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When Linear Methods are Not Flexible Enough
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Data Generating Process
Y = 0.3sin(10X) + 0.7X + ¢

There is structure in the data that
linear regression fails to capture.

Linear regression has a
high reducible error.



When Linear Methods are Not Flexible Enough
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Data Generating Process
Y = red if
0(20(0.3 sin(10X7) + 0.7X —X2)) > €

There is structure in the data that
logistic regression fails to capture.
Logistic regression has a
high reducible error.
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Error Decomposition for Regression

Assume the true conditional data generating process has the form
1 )
pylx) = N 202
This is also sometimes writtenas Y = f(X) + e.
We call f the systematic information that X provides about Y and e the noise.

Let us assume with some supervised machine learning method we find
5y ) 1 _bfa?
ply|x) = —e 2o
V2ro

Let us define the predicted average response ¥ = 7(X).

We would like to know how much the predicted average response y
differs in expectation from test data.
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Blackboard: Error Decomposition for Regression

Eyxmx(Y = V)% = (F(x) - F(x))* + Var(e)

—
Reducible Irreducible
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» Letus assume the red data points in this figure

were generated with the help of a function whose
graph is shown in blue. What is correct?

A. Alinear fit has a non-zero reducible error.

B. The irreducible error is zero.

C. A method that perfectly fits the red data
points (zero training error) has a reducible
error of zero.

» Assume we perform linear regression on the red
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data points and compute the residuals ¢; = y; — ¥;
gnd thg empiricgl variance % S, The
irreducible error is

A. larger B. smaller

than this empirical variance.

Error Decomposition
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» What is the irreducible error
for the following data

generating process?
_=2x?

plylx) = =
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» The true systematic information f that X provides about Y is usually unknown.
» Our goal: find the function f that minimizes the reducible error.

» The test loss of f for a given data generating process is never lower than its
ireducible error, ie. Ey, (Y - f(x))? > Var(e).
Note that the estimate of the true test loss with a test set (often just called “test
loss™) can by smaller than the irreducible error, by chance.
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Polynomial Regression

Finding the parameters of a polynomial f(X) = 0g + 01X 4 05X2 + - - - 04X¢
is equivalent to finding the parameters in linear regression with polynomial features

Xp=X,Xp = X% ... Xy =x1

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.46e+08)
—— Model —— Model —— Model
—— True function —— True function —— True function

o samples o samples o samples

https://scikit-1learn.org/1.3/auto_examples/model_selection/plot_underfitting_overfitting.html
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https://scikit-learn.org/1.3/auto_examples/model_selection/plot_underfitting_overfitting.html

Polynomial Regression

0.05¢ — training loss . . : H
\\ —testloss » Polynomial regression with degree 1is
— —minimal test loss . .
\ — —irreducible error linear regression.

004 » For small degrees (<6) training loss and

test loss are high.

» Minimal test loss is reached for
intermediate degrees; it is only slightly

higher than the irreducible error.
0.02

» For high degrees (>10) the method is
too flexible; it can fit peculiarities of the
given training set. Therefore the training
loss is lowest there, but the test loss is
higher.

0.01

flexibility (degree)

cpe Polynomial Regression
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Multiple Polynomial Classification

F(X) = 00 + 01X + 09Xp + 03X, Xg + 04 X7 + 05X5 + -+ + 01y (d12) )2 X5

(all powers up to d'th order)

— training loss
0.33 — test Joss
- -~ irreducible error
-~ - minimal test loss
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» Polynomial regression is like multiple regression with the additional features
being higher orders of the original feature(s).

» For p predictors and d degrees there are (p+d) parameters T This number
grows quickly in p and d, making polynomiafregression unpractical for high
dimensional input data. For example a fourth order polynomial in 20
dimensions has (%) = 10625 parameters.

» The degree is a hyper-parameter that controls the flexibility of the method.
» The training loss decreases with increasing flexibility (degree).

» The test loss is U-shaped as a function of the flexibility.

» The lowest test loss is not lower than the irreducible error.

'Distribute d balls into p + 1umns: all terms of the form 1"0x1d‘ . ~xg" st.Yh qdi=d
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kNN Regression

1.00 |

@ training data
4-NN fit

0.75
o1
y = K Z Yi 5. 050}
ieNy
where N is the set of k nearest 025t

neighbours of xg.
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kNN Classification

Pr(Y = j|X = xg) = Z Iy
IENQ

where N is the set of k nearest neighbours of xg.
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Properties of kNN

» KNN is a non-linear method.
» kNN is an example of a non-parametric method, where the raw training data
is used to make predictions.
This is in contrast to parametric methods (like linear regression), where all
information about the training data is stored in the parameters 6.
» The number of neighbors k is a hyper-parameter; it controls the assumed
smoothness of the function family and does not depend on the training data.
» [f the hyper-parameter k is small, the function family is flexible, which allows to
follow the training data accurately. If k is large the function family is inflexible
and follows only the main trend of the data.
kNN is very fast to fit (no parameters are learnt).
KNN is slow to make predictions, because the neighbors of the test point need
to be searched in the training set.
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First nearest neighbors classification on MNIST reaches a
misclassification rate of approximately 3%.

This is better than linear classification.
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Curse of Dimensionality

Things that work in low-dimensional spaces, may require A LOT OF data (or parameters) in
high-dimensional spaces. Example: if we want to have 10 data points per dimension for
accurate 3-NN regression, we need 109 data points in d dimensions.
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Underfitting and Overfitting
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Overfitting

0]

training data

the function family is not flexible enough.
training and test error are high.

the function family is too flexible.
training error is low, test error is high.

Hyper-parameters control the flexibility (k for kNN, degree for polynomial regression).
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Fitting Multiple Training Sets

» Red and blue data points generated with
Y = f(X)+¢e with Var(e) = 0.062
and f(X) = sin(2X) + 2(X —0.5)% - 0.5X (black line)

» Red/blue lines: fits on red/blue training set

» The linear fits (dashed lines) are close to each other
(small variance) but far away from f (large bias).

» The polynomial fits (with d = 10) are far from each other

T T T T T . H
02 o4 o6 08 10 (large variance) but close to f (small bias).
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The Bias-Variance Trade-Off

Expected test MSE

E, 7 (Y =F(X))? = [Bias(F(X))] + Var(F(X)) + Var(e)

Y, F|X

A

» Here, Var(f (X)) refers to the variance of the estimator, if it would be fitted
multiple times to each time another training set.

» Generally: flexible methods have higher variance but lower bias than less
flexible methods.

Bias-Variance Decomposition 9
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Blackboard: Bias-Variance Decomposition

Epgp (1P = £, p(400)+ €= OO
= Ep(#0)-§ ) + Var(e)
"V‘d“’( reducible avor (reeducible error
E5 (00~ = £(#09) - Epd)+ £y (fe0)-{)
~(p0) - 55409+ Var 0
—— -
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2(f1x)- Ep(fex)( 5 (Foc) - Eplfecl) = 0
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The Bias-Variance Trade-Off
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training loss
test loss
bias~2
variance
== = bias"2 + variance + Var(e)
Var(e)

2 3
flexibility (degree)

For 1000 different training sets of size
n = 50, polynomial fits of degrees 1to
9 where performed. Each fit was
evaluated on a large test set.

The plot shows the average training

and test loss (over all 1000 training

sets), and the average squared bias
and variance (over all test points).

Note that the squared bias, the
variance and the irreducible error sum
up to the test loss.

Bias-Variance Decomposition
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Summary

» Rigid (inflexible) methods

» may underfit the data.

» may have a large bias.

» tend to have little variance when fitted on different training sets.
» Flexible methods

» may overfit the data.

» can achieve a low bias.

» tend to have high variance when fitted on different training sets.

In expectation over training sets and responses, the test MSE of a method is given
by the sum of the method’s variance, its squared bias and the irreducible error.
Side remark: Thanks to their simplicity, polynomial regression and KNN are great for educational

purposes, but they are rarely used in modern applications of machine learning. For successful

choices of more advanced machine learning methods it is, however, crucial to understand the
flexibility of a method, the bias-variance decomposition and overfitting and underfitting.
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Suggested Reading

» 21 What is Statistical Learning

» 2.2 Assessing Model Accuracy

» 71 Polynomial Regression

» 3.5 Comparison of Linear Regression with K-Nearest Neighbors
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