Synchronization in populations of phase
oscillators

Kuramoto model
(Yoshiki Kuramoto, 1984)



Teachlng example (BIO-341). The Kuramoto model

CHAPITRE 6. OSCILLATEURS DE PHASE ET ENTRAINEMENT

2 Modele de Kuramoto

source: https://www.youtube.com/watch?v=suxulbmPm2g



Fireflies resonate/synchronize too




The mammalian master clock in the brain
(SCN slice in mouse)

courtesy of Mick Hastings




The famous Kuramoto model
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The famous Kuramoto model
(summary of key steps)

All-to-all phase coupling model

Distribution of frequencies
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Rewrite in terms of the ‘mean amplitude’ 7.
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What is the value of rin function of K and ? Let’s just calculate it

| — <eie>s + <ei9>d e: entrained, d: drifting

interesting

part = 0 due to symmetry (cf Notes)



That’s the result

r={(cos(0));=rK _7;//22 cos*(0)g(Krsin(0))d6

Implicit relation between r, K, and g
r=0 is always a solution (branch 1)
The equation has a 2nd branch r(K). What can we say about this second branch?
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Let’s check numerically for the Gaussian g()

def Gaussian(x, mu=0, sig=1): 1 sigma_w=1
return np.exp(—(x-mu)*(x-mu) / (2xsigxsig)) / (np.sqrt(2*np.pi)*sig) Kc = 2 / np.pi * np.sqrt(2*np.pi) * sigma_w

def integrand(x,K,r,sig):

return np.cos(x)**k2 * Gaussian(Kkr#np.sin(x),@,sig) ST TR SRR, Lo d i

grid_K=np.arange(0,5,0.1)

def integral(K,r,sig): KK, rr=np.meshgrid(grid_K,grid_r)

return quad(integrand, -np.pi/2, np.pi/2, args=(K,r,sig)) V=np.array([0.])
Z=np.zeros_like(KK)
for i in range(KK.shape[0]):

for j in range(KK.shape[1]):

Z[i,jl=relU(KK[i,jl,rr[i,j], sigma_w)

plt.contour(KK,rr,Z,V, colors='purple')
plt.plot([0,5],[0,0], color='purple')
plt.scatter(Kc,0)
plt.xlabel('K")
plt.ylabel('r")
plt.show()

rel(K,r, sig):
return Kkintegral(K,r,sig) [0]-1
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Try with other distributions (see Notebook on Moodle)!
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The two branches
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Think about what happens if you increase K from 0?

How about stability of the two solutions?

Stability calculations are much harder since we have in infinite-dimensional SD
(more advanced course)

The easiest is to proceed numerically (simulations)



Simulating the Kuramoto model
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Kuramoto model
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Kuramoto-like models
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Figure 1. Schematic bifurcation diagram (a) for a symmetric and unimodal frequency distribution g and (b) for the bi-Cauchy
distribution ga > when bimodal (see §5). Red (resp. blue) lines indicate stable (resp. unstable) stationary solutions, see text
for details.

: A 1 1
Unimodal g(a)) ga,2(w)= o ((a) — 22+ A2 T (w+ 2)2 + Az)

Experiment with the notebook to obtain those diagrams



