback loop.
A clock gene mRNA (X) produces a clock protein (Y) which, in turn, activates a transcriptional
inhibitor (Z) of gene X.

dx K X

ax _ _ 6
it~ "Kivzi K, + X (6)

dy

2 ke X —y———

dt k3 U4K4+Y (7)
dz Z

= = kY — vy 8
at T UK, 12 ®)

1.3.1 The Model

1) Explain the different terms in the equations, and all the parameters. In particular explain
the terms containing the fractions.

1)

o In the first equation (£X) we find the production of mRNA (transcription) which
is regulated by 4 binding sites for the repressor Z and the degradation of X (a
first order enzymatic reaction). v; is the maximum transcription rate when the
promoter is fully unnoccupied. v, is the maximal degraddatipon rate.

e In the second equation (%), the translation (production of protein Y) is linearly
dependent on X, and again a degradation term is present, with v, the maximal
degradation rate.

e In the third equation (%) the activation of Z is linearly dependent on Y, and a
degradation term is present. The degrdation terms for X,Y and Z saturate for
large values. K,, K, and K represent the concentrations at which the degradtion
is half the maximum value. K, represent the concentration of Z at which the

promoter of X is half repressed.

2) Based on the literature, discuss plausible genes/proteins that could represent the X,Y,Z
variables.

2) In Drosophila Melanogaster: X = Per mRNA, Y = PER protein, and Z = TIM
protein, dimerize with PER, and repress the transcription of PER.

3) Discuss/criticize the main assumptions of the model.

3) One of the main assumption of the model is the linear nature of the relationship
between the activation of Z and the Y is not reflecting a typical biochemical process.

1.3.2 Simulation of the Model

4) Using the values v; = 0.7nMh™ Y vy = vy = v =0.35nMh K, = K, = K, = Kg = 1nM
and k; = kg = 0.7h7!, simulate the model: set appropriate initial conditions and time
integration parameters to obtain a limit cycle. Plot some representative trajectories in 2D (x
VS time, y VS time or z VS time) or 3D.

Hint: to visualise the trajectories, plot only the last 5 % of the solution

[2]: #Solving the differential equations
Tmax=5000
dt=0.01
tspan = np.arange(0, Tmax, dt)

Initial conditions setting
X0=[0.14,0.18,1.8]

[3]: #Definition of the model

def model(s, t):

Parameters

v1=0.7

v2=v4=v6=0.35

k3=kb=0.7

Variables

X,y,2Z=8

Equations
x_dot=v1*(1/(1+z**x4)) -v2*(x/(1+x))
y_dot=k3*x-v4*(y/(1+y))
z_dot=kb*y-v6*(z/(1+z))
return x_dot, y_dot, z_dot

[4]: # 2D Plot of the trajectories (X,Y or Z vws T)

This ts used in order to take only a certain portion of the signal: indeed ay
~limit cycle is an asymptotic behavior!

samp_frac= 0.05

lastpart=int (len(tspan)*samp_frac)

Please note that the solution %s containing both z,y and z.
sol=odeint (model, X0, tspan)

plt.figure()
We plot the trajectories for z,y and z, so we tterate over these 3
for i in range(sol.shape[1]):

take the last 57 of the signal

plt.plot(tspan[-lastpart:], sol[-lastpart:,il)

plt.xlabel("time")
plt.ylabel("x, y, and z trajectories")
plt.show()

2.0
5]
u
.
S 1.5 1
L)
L
g
&N}
2 1.0
[15]
=
9
N VA VA VA VAN AN A WAV AW
0'0 E T T T T T T
4750 4800 4850 4900 4950 5000
time

[5]: # 3D plot
ax = plt.axes(projection='3d")
ax.plot(*sol.T)

ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")

ax.set_title("3D visualization of motion")
plt.show()
plt.close()

2D plot

fig,ax1 = plt.subplots()
axl.plot(sol[:,0], soll[:,1])
axl.set_xlabel("x")
axl.set_ylabel("y")

fig,ax1l = plt.subplots()

axl.plot(sol[:,1], sol[:,2])
axl.set_xlabel("y")

axl.set_ylabel("z")

3D visualization of motion

[5]: Text(0, 0.5, 'z")

0.55 1
0.50 -
0.45 -
0.40 -

> 0.35 1
0.30 -
0.25 -

0.20

T T T T T T T T
0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
x

2.6

2.4

2.2

2.0+

1.8

T T T T T T T T
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
¥

5) Use Period__finder on a long (many periods) trajectory on x. Comment the period distribution
you find and its point estimate. What happens if you use the y or z trajectory to evaluate
the period?

The Period_finder function takes as an imput the x (or y or z) vector of coordinates
and a vector of equally spaced times at wich the given coordinate was obtained with a
simulation. It takes the x limits of the plot as a possible input, with default values of 0
to 50. It returns a plot of the period distribution and a point estimate for the period. If
you want to understand how this function was built, read “A. few words on the discrete
Fourier transform”.

Hint: to calculate the period, use the last 20 % of the solution

[6]: def Period_finder(x, tspan, x1im=[0,50], ToPrint=True):

signal = x

omega = np.fft.fft(signal)

modes = np.arange (omega.size)

t_dist = (tspan[-1]-tspan[0])

omega_cut = len(omega)//2

modes = modes[1:omega_cut]
omega = omegall:omega_cut]

periods = t_dist/modes

abs_o = np.absolute(omega)
max_o = np.argmax(abs_o)

period_estimate = periods[max_o]
if ToPrint:
plot_period(period_estimate, periods, abs_o)

print ("the period value is about " + str(round(period_estimate,2)) + ",
<hours")

return (period_estimate, periods, abs_o)

def plot_period(period_estimate, periods, abs_o,x1im=[0,50]):
fig,ax= plt.subplots()

ax.axvline(period_estimate, 1s='--', c='k')
ax.plot(periods,abs_o/np.sum(abs_o))
ax.set_xlim(xlim)
ax.set_xlabel("period")
ax.set_ylabel("propobabilty density")
return (fig ,ax)

[7]: samp_frac=0.2

lastpart=int (len(tspan)*samp_frac)

_ = Period_finder(sol[-lastpart:,0],tspan[-lastpart:])

the period value is about 23.81 hours

0.14

propobabilty density
o o o o o
=] [=] [=] = =
- [=4] [s:x] o o]
i i i i i

0.02

0.00

period

5) If we only consider the peak we find a period of 23.81 hours, which is a reasonable
value for a circadian oscillator.

Hopf bifurcation.

6) Vary the value of the transcription rate v; in the interval (0,5] nMh™!. You can plot some
representative trajectories (see the code before and replace the v;). Plot and discuss the

bifurcation diagram (show X, ;. and X, . in function of v; € (0,5]).

[8]: sample_frac=0.05

def model(s, t, v):
Parameters
vi=v
v2=v4=v6=0.35
k3=kb=0.7
Variable
X,V,Z=S
Model
x_dot=vi*(1/(1+z**4))-v2*x(x/(1+x))
y_dot=k3*x-v4* (y/(1+y))
z_dot=kb*y-v6*(z/(1+z))

10

return x_dot, y_dot, z_dot

f, axs = plt.subplots(4,5, figsize=(20,10))
axs=axs.flatten()
cmap = matplotlib.cm.viridis

We define a Tange in which we vary v
vspan=np.linspace(0.1,5,20)

lastpart=int (len(tspan)*samp_frac)

X_lims=[]
for n,v in enumerate(vspan) :
Initial Conditions
X0=[0.14,0.18,1.8]
Solutions
sol=odeint (model, X0, tspan, args=(v,))
X-Solution
sol_x=sol[-lastpart:,0]
We append the maz and the min of the solution according to every,
~dtfferent value of v
X_lims.append([v, np.max(sol_x),np.min(sol_x)])

axs[n] .plot(sol[:,0],s0l[:,1],c=cmap.colors[n])
axs[n] .set_title("v = "+str(round(v,2)))

axs[n] .set_x1im(0,0.8)

axs[n] .set_x1im(0,0.5)

X_lims=np.array(X_lims)

11

[9]:

v=0.1 v =0.36 v =0.62 v =0.87 v=113
0.35] 051 0.6
035
0.30 4 044 0.5 067
0.30 04
025 1 | g 0.4
0.25 03 03
0.20 02
0.20 024 0.2
0.0 Q2189 04 O 0.0 0z 1.68 05 00 42 168 05 00 02 2.98 00 01 Q283 04 05
1.0
0.8+ 1.0 Loo 1257
0.8 05 : 1,004
064 075
06 0.6) 0.754
0.4 04 0al 050 050
02 02 02 025 0.251
0.0 0.00 0.004
0.0 2= 2.68 0.0 Q%= 2.94 05 00 2= 3.99 05 0.0 Q2= 3.45 00 01 Q=3P 04 05
3 15 s
- 15
104
10
109 10 104
05+ 05 05 05 05+
0.0 0.0 004 0.0 00+
0.0 Q= 3.63 0.0 Q= 493 05 00 0L 4.88 05 00 Q%L 4,94 00 01 02_5@%3 04 05
2.0 20 25
- 2.09 2.0
- 2.01
154 15
s 15 15
s 15
104
1.0 1.0 1.0 104
05 — 05 05 — 05 05
0.0 — 0.0 0.0 — 0.0 00+
0.0 0.0 05 00 05 00 00 01 02 03 04 05

We plot the minimum
plt.plot(X_lims[:,0],
plt.plot(X_lims[:,0],

plt.legend()

plt.xlabel("v")

X lims[:

plt.ylabel("X max, X min")

plt.show()

X lims[:,1],
’2]’

)
)

and the mazimum of the solution according to v
label='X max'
label='X min'

0.18 - — Xmax
X min
0.16 -
=
£ 0.14 1 -
>
;
[1a}
£
X 0.12 1 ..
0.10 -
0.08 -
T T T T T T
0 1 2 3 4 5

6) As we vary v, we see that there is a

change in the nature of the fixed point. For

low and high values of v, there is NO limit cycle (maximum and minimum of x
coincide). In the middle range instead, the maximum of the function is different
from the minimum, meaning that a limit cycle is present.

1.4 3. Entrainement of a generic non-

Let’s take the model of exercise 2 and add an
follows:

dX

linear oscillator (Python)

external periodic entrainement with period T as

K X

E = vl_ent (t>

dy
kX
dt 3
dZ

= =kY
dt 5

where vy () = vy x A(1+ Sin(z%t))

"Kirzr K, + X

Y
—Uy = (10)
K,+Y
A
— Vg—— 11
UGKﬁ—i—Z (11)

13

1. Implement the entrainment in the model with A = 0.01 and A = 0.2. Is the oscilaltor stably
entrained? If, what period do you expect then? Verify your prediction by simulation.

Hint: to calculate the period, use the last 20 % of the solution and to visualise the
trajectories, plot only the last 5 % of the solution

[10]: T_external = 25
Tmax=T_external * 100
dt=0.01
tspan = np.arange(0, Tmax, dt)
Initial conditions setting
X0=[0.14,0.18,1.8]

[11]: #Definition of the model with entrainment
def model(s, t, A, T_external=25):
Parameters
v1=0.7
v2=v4=v6=0.35
k3=k5=0.7
Variables
X,¥,z=s
Equations
vl_entrained = vl * (1+A*np.sin(2*np.pi*t/T_external))
x_dot=vl_entrained*(1/(1+z**4))-v2*(x/(1+x))
y_dot=k3*x-v4* (y/(1+y))
z_dot=kb*y-v6*(z/(1+z))
return x_dot, y_dot, z_dot

A=0.01

[12]: /A = 0.01

Please note that the solution %s containing both z,y and z.
sol=odeint (model, X0, tspan, args=(4,))

2D Plot of the trajectories (X,Y or Z vs T)

This ts used in order to take only a certain portion of the signal
samp_frac= 0.05

lastpart=int (len(tspan)*samp_frac)
plt.figure()
We plot the trajectories for z,y and z, so we iterate over these 3

for i in range(sol.shape[1]):
plt.plot(tspan[-lastpart:], sol[-lastpart:,i])

14

plt.xlabel("time")
plt.ylabel("x, y, and z trajectories")
plt.show()

3D plot
ax = plt.axes(projection='3d"')
ax.plot(*sol.T)

ax.set_xlabel ("x")
ax.set_ylabel("y")
ax.set_zlabel("z")

ax.set_title("3D visualization of motion")
plt.show()
plt.close()

samp_frac=0.2
_ = Period_finder(sol[-int(Tmax/dt*samp_frac):,0] ,tspan[-int(Tmax/dt*samp_frac):
=])

2.0 -
5]
K
8 151
L)
L)
&
Pl
2 1.0
[15]
=
=
) W
W
0.0 -

T T T T T T T
2380 2400 2420 2440 2460 2480 2500
time

15

3D visualization of motion

the period value is about 23.81 hours

16

0.175 7

0.150 ~

0.125 A

0.100

0.075

propobabilty density

0.050 A

0.025 ~

0.000

period

Please note that the solution is containing both z,y and z.
sol=odeint (model, X0, tspan, args=(4,))

This ts used in order to take only a certain portion of the signal
samp_frac= 0.05

lastpart=int(len(tspan)*samp_frac)
plt.figure()
We plot the trajectories for z,y and z, so we iterate over these 3
for i in range(sol.shape[1]):

plt.plot(tspan[-lastpart:], sol[-lastpart:,i])
plt.xlabel("time")

plt.ylabel("x, y, and z trajectories")
plt.show()

17

3D plot
ax = plt.axes(projection='3d"')
ax.plot(*sol.T)

ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")

ax.set_title("3D visualization of motion")
plt.show()
plt.close()

samp_frac=0.2
_ = Period_finder(sol[-int(Tmax/dt*samp_frac):,0],tspan[-int(Tmax/dt*samp_frac):

=1

3.0 A

= g ™
Ln [=] Ln
L L L

%, ¥y, and z trajectories
=
o
i

0.5 A

0.0

T T T T T T T
2380 2400 2420 2440 2460 2480 2500
time

18

3D visualization of motion

i 3.25
T 3.00
T 2.75
T 2.50
" 2.25
T 2.00
T L75

0.30

the period value is about 25.0 hours

19

[14]:

0.7 A

o
=]
1

o
Ln
1

propobabilty density
o o
8] e

o
P
1

o
=t
I

0.0

period

2. Vary the value of the entrainment strength A in the interval [0,0.1]. Which approximative
value of A induces a change in period in the model? You can plot representative trajectories
and period diagram using the period__finder provided function. Discuss your findings.

Hint: to calculate the period, use the last 20 % of the solution and to visualise the
trajectories, plot only the last 5 % of the solution

T_external=25

Tmax = T_external * 100
dt=0.01

tspan = np.arange(0, Tmax, dt)

thts tspan is used to calculate the period
tspan_20percent = int(0.2*len(tspan))

this tspan is used for the plotting of the solution
tspan_bpercent = int(0.05*len(tspan))

Initial Conditions
X0=[0.15, 0.3, 1.8]

20

[15]:

f, axs = plt.subplots(2,5, figsize=(20,8))
axs=axs.flatten()

f2, axs2 = plt.subplots(2,5, figsize=(20,8))
axs2=axs2.flatten()

We define a range in which we vary A
A=np.linspace(0, 0.1, 10)
for n,a in enumerate(4):

Solutions
sol=odeint (model, X0, tspan, args=(a,))

axs[n] .plot(sol[-tspan_bpercent:,0],sol[-tspan_bpercent:,1])

axs[n] .set_title("a = "+str(round(a,2)))
axs[n] .set_x1im(0,0.5)

period_estimate, periods, abs_o = Period_finder(sol[-tspan_20percent:,0],,

~tspan[-tspan_20percent:], ToPrint=False)

axs2[n] .axvline(period_estimate, ls='--"')
axs2[n] .plot(periods,abs_o/np.sum(abs_o))
axs2[n] .set_x1im([15,30])

axs2[n] .set_xlabel("period")

axs2[n] .set_ylabel("propobabilty density")
axs2[n] .set_title(str(round(a,2)))

a=0.0 a=0.01 a=10.02

a=003

a=20.04

0.425
0.400
0.375 4
0.350 -
0.325 4
0.300 -
0.275 4
0.250

i 0.425
0.425

0.400

0.400 0.40
0375 0375
0350 035 0.330
0.325 0.325
0.300 0301 0.300
0275 0275

0.25
0.250 0.250

01 01

00 01 02 03 04 05 00 02 03 04 05 00 02 03 04
a=0.06 a=0.07 a=0.08

.0 O.‘l O.‘Z 0.‘3
a =009

0.4

0.1

0.2

03

a=01

04

X .6 0.6
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
. . . X . . 0l 02 01 02

0.6 4

0.5

0.4 4

034

024

05

0.4

03

0.2

03 04 05 00 03 04

21

0.5

0.0 0.01 0.02 0.03 0.04

0.200
0.150 i 014 i 0.14 0.175 3 020 H
2z 0125 i 012 1 012 | 2|0.150 i i
@ @
G 0.10 54
8 o100 ! 1 0.10 i glo12s | 015 1
g | 0.08 H 0.08 H ? 0.100 1 1
< 0.075 2
2 1 0.06 ' 0.06 ' 210075 1 010 1
g : ' : : : g° : :
g 0050 &
g i 0.04 i 0.04 i 5/0.050 i 0051 i
0.025 | 0.02 H 0.02 | 0.025 H H
i 1 i i 1
0,000 ! 0.00 ! 0.00 ! 0.000 ! 0,001 !
15.0 17.5 20.0 225 25.0 27.5 30.0 15.0 17.5 20.0 22.5 25.0 27.5 30.0 15.0 17.5 20.0 225 25.0 27.5 30.0 15.0 17.5 20.0 22.5 25.0 27.5 30.0 15.0 17.5 20.0 22.5 25.0 27.5 30.0
R LAk RS RS Peripd
08 0.8 08 08 08
07 07 071 07 0.7
i i i i
206 i > 0.6 | o> 069 | > 06 i > 06 i
§ 05 | 5 05 ! 5 0.5 ! S 05 ! £ 0.5 |
b s i 6 [
Zoa ! 0.4 ! I 0.4 1 Z 04 1 1Z 0.4 i
2 2 B
503 ! 03 ! S 03 ! 03 ! 15 03 1
g | | s | | 3 i
£ o2 ! 2 02 ! 02+ ! 2 02 ! 0.2+ !
I I I I '
i i] i i] i
01 ! 0.1 ! 01 ! 01 ! 01 !
I I I I V
0.0 ! 0.0 1 ! 001 ! 001 ! 0.0 !
150 17.5 200 225 25.0 27.5 300 150 17.5 20.0 22.5 25.0 27.5 300 150 17.5 200 225 25.0 27.5 30.0 150 17.5 200 225 250 27.5 30.0 150 17.5 20.0 225 25.0 27.5 30.0
period period period period period

3. To analyse the change of period in relation to the entrainment strength A, simulate the model
without entrainment for a time 70 and then switch on the entrainment. Vary the strength of
the entrainment as in 3.2. Discuss the effect of the strength of the entrainment on the period
(compare the period before and after switching the entrainment). Discuss you findings.

Hint: to calculate the period, here use the last 40 % of the solution and to visualise the
trajectories, plot only the last 5 % of the solution

[16]: T_external=25

Total time of the simulation of the model

Tmax = T_external * 1000 #here we simulate a total of 100 cycles, you can also,
~change this wvalue

dt=0.01

Time after the entrainment should start
TO = T_external * 40
n_entrain= int(TO / dt)

Initial Conditions
X0=[0.15, 0.3, 1.8]

[17]: £, axs = plt.subplots(2,5, figsize=(20,8))

axs=axs.flatten()

£2, axs2 = plt.subplots(2,5, figsize=(20,8))
axs2=axs2.flatten()

We define a range in which we wvary A
A=np.linspace(0, 0.1, 10)

tspan = np.arange(0, Tmax, dt)

22

tspan_1 = tspan[:n_entrain]
tspan_2 = tspan[n_entrain:]

these tspan are used to calculate the pertiod

we skip the first oscillations of the system to calculate the period
tspanl_40percent = int(0.4*len(tspan_1))

tspan2_40percent = int(0.4*len(tspan_2))

for n,a in enumerate(A):

Initial Conditions
X0=[0.15, 0.3, 1.8]

Solutions
al=0.0
soll=odeint (model, X0, tspan_1, args=(al,))

X0=so0l1[-1,:]
sol2=odeint (model, X0, tspan_2, args=(a,))

axs[n] .plot(sol1[-10000:,0],s011[-10000:,1],c='b")
axs[n] .plot(sol2[-10000:,0],s8012[-10000:,1],c="'r")
axs[n] .set_title("a = "+str(round(a,2)))

axs[n] .set_x1im(0,0.5)

period_estimatel, periodsl, abs_ol = Period_finder(soll[-tspanl_40Opercent:
<,0], tspan_1[-tspanl_40percent:], ToPrint=False)

period_estimate2, periods2, abs_o2 = Period_finder(sol2[-tspan2_40Opercent:
<,0], tspan_2[-tspan2_40percent:], ToPrint=False)

axs2[n] .axvline(period_estimatel, ls='--', c='b', label="not entrained")
axs2[n] .axvline(period_estimate2, 1ls='--', c='r', label="entrained")
axs2[n] .plot(periodsl,abs_ol/np.sum(abs_ol), c='b"')

axs2[n] .plot(periods2,abs_o2/np.sum(abs_o02), c='r')

axs2[n] .set_x1im([15,30])

axs2[n] .set_xlabel("period")

axs2[n] .set_ylabel("propobabilty density")

axs2[n] .set_title(str(round(a,2)))

axs2[n] .legend(loc="upper left")

23

]

a=0.0 a=0.01 a=10.02 a=0.03 a=0.04
0425 0425+ 045 0451 0425
0.400 0.400 1 0.400
0.40 040
0375 03754 0375
0.350 0.350 4 035 0.35 1 0.350
0325 03254 0325
0300 0,300 030 0301 0.300
0275 0275 0275
0.25 0.25 1
0250 02504 0.250
0.0 01 0.2 0.3 0.4 0 0.1 02 03 04 0.1 0.2 0.3 0.4 05 0.0 01 0.2 03 0.4 o 0.1 0.2 03 04
a=0.06 a=0.07 a=0.08 a=0.09 a=01
0.6 J
06 06 0.6 06
05 054 05 054 05
0.4 0.4 04 044 0.4
03 034 03 03 03
0.2 0.2+ 0.2 0.2 4 0.2
00 01 02 03 04 05 00 Ol 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
0.0 0.01 0.02 0.03 0.04
07 = 07 07 1 07 = T 07 T
not entrained not entrained -=- not entrained not entrained | | -=- notentrained | |
0.6 entrained 0.6 entrained 06 --- entrained 0.6 entrained ! 0.6 - entrained !
d| 1 I
i| 1 i
Zos 2 05 2 0.5 12 05 A Z 05 !
] A] o i 7 |
2 2 2 2 W 2 |
] b 5 5 | g |
04 [° 04 [044 [04 i [° 04 i
z z I I
E I I
203 03 0.3 0.3 i 03 i
2
2
o 0.2 0.2 0.2+ 0.2 0.2
5
01 01 0.1 JL 01 0.1
0.0 0.0 0.0 0.0 0.0
150 17.5 200 225 250 27.5 300 150 175 20.0 225 250 275 300 150 175 20.0 22.5 250 27.5 30.0 150 17.5 20.0 225 250 27.5 300 150 17.5 20.0 22.5 25.0 27.5 30.0
RseRs aiia Rsies! s peyigpd
08 08 038 08 0.8
--- not entrained --- not entrained --- not entrained --- not entrained --- not entrained
0.7 --- entrained 071 -=- entrained 079 -=- entrained 0.7 --- entrained 071 -=- entrained
506 [06 | 06 I 0.6 ! 5 06
@ A @ i 5 fl @
5 05 \ 5 05 S 05 5 0.5 I g o5
3 ! 5 B B ! B
204 04 2 0.4+ 0.4 04
H
503 03 034 03 03
g
g 02 0.2 0.2 0.2 0.2
01 01 0.1+ 01 0.1
0.0 0.0 0.0 0.0 0.0

150 17.5 20.0 225 250 27.5 30.0

period

period

150 175 20.0 22.5 25.0 27.5 30.0

15.0 17.5 20.0 225 25.0 27.5 30.0
period

24

150 17.5 20.0 225 250 27.5 30.0

period

period

15.0 175 20.0 225 25.0 27.5 30.0

	Course: BIO-341 Dynamical systems in biology
	Circadian oscillators
	1. Sample exam question: Coupled oscillators (Paper and pencil)
	2. Circadian oscillators of a generic non-linear oscillator (Python)
	A three-variable model of a circadian oscillator
	The Model
	Simulation of the Model

	3. Entrainement of a generic non-linear oscillator (Python)

