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When Linear Methods are Not Flexible Enough

Data Generating Process

Y = 0.3 sin(10X) + 0.7X + ε

There is structure in the data that

linear regression fails to capture.

Linear regression has a

high reducible error.
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When Linear Methods are Not Flexible Enough

large dots: training data

small dots: classification with logistic regression

at decision threshold 0.5

Data Generating Process

Y = red if

σ
(
20(0.3 sin(10X1) +0.7X1 – X2)

)
> ε

There is structure in the data that

logistic regression fails to capture.

Logistic regression has a

high reducible error.
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Error Decomposition for Regression

Assume the true conditional data generating process has the form

p(y |x) = 1√
2πσ

e– (y–f (x))2

2σ2

This is also sometimes written as Y = f (X) + ε.

We call f the systematic information that X provides about Y and ε the noise.

Let us assume with some supervised machine learning method we find

p̂(y |x) = 1√
2πσ

e– (y–f̂ (x))2

2σ2

Let us define the predicted average response Ŷ = f̂ (X).

We would like to know how much the predicted average response Ŷ
differs in expectation from test data.
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Blackboard: Error Decomposition for Regression

EY |X=x (Y – Ŷ )2 =
(
f (x) – f̂ (x)

)2︸ ︷︷ ︸
Reducible

+ Var(ε)︸ ︷︷ ︸
Irreducible
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Quiz

I Let us assume the red data points in this figure

were generated with the help of a function whose

graph is shown in blue. What is correct?

A. A linear fit has a non-zero reducible error.

B. The irreducible error is zero.

C. A method that perfectly fits the red data

points (zero training error) has a reducible

error of zero.

I Assume we perform linear regression on the red

data points and compute the residuals ε̂i = yi – ŷi
and the empirical variance 1

n–1
∑n

i=1 ε̂
2. The

irreducible error is

A. larger B. smaller

than this empirical variance.
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I What is the irreducible error

for the following data

generating process?

p(y |x) = 1√
2π

e– (y–2x)2
2

A. 1 B. 2 C. 4
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Summary

I The true systematic information f that X provides about Y is usually unknown.

I Our goal: find the function f̂ that minimizes the reducible error.

I The test loss of f̂ for a given data generating process is never lower than its

irreducible error, i.e. EY |x (Y – f̂ (x))2 ≥ Var(ε).
Note that the estimate of the true test loss with a test set (often just called “test

loss”) can by smaller than the irreducible error, by chance.
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Polynomial Regression

Finding the parameters of a polynomial f (X) = θ0 + θ1X + θ2X2 + · · · θdXd

is equivalent to finding the parameters in linear regression with polynomial features

X1 = X , X2 = X2, . . . , Xd = Xd

https://scikit-learn.org/1.3/auto_examples/model_selection/plot_underfitting_overfitting.html
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Polynomial Regression

I Polynomial regression with degree 1 is

linear regression.

I For small degrees (<6) training loss and

test loss are high.

I Minimal test loss is reached for

intermediate degrees; it is only slightly

higher than the irreducible error.

I For high degrees (>10) the method is

too flexible; it can fit peculiarities of the

given training set. Therefore the training

loss is lowest there, but the test loss is

higher.
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Multiple Polynomial Classification

f (X) = θ0 + θ1X1 + θ2X2 + θ3X1X2 + θ4X2
1 + θ5X2

2 + · · · + θ(d+1)(d+2)/2Xd
2

(all powers up to d ’th order)
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Summary

I Polynomial regression is like multiple regression with the additional features

being higher orders of the original feature(s).

I For p predictors and d degrees there are
(p+d

p
)
parameters 1. This number

grows quickly in p and d , making polynomial regression unpractical for high

dimensional input data. For example a fourth order polynomial in 20

dimensions has
(24
20

)
= 10625 parameters.

I The degree is a hyper-parameter that controls the flexibility of the method.

I The training loss decreases with increasing flexibility (degree).

I The test loss is U-shaped as a function of the flexibility.

I The lowest test loss is not lower than the irreducible error.
1Distribute d balls into p + 1 urns: all terms of the form 1d0xd1

1
· · · xdp

p s.t.
∑p

i=0
di = d
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kNN Regression

ŷ = 1

K
∑

i∈N0

yi

whereN0 is the set of k nearest

neighbours of x0.
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kNN Classification

P̂r(Y = j|X = x0) = 1

K
∑

i∈N0

I(yi = j)

whereN0 is the set of k nearest neighbours of x0.

k = 3

+
+
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Properties of kNN

I KNN is a non-linear method.

I kNN is an example of a non-parametric method, where the raw training data

is used to make predictions.

This is in contrast to parametric methods (like linear regression), where all

information about the training data is stored in the parameters θ.
I The number of neighbors k is a hyper-parameter; it controls the assumed

smoothness of the function family and does not depend on the training data.

I If the hyper-parameter k is small, the function family is flexible, which allows to

follow the training data accurately. If k is large the function family is inflexible

and follows only the main trend of the data.

I kNN is very fast to fit (no parameters are learnt).

I kNN is slow to make predictions, because the neighbors of the test point need

to be searched in the training set.
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kNN Classification on MNIST

First nearest neighbors classification on MNIST reaches a

misclassification rate of approximately 3%.

This is better than linear classification.
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Curse of Dimensionality

Things that work in low-dimensional spaces, may require A LOT OF data (or parameters) in

high-dimensional spaces. Example: if we want to have 10 data points per dimension for

accurate 3-NN regression, we need 10d data points in d dimensions.
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Underfitting and Overfitting

Underfitting

0 5 10

0

5

10 training data

50-NN fit

the function family is not flexible enough.

training and test error are high.

Overfitting

0 5 10

0

5

10 training data

1-NN fit

the function family is too flexible.

training error is low, test error is high.

Hyper-parameters control the flexibility (k for kNN, degree for polynomial regression).
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Fitting Multiple Training Sets
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I Red and blue data points generated with

Y = f (X) + ε with Var(ε) = 0.062

and f (X) = sin(2X) + 2(X – 0.5)3 – 0.5X (black line)

I Red/blue lines: fits on red/blue training set

I The linear fits (dashed lines) are close to each other

(small variance) but far away from f (large bias).

I The polynomial fits (with d = 10) are far from each other

(large variance) but close to f (small bias).
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The Bias-Variance Trade-Off

Expected test MSE

EY ,f̂ |X
(
Y – f̂ (X)

)2 = [Bias(f̂ (X))]2 + Var(f̂ (X)) + Var(ε)

I Here, Var(f̂ (X)) refers to the variance of the estimator, if it would be fitted

multiple times to each time another training set.

I Generally: flexible methods have higher variance but lower bias than less

flexible methods.
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Blackboard: Bias-Variance Decomposition
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The Bias-Variance Trade-Off

For 1000 different training sets of size

n = 50, polynomial fits of degrees 1 to

9 where performed. Each fit was

evaluated on a large test set.

The plot shows the average training

and test loss (over all 1000 training

sets), and the average squared bias

and variance (over all test points).

Note that the squared bias, the

variance and the irreducible error sum

up to the test loss.
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Summary

I Rigid (inflexible) methods
I may underfit the data.

I may have a large bias.

I tend to have little variance when fitted on different training sets.

I Flexible methods
I may overfit the data.

I can achieve a low bias.

I tend to have high variance when fitted on different training sets.

In expectation over training sets and responses, the test MSE of a method is given

by the sum of the method’s variance, its squared bias and the irreducible error.

Side remark: Thanks to their simplicity, polynomial regression and KNN are great for educational

purposes, but they are rarely used in modern applications of machine learning. For successful

choices of more advanced machine learning methods it is, however, crucial to understand the

flexibility of a method, the bias-variance decomposition and overfitting and underfitting.
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Suggested Reading

I 2.1 What is Statistical Learning

I 2.2 Assessing Model Accuracy

I 7.1 Polynomial Regression

I 3.5 Comparison of Linear Regression with K-Nearest Neighbors
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