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Outline of lecture 9:

• multiscale simulations 

• integrative modeling  

• structure-based drug design 

• protein design 



solvation 
pH 

post-translational modifications 
interactions network 

temperature effects (kBT) 
..... 

molecular modeling 
and simulations

{xi(t), yi(t), zi(t)}i=1,...,N

Laboratory for Biomolecular Modeling - LBM, 

http://lbm.epfl.ch


Current common MD engines
• CHARMM: Karplus Harvard, http://www.charmm.org/ 

• AMBER: Kollman UCSF, http://ambermd.org/ 

• GROMOS: van Gunsteren, ETHZ, www.igc.ethz.ch/
GROMOS/index 

• DESMOND: Shaw, http://www.deshawresearch.com/ 

• GROMACS: http://www.gromacs.org 

• LAMMPS: http://lammps.sandia.gov 

• ACEMD: http://multiscalelab.org/acemd 

• NAMD: http://www.ks.uiuc.edu/Research/namd/

http://www.charmm.org
http://www.igc.ethz.ch/GROMOS/index
http://www.igc.ethz.ch/GROMOS/index
http://www.deshawresearch.com
http://www.gromacs.org
http://lammps.sandia.gov
http://multiscalelab.org/acemd


Multiscale resolution in modeling

• electrons 

• atoms 

• amino-acids  

• domains 

• mesoscopic to continuum
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Speeding up timescales of Chemical 
Reactions 

• Enzymes enhance the rate of                                      
chemical reactions by several                                          
orders of magnitude (e.g. 
arginine decarboxylase, alkaline 
phosphatase, staphylococcal 
nuclease up to 1014 fold) 

• the transition rate depends on the 
activation barrier 

• and enzymes affect this, not the 
R and P states

Γreactants→products ∝ e−Gbarrier/kBT



MM

QM

 

bonds

anglesdihedrals

evaluated with some wavefunction Ψ0, is certainly a function of the nuclear posi-
tions {RI}. But at the same time it can be considered to be a functional of the
wavefunction Ψ0 and thus of a set of one–particle orbitals {ψi} (or in general of
other functions such as two–particle geminals) used to build up this wavefunction
(being for instance a Slater determinant Ψ0 = det{ψi} or a combination thereof).
Now, in classical mechanics the force on the nuclei is obtained from the deriva-
tive of a Lagrangian with respect to the nuclear positions. This suggests that a
functional derivative with respect to the orbitals, which are interpreted as classical
fields, might yield the force on the orbitals, given a suitable Lagrangian. In addi-
tion, possible constraints within the set of orbitals have to be imposed, such as e.g.
orthonormality (or generalized orthonormality conditions that include an overlap
matrix).

Car and Parrinello postulated the following class of Lagrangians 108
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(41)

to serve this purpose. The corresponding Newtonian equations of motion are ob-
tained from the associated Euler–Lagrange equations

d
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(43)

like in classical mechanics, but here for both the nuclear positions and the orbitals;
note ψ!

i = 〈ψi| and that the constraints are holonomic 244. Following this route of
ideas, generic Car–Parrinello equations of motion are found to be of the form

MIR̈I(t) = − ∂

∂RI
〈Ψ0|He|Ψ0〉+

∂

∂RI
{constraints} (44)

µiψ̈i(t) = − δ

δψ!
i

〈Ψ0|He|Ψ0〉+
δ

δψ!
i

{constraints} (45)

where µi (= µ) are the “fictitious masses” or inertia parameters assigned to the
orbital degrees of freedom; the units of the mass parameter µ are energy times a
squared time for reasons of dimensionality. Note that the constraints within the
total wavefunction lead to “constraint forces” in the equations of motion. Note also
that these constraints

constraints = constraints ({ψi}, {RI}) (46)

might be a function of both the set of orbitals {ψi} and the nuclear positions {RI}.
These dependencies have to be taken into account properly in deriving the Car–
Parrinello equations following from Eq. (41) using Eqs. (42)–(43), see Sect. 2.5 for
a general discussion and see e.g. Ref. 351 for a case with an additional dependence
of the wavefunction constraint on nuclear positions.
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H = HQM + HMM + HQM/MM}
coupling term

QM: First principles Density functional theory MD

MM: Classical molecular dynamics (e.g. AMBER, Gromos force fields)

 QM/MM: - boundary atom (ad hoc monovalent pseudopotential or H capping)
- hierarchical scheme to compute Coulomb interactions

Hybrid QM/MM molecular dynamics

Car, Parrinello, PRL 1985, Laio, Vandevondele, Rothlisberger JCP 2004, Dal Peraro et al., Curr. Opin. Struct. Biol. 2007



CcrA complexed with cefotaxime  

• stable Michaelis complex 
  OH-β-lactam distance=3.3(2)Å 
   during 5 ns MD and 20ps QM/MM 

• Zn2-bound WAT is the 
  only water between the 
  zinc center and CEF in 5Å 

➡Classical force-field based MD is 
used as a tool to sample 
conformational space within the 
nanosecond timescale 

 

Reactant state

Text

Zn1Zn2

Asp120

His263

His116

His118

His196

Cys221

CEF  
(cefotaxime)

Asn233

OH

WAT
dRC

Thermodynamic integration along the reaction coordinate dRC 
DFT-BLYP, Martins-Troullier PPs, 70 Ry cutoff,  
Nose’ thermostat at 300 K,  
2 reactions pathways for a total of ~150 ps trajectory

CcrA MβL from Bacteroides fragilis 



• OH- loses Zn2 coordination 
• Zn1, Zn2 flexibility  
• WAT  protonates β-lactam N 
• N-C β-lactam bond breaks 
•  WAT replaces OH- as an hydroxide 

• ΔF = 18(2) kcal/mol  is in good 
agreement with experiments  
• if Asn233 does H-bond β-lactam: 
formation of a high unfavorable 
intermediate (Path II) 
 

water-mediated single-step

Asn233

Zn1Zn2

Asp120

His263

His116

His118

His196

CEF*

OH-WAT

Path I 
Path II

... from transition state to products

Dal Peraro et al., JACS 2007
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Coarse-graining degrees of freedom

• CG is the process of consistently reduce the complexity 
of your problem integrating out degrees of freedom which 
can be in principle neglected for your system.  

• the CG process implies a simplification of your potential 
that is not always rigorous and includes approximations 

• what you obtain is an effective potentials which is 
parametrized to reproduce given properties

VQM → VMM → VCG−MM → Vmesoscopic



arXiv:2310.18278v1 [q-bio.BM] 27 Oct 2023

New directions
universal and computationally efficient machine-learned CG model for proteins

Fig. 1 Conceptual illustration of the pipeline for building and testing a transferable, bottom-up,
machine-learned, CG protein force field from a diverse dataset of all-atom simulations, a chosen
CG resolution, and a set of basic physical prior energy terms (bonds, angles, dihedrals, and purely
repulsive interactions).

prior energy term. Control simulations with only the prior energy term only visit the
unfolded state (SI Fig. S5).

For all four fast-folding proteins, the CG model predicts metastable folding and
unfolding transitions, i.e., both folded and unfolded states have a free energy minimum.
The folded states are predicted with a fraction of native contacts Q close to 1, and low
RMSD values, closely resembling the correct native state (Fig. 2). Interestingly, for
CLN025, the model is also able to stabilize the same misfolded state with misaligned
TYR1 and TYR2 residues as found in the reference atomistic simulations (see Fig. 5
below).

For 3 of the 4 proteins in Fig. 2 the free energy basin containing the native state
is the global minimum, while for protein BBA it is a local minimum, indicating that
all proteins are able to fold/unfold correctly. However, the relative free energy di!er-
ence between the folded and unfolded states does not exactly match those from the
reference atomistic free energy surfaces. For Chignolin, Trpcage and Villin the model
performs much better than for BBA. BBA contains both helical and anti-parallel beta-
sheet motifs, and the di”culty of correctly stabilizing its folded state with CG models
has been reported in previous works [37, 60] using bottom-up or partially bottom-up
approaches, often with concern that the stabilization of beta sheets requires specific
higher body-order terms in CG models [61]. While Fig. 2 focuses on the folding/un-
folding pathway as shown in the collective variables RMSD and fraction of native

5



Coarse-graining degrees of freedom
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VCG
• CG FF models are not topologically 

biased on the native structure 
• softer interactions allow for longer 

timestep in MD simulations 
• sampling on the millisecond timescale 
• accuracy can be a problem (e.g. no 

explicit electrostatic contribution) 
• biases on the secondary structures

Coarse-grained force fields



Coarse-grained MARTINI FFMapping atoms onto CG sites

Validation: antimicrobial peptides
can form toroidal pores

Magainin H2 in a DPPC bilayer, at low concentration (a) and high
concentration.

Magainin H2 in a DPPC bilayer, at low concentration (a) and high concentration

Monticelli et al, JCTC 2008 
Klein and coworkers 

• MARTINI CG FF has functional 
form similar to MM FF 

• 4-to-1 mapping from MM to CG 
• very convenient for membranes 

and peptide-membrane 
interactions





Structural biology methods are strongly     based 
on theory and computation!

• molecules in a crystal are  
positioned so that their diffractions 
are in phase only at discrete 
positions that depend on the 
dimensions and symmetry of the 
crystal (discrete Bragg planes) and 
the wavelength of the incident x-rays

• the diffraction pattern is recorded 
on a 2D detector as discrete data 
points(reflections)

• the relative intensities and positions 
of the reflections contain information 
about the structure of the molecule

X-ray scattering basics

a model is built on the basis of the shape of the electron density, 
the known amino acid sequence, standard chemical restraints for 
polypeptides (bond angles and lengths, allowed torsions, etc.)
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R-factor
R-factor – all data (100%)  ~0.10-0.25
R-free    – test set   (5-10%)  ~0.15-0.30
R-work  – working set (90-95%)  ~0.10-0.25

cryo-EM 3D image reconstruction of West Nile Virus in 
complex with the Fab of the neutralizing anti-DIII mAb E16

Kaufmann B et al. PNAS 2006;103:12400-12404

Cryo-electron microscopy 

500 Å 100 Å

- in EM a cathode emits electrons which are scattered by the specimen (need for vacuum)
- wavelength of electrons decreases as their velocity increases (de Broglie eq:  !=h/p)
- with an accelerating voltage of 100 keV, wavelength is 0.004nm : resolution is ~0.002 nm
- spherical aberrations of electron lens more difficult to correct than light microscope
- this gives practical resolving power is 0.1 nm

- in cryo-EM specimen is not been stained or fixed showing them in their native environment
- image reconstruction algorithms which in turn decrease resolution

29

Source of illumination is a filament (cathode) that emits 
electrons at the top of the column

Since electrons are scattered by collisions with air 
molecules, column must be under a vacuum

Electron Microscopy

3D image 
reconstruction

3D image  
reconstruction

Fourier 
transform

molecular replacement 

structure  
refinement 



Combine cryo-EM and X-ray structures

surface rendering of the 3D image 
reconstruction of WNV (green) in complex 

with Fab E16 (blue) at 15-Å resolution

Kaufmann B et al. PNAS 2006;103:12400-12404
integrative modeling
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Near-atomic-resolution structure 
of supramolecular assemblies

• Mutagenesis
• Evolutionary couplings 
• Chemical crosslinking
• Proteomics  
• H/D exchange
• ChIP–seq and ChIP–exo
• 3C, 4C, 5C and Hi-C

• Cryo-EM
• Electron tomography 
• SAXS, SANS
• AFM

• Side-chain and backbone sampling
• Elastic network models
• NMR ensembles
• FRET, DEER EPR
• Molecular dynamics 

Volumetric mapsIndividual subunits Structural flexibility Spatial connectivity

• X-ray crystallography
• NMR 
• Cryo-EM
• Homology models

Outer membrane vesicles
(OMVs). Vesicles that are 
derived from the outer 
membrane of Gram-negative 
bacteria.

Sphingomyelin
A sphingolipid found in animal 
cells that generally has a 
phosphocholine headgroup.

Phase-separated lipid 
membranes
Membranes within which 
lipids are separated into 
different domains.

outer membrane vesicles (OMVs) of E. coli 39. Pre-pore-
containing OMVs would be protected from pore forma-
tion as the conformational changes leading to membrane 
insertion require cholesterol, which is generally not pres-
ent in bacterial membranes. A similar OMV-mediated 
delivery mechanism of PFTs has recently been proposed 
for Vibrio cholerae cytolysin (VCC)40, which belongs to 
the Staphylococcus aureus haemolysin family (see below). 
However, if pre-pores are indeed encapsulated within 
OMVs, it is not known how these OMV-embedded 
pre-pores would be delivered to the target membrane.

The actinoporin family. Actinoporins are eukaryotic 
proteins that are produced by sea anemones41. They 
form part of the venom that these sedentary animals 
rely on to paralyse and digest their prey (which range 

from plankton to fish and crustaceans), as well as to 
defend themselves from predators. By forming pores in 
the plasma membrane of target cells, actinoporins are 
thought to cause cell lysis.

X-ray structures have been reported for the soluble 
form of the actinoporins equinatoxin II (EqtII; produced 
by Actinia equina)42,43, sticholysin II (StnII; produced by 
Stichodactyla helianthus)44 and fragaceatoxin C (FraC; 
produced by Actinia fragacea)45 (TABLE 1). All actino porins 
are composed of a β-sandwich flanked by two α-helices 
(FIG. 2a), in which the N-terminal amphipathic helix 
detaches from the core of the protein and inserts into 
the membrane41. This membrane insertion step is lipid- 
dependent, with a preference for target membranes that 
are enriched in sphingomyelin and/or have phase- separated 
lipid membranes41,46. Interestingly, membrane insertion of 

Box 2 | Integrative modelling of pore structures

X-ray crystallography has historically been the main source of 
high-resolution atomic structures of pore-forming toxins (PFTs). However, 
owing to the large size of the molecular assembly of each pore and the 
complexity of the pore formation process, alternative structural biology 
strategies are required to reveal the pore architecture and kinetics of 
oligomerization. To date, both the monomer and protomer conformation 
are known for only a handful of PFTs, but recent advances in cryo-electron 
microscopy (cryo-EM) promise to reveal the conformation of large 
toxin assemblies at higher resolution, as was recently exemplified 
by atomic-level resolution structures of the Tc toxin from 
Photorhabdus luminescens115,116 and the anthrax toxin protective 
antigen112. In parallel, progress in the sophistication of molecular 

modelling has enabled the integration of experimental inputs from 
different sources (with different resolution and completeness) in 
consistent models of macromolecular complexes. In this context, 
optimization and simulation schemes have been developed to integrate 
high-resolution structures of individual components, their native 
dynamics191–193 and low-resolution spatial data by a growing array of 
techniques (see the figure). This emerging approach is commonly known 
as integrative modelling192,194,195 and has already helped to reveal the 
functional architecture of several macromolecular complexes196,197, 
including the PFTs, suilysin109 and pleurotolysin (a fungal toxin)90, as well as 
aerolysin75 and monalysin198, which are both members of the aerolysin 
family and share the same pore architecture.

3C, chromatin 
conformation capture;  
4C, circularized 3C; 5C, carbon-copy 
3C; AFM, atomic force microscopy; ChIP–exo, 
ChIP–seq with an exonuclease sample preparation 
step; ChIP–seq, chromatin immunoprecipitation followed 
by sequencing; DEER EPR, double electron–electron 
resonance electron paramagnetic resonance; FRET, 
fluorescence resonance energy transfer; H/D exchange, 
hydrogen–deuterium exchange; NMR, nuclear magnetic 
resonance; Hi-C, genome-wide 3C; rmsd, root-mean-square 
deviation; SANS, small-angle neutron scattering; SAXS, 
small-angle X-ray scattering. 

REV IEWS

NATURE REVIEWS | MICROBIOLOGY  VOLUME 14 | FEBRUARY 2016 | 81

© 2016 Macmillan Publishers Limited. All rights reserved

Dal Peraro et al. Nat. Rev. Microbiol. 2016



Pauling and Corey protein structure papers (1951):

X-ray myoglobin 1959 (Kendrew and Perutz)

  

(the dawn of) Integrative modeling

http://www.pnas.org/site/misc/classics1.shtml


Integrative modeling 

experimental lab, through direct adoption
by an experimental lab, or by experimen-
talists modifying existing integrative mod-
eling applications. To facilitate widespread
adoption, we have developed the Integra-
tive Modeling Platform (IMP) software
package.

A Platform for Integrative
Modeling

The IMP software package facilitates

the writing of integrative modeling appli-

cations; the development of new model

representations, scoring functions, sam-

pling schemes, and analysis methods; and
the distribution of integrative modeling
applications.

In IMP, models are encoded as collec-
tions of particles, each representing a piece
of the system. Depending on the data
available, particles can be used to create

Figure 1. Integrative structure modeling of the human RNA Polymerase II [10]. The first round of modeling was performed using only the
2nm EM density map of the assembly from EMDB [51] and subunit comparative models from ModBase [47], on the basis of the crystallographic structures
of the yeast RNAPII proteins. The data were found to be insufficient to uniquely resolve the structure. To overcome this challenge, protein interaction
networks extracted from BioGrid [48] were added. The addition of these data resulted in a single structure. The scripts are available as part of IMP.
doi:10.1371/journal.pbio.1001244.g001

PLoS Biology | www.plosbiology.org 2 January 2012 | Volume 10 | Issue 1 | e1001244

Russel et al. (2012) Putting the Pieces Together: Integrative 
Modeling Platform Software for Structure Determination of 
Macromolecular Assemblies. 
PLoS Biol 10(1): e1001244. doi:10.1371/journal.pbio.1001244

IMP: integrative modeling platform 
http://salilab.org/imp/ 

https://modbase.compbio.ucsf.edu/multifit/



https://pdb-dev.wwpdb.org

Sali et al., Structure 2015




yeast NPC : 
∼52 MDa complex
∼550 protein subunits of ∼30 different types

e.g., the Nuclear Pore Complex 
… combining AF and cryoEM/ET

DOI: 10.1126/science.abm9506



Rantos V., Karius K., and Kosinski J. Integrative structural modeling of macromolecular complexes using Assembline, Nature Protocols, 2021
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Outer membrane vesicles
(OMVs). Vesicles that are 
derived from the outer 
membrane of Gram-negative 
bacteria.

Sphingomyelin
A sphingolipid found in animal 
cells that generally has a 
phosphocholine headgroup.

Phase-separated lipid 
membranes
Membranes within which 
lipids are separated into 
different domains.

outer membrane vesicles (OMVs) of E. coli 39. Pre-pore-
containing OMVs would be protected from pore forma-
tion as the conformational changes leading to membrane 
insertion require cholesterol, which is generally not pres-
ent in bacterial membranes. A similar OMV-mediated 
delivery mechanism of PFTs has recently been proposed 
for Vibrio cholerae cytolysin (VCC)40, which belongs to 
the Staphylococcus aureus haemolysin family (see below). 
However, if pre-pores are indeed encapsulated within 
OMVs, it is not known how these OMV-embedded 
pre-pores would be delivered to the target membrane.

The actinoporin family. Actinoporins are eukaryotic 
proteins that are produced by sea anemones41. They 
form part of the venom that these sedentary animals 
rely on to paralyse and digest their prey (which range 

from plankton to fish and crustaceans), as well as to 
defend themselves from predators. By forming pores in 
the plasma membrane of target cells, actinoporins are 
thought to cause cell lysis.

X-ray structures have been reported for the soluble 
form of the actinoporins equinatoxin II (EqtII; produced 
by Actinia equina)42,43, sticholysin II (StnII; produced by 
Stichodactyla helianthus)44 and fragaceatoxin C (FraC; 
produced by Actinia fragacea)45 (TABLE 1). All actino porins 
are composed of a β-sandwich flanked by two α-helices 
(FIG. 2a), in which the N-terminal amphipathic helix 
detaches from the core of the protein and inserts into 
the membrane41. This membrane insertion step is lipid- 
dependent, with a preference for target membranes that 
are enriched in sphingomyelin and/or have phase- separated 
lipid membranes41,46. Interestingly, membrane insertion of 

Box 2 | Integrative modelling of pore structures

X-ray crystallography has historically been the main source of 
high-resolution atomic structures of pore-forming toxins (PFTs). However, 
owing to the large size of the molecular assembly of each pore and the 
complexity of the pore formation process, alternative structural biology 
strategies are required to reveal the pore architecture and kinetics of 
oligomerization. To date, both the monomer and protomer conformation 
are known for only a handful of PFTs, but recent advances in cryo-electron 
microscopy (cryo-EM) promise to reveal the conformation of large 
toxin assemblies at higher resolution, as was recently exemplified 
by atomic-level resolution structures of the Tc toxin from 
Photorhabdus luminescens115,116 and the anthrax toxin protective 
antigen112. In parallel, progress in the sophistication of molecular 

modelling has enabled the integration of experimental inputs from 
different sources (with different resolution and completeness) in 
consistent models of macromolecular complexes. In this context, 
optimization and simulation schemes have been developed to integrate 
high-resolution structures of individual components, their native 
dynamics191–193 and low-resolution spatial data by a growing array of 
techniques (see the figure). This emerging approach is commonly known 
as integrative modelling192,194,195 and has already helped to reveal the 
functional architecture of several macromolecular complexes196,197, 
including the PFTs, suilysin109 and pleurotolysin (a fungal toxin)90, as well as 
aerolysin75 and monalysin198, which are both members of the aerolysin 
family and share the same pore architecture.

3C, chromatin 
conformation capture;  
4C, circularized 3C; 5C, carbon-copy 
3C; AFM, atomic force microscopy; ChIP–exo, 
ChIP–seq with an exonuclease sample preparation 
step; ChIP–seq, chromatin immunoprecipitation followed 
by sequencing; DEER EPR, double electron–electron 
resonance electron paramagnetic resonance; FRET, 
fluorescence resonance energy transfer; H/D exchange, 
hydrogen–deuterium exchange; NMR, nuclear magnetic 
resonance; Hi-C, genome-wide 3C; rmsd, root-mean-square 
deviation; SANS, small-angle neutron scattering; SAXS, 
small-angle X-ray scattering. 
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Protein-protein interaction interfaces

Enzyme-Inhibitor (1JTG) 
Beta-lactamase bound to 
beta-lactamase inhibitor

Antibody-Antigen 
(3MXW) 

Sonic hedgehog 
bound to the 5E1 

fab fragment

Enzyme-Substrate 
(2OOB) 

Ubiquitin bound to 
ubiquitin ligase

Berman H. M. et al., The Protein Data Bank, Nucleic Acids Research, 2000



PeSTo: Protein Structure Transformer

PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces 
Krapp L. F. et al. Nature Communications, 2023

Lucien Krapp



Input   
→ Geometry 
→ Atom element

Output 
→ Translation invariant 
→ Rotation equivariant 
→ Interaction order invariant

1 2 3 4  … nn

1

2

3
4

layer t

r

nn nearest  
neighbours 

 r ~3.4 Å

 r ~ 8.2 Å

PeSTo: Protein Structure Transformer



Streptogrisin B with ovomucoid - unbound 
conformation (0.93 Å RMSD) with a ROC 
AUC of 96%

… comparison with state of the art
PeSTo for protein-protein interfaces prediction 

Gainza P. et al., Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nature Methods, 2020 
Tubiana J. et al., ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction, Nature Methods, 2022



Interfaces are dynamic

Enzyme-Inhibitor (1JTG) 
Beta-lactamase bound to 
beta-lactamase inhibitor

Antibody-Antigen 
(3MXW) 

Sonic hedgehog 
bound to the 5E1 

fab fragment

Enzyme-Substrate 
(2OOB) 

Ubiquitin bound to 
ubiquitin ligase



Interface recovery through molecular simulation
Elafin complexed with porcine pancreatic elastase (1FLE)

unbound porcine pancreatic elastase 

static 
predicti
on



Elafin complexed with porcine pancreatic elastase (1FLE)

unbound porcine pancreatic elastase dynamic prediction
(after 1 µs of MD simulation)

revealing cryptic binding sites                    
and potential allosteric mechanisms 

static 
predicti
on 620 ns

Interface recovery through molecular simulation



Other binding interfaces of proteins

Protein-protein Protein-DNA-ions Protein-lipid



nucleic acid & ion interface

ColE7 endonuclease domain 

Extending prediction to other interacting interfaces  



Protein-nucleic acid interface predictions

Leukemia-Associated Aml1 (Runx1)-Cbfbeta Complex



Proteome-wide interface prediction - aka interfaceome    

correlation with protein function and 
features 

Human proteome prediction using the AF-
EBI database  

correlation with protein 
mutations

interface cross-talk
(only high-quality models, 7464 of 20504)



@ http://pesto.epfl.ch
Fabio Cortés 

http://pesto.epfl.ch


2. Structure-based Drug Design

1. The process of Drug Discovery (& Development)

Paths to drug discovery and the role 
of computational chemistry 

courtesy of Marco De Vivo, PhD 
Laboratory of Molecular Modeling and Drug Discovery 
Istituto Italiano di Tecnologia- Genoa, Italy 



Drug Discovery & Development
- Some facts -

Source:  
Asher Mullard,  
Nature Reviews Drug Discovery, February  (2021)

FDA approvals in 2020 
53 New Drugs Approved



Drug Discovery & Development
- Some facts -

Approval by therapeutic area 2020 

Source:  
Asher Mullard,  
Nature Reviews Drug Discovery, February  (2021)



Enzymes and catalytic activity 

Protein target

Pocket

Catalytic function

Protein substrate



Protein binding and inhibition 

Protein target

Pocket

Small molecules

Great binder !



Drug design 

Protein target

Pocket

From a good inhibitor to a potential drug

Small molecules

modification

Small molecule



Protein target

Pocket

Similar binding but DIFFERENT properties!

Small molecules

modification

Small molecule

Drug design 



Small molecules drugs 

Prozac 
(antidepressant)

Abilify
(antipsychotic)

Cymbalta
(pain and anxiety)

Etoposide
(cancer)

Gleevec
(cancer) Ibuprofen

(inflammation)

Lipitor
(Cholesterol)

Nexium
(gastric acid)

Plavix
(antiplatelet agent)



Sequence of steps

Drug Discovery & Development

Target  
Discovery

Drug  
Candidate

Hit 
 Identification Hit-to-Lead

Lead 
Optimization

Preclinical 
Development

Phase I Phase II Phase III FDA review  
and approval Market

Drug  
Candidate

CLINICAL TRIALS



Average time requested for it

Time  
zero

1.5 1.5 1  
(~6 years for discovery)

2

Target  
Discovery

Drug  
Candidate

Hit 
 Identification Hit-to-Lead

Lead 
Optimization

Preclinical 
Development

Phase I

IND

Phase II Phase III FDA review  
and approval

NDA

Market
Drug  

Candidate

CLINICAL TRIALS

1.5 2.5 2.5

 (~7.5 years for development)

 Total time (on average) = ~13.5 years 

1

Drug Discovery & Development



Average cost requested for it

Target  
Discovery

Drug  
Candidate

Hit 
 Identification Hit-to-Lead

Lead 
Optimization

Preclinical 
Development

Phase I

IND

Phase II Phase III FDA review  
and approval

NDA

Drug  
Candidate

CLINICAL TRIALS

Source: How to improve R&D productivity: the pharmaceutical industry’s grand challenge  
Steven M. Paul, Nat. Review Drug Discovery March Vol. 9 2010

Market

 (~820 $ Million for discovery)

 (~960 $ Million for development)

 Total cost on average = ~1.78 $ Billion for one NME

Drug Discovery & Development



Computational Drug Design

◇  Structure-Based Drug Design - SBDD

◇  Ligand-Based Drug Design - LBDD

Drug design based on the interaction of the ligand with 
the 3D dimensional structure of the receptor

Unknown structure of the receptor. 
Drug design based on the key features of active compounds. 

Hypothesis: 
Ligands similar to an active ligand are more likely to be active 
than random ligands. (pharmacophore models)

Two approaches:



Computational Drug Design

◇  Structure-Based Drug Design - SBDD

◇  Ligand-Based Drug Design - LBDD
Quantitative Structure-Activity Relationship (QSAR) 
Markus A. Lill, Drug Discovery Today, Vol. 12 Dec. 2007 

Ligand similarity approaches  (2D or 3D) 
Johann Gasteiger, J. Med. Chem. 49, 22, 2006.

Docking (Glide, Dock, Autodock, ICM… etc) 
Kitchen D., Nat. Review Drug Discovery Vol. 3 Nov. 2004

De novo design (BOMB, SMoG, BREED.. etc) 
Gisbert Schneider and Uli Fechner, , Nat. Review Drug Discovery Vol. 4 Aug. 2005  

Approaches and methods:



Structure-Based Drug Design

MUST: 3-dimensional structure of the target. 

Sources of structures: 
1. Crystallography 
2. NMR structures 
3. Cryo-EM 
4. Homology or AF structures 



Docking

Target

Molecule



Ligand Docking

Two problem to solve:

1. Posing (the easy part) 

1. Scoring (the tough part)

Docking and scoring in virtual screening for drug discovery: methods and applications 
Douglas B. Kitchen et al  Drug Discovery, Vol. 3, Nov 2004



The quantitative modeling of receptor – ligand interactions can be 
achieved by determining the equilibrium binding constant Keq. The binding 
constant Keq is directly related to the Gibbs free energy:

eqbind KRTG ln−=Δ

Ligand Docking - Scoring

Why it is so difficult to score compounds: 

Experimental range of binding affinities: from 10-2 M (mM) to 10-12M (pM)  

At T=298K the enthalpic contribution to the ΔGbinding is between -2.4 kcal/mol and 
-16.7 kcal/mol  

In other words, a change in binding (free) energy of ~1.5 kcal/mol alters the binding 
affinity of one order of magnitude (T=298) !!!! 



Ligand Docking - Scoring
Scoring Functions FOR DOCKING CALCULATIONS:

• Force-Field Based (Physics-based) 
  
• Empirical  

• Knowledge-based  

• Descriptor-based

Consensus Scoring
Consensus scoring are more often applied in Virtual Screening

Classification of Current Scoring Functions 
Liu and Wang, JCIM  2015, 55 (3), pp 475–482



solventsoluteMMbind GSTEG Δ+Δ−=Δ

Ligand Docking - Scoring

Marco De Vivo

EMM from FF: 

ΔSsolute: The solute entropy consists of four terms, namely translational, 
rotational, vibrational, and conformational entropy. 

Δgsolvent: The solvent free energy consists of the two terms: 1) a nonpolar 
and a polar term.



Ligand Docking - Scoring

Marco De Vivo

Total energy is given by the sum of energy terms.  

For two atoms i and j, Aij and Bij are van der Waals parameters for 
given atom types, dij is the interatomic distance, qi and qj are 
atomic partial charges, and ε(dij) is a distance-dependent 
dielectric function.  



Virtual screening

An exercise carried 
out by computational 
means aimed at 
predicting which 
molecules from an 
ensemble will likely 
display some activity 
against a target. 

VLS is usually 
implemented as an 
iterative docking 
simulation at the 
target binding site.

1st -37.9 kcal/mol 2nd -29.7 kcal/mol 3rd -27.3 kcal/mol 4th -9.8 kcal/mol



Marco De Vivo

How can we evaluate the virtual screening 
performance?

Enrichment factor : 

Example: 
Suppose to have 10 active cmpds in a database of 1000 cmpds  
(1% of active compounds) 

Random pick: 1 out of 100 should be active. (1% chance) 

1000
ranked cmpdsA

c
tv

e
 c

m
p

d
s 

fo
u

n
d

500100

1

10

5



Marco De Vivo

Speed 

Docking 
Virtual Screning  
Etc .. 

Accuracy 

Molecular Dynamics 
Quantum Mechanics 
Etc.. 

Ligand Docking - Scoring

Hit identification Hit to lead



New directions
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▪ Prediction of final structure and binding helps discovering new biology 
▪ Not all the questions are answered though by AF2 !!

65The folding paradigm  

structure function 

myoglobin

evolution (billion year)

sequence 
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66The sequence space is enormous 

structure  
space

sequence 
space

▪ potential sequence space for proteins of 150 amino acids 20150 ~ 10195 

▪ atoms in the observed universe ~1080 

▪ the sequences explored by evolution are much less (~1010-20), structures lesser 
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▪ Application to study protein evolution and function 
▪ Protein engineering for therapeutics, synthetic biology and (bio)technology 

67The inverse folding problem — design

sequence 
space

functional   
space



68Multiple tasks for protein design

• Filled colored circles - flexible side chains	
o empty colored circles – flexible amino acid: design

▪ create de novo proteins 
▪ explore new folds 
▪ embed new functions

▪ create high affinity binders 
▪ therapeutic biologics 
▪ artificial sensors/probes

▪ tailor enzymatic function 
▪ improve thermostability  
▪ catalyse new reactions

▪ explore DNA interactions 
▪ new therapeutic solutions



69The origins: the Paracelsus challenge (‘94)The Paracelsus challenge (1994)
•Rose and Creamer: convert a protein to another fold 

changing no more than 50% of its sequence 

Dalal et al., Protein alchemy: Changing β-sheet into α-helix, 
Nature Structural & Molecular Biology 1997



Design of a zinc-less zinc finger
De Novo Protein Design: Fully

Automated Sequence Selection
Bassil I. Dahiyat† and Stephen L. Mayo*

The first fully automated design and experimental validation of a novel sequence for an
entire protein is described. A computational design algorithm based on physical chemical
potential functions and stereochemical constraints was used to screen a combinatorial
library of 1.9 ⇥ 1027 possible amino acid sequences for compatibility with the design
target, a ⇤⇤� protein motif based on the polypeptide backbone structure of a zinc finger
domain. A BLAST search shows that the designed sequence, full sequence design 1
(FSD-1), has very low identity to any known protein sequence. The solution structure of
FSD-1 was solved by nuclear magnetic resonance spectroscopy and indicates that
FSD-1 forms a compact well-ordered structure, which is in excellent agreement with the
design target structure. This result demonstrates that computational methods can per-
form the immense combinatorial search required for protein design, and it suggests that
an unbiased and quantitative algorithm can be used in various structural contexts.

Significant advances have been made to-
ward the design of stable, well-folded pro-
teins with novel sequences (1). These efforts
have generated insight into the factors that
control protein folding and have suggested
new approaches to biotechnology (2). In
order to broaden the scope and power of
protein design techniques, several groups
have developed and experimentally tested
systematic quantitative methods for protein
design directed toward developing general
design algorithms (3, 4). These techniques,
which have been used to screen possible
sequences for compatibility with the desired
protein fold, have been focused mostly on
the redesign of protein cores.

We have sought to expand the range of
computational protein design to residues of
all parts of a protein: the buried core, the
solvent-exposed surface, and the boundary
between core and surface (4–6). Our goal is
an unbiased, quantitative design algorithm
that is based on the physical properties that
determine protein structure and stability and
that is not limited to specific folds or motifs.
Such a method should escape the lack of
generality of design approaches based on sys-
tem-specific heuristics or subjective consid-
erations or both. We have developed our
algorithm by combining theory, computa-
tion, and experiment in a cycle that has
improved our understanding of the physical
chemistry governing protein design (4). We
now report the successful design by the algo-

rithm of an original sequence for an entire
protein and the experimental validation of
the protein’s structure.

Sequence selection. Our design method-
ology begins with a backbone fold and we
attempt to select an amino acid sequence
that will stabilize this target structure. The
method consists of an automated side-chain
selection algorithm that explicitly and quan-
titatively considers specific interactions be-
tween (i) side chain and backbone and (ii)
side chain and side chain (4). The side
chain selection algorithm screens all possi-
ble amino acid sequences and finds the op-
timal sequence and side-chain orientations
for a given backbone. In order to correctly
account for the torsional flexibility of side
chains and the geometric specificity of side-
chain placement, we consider a discrete set
of all allowed conformers of each side chain,
called rotamers (7). The sizable search prob-
lem presented by rotamer sequence optimi-
zation is overcome by application of the
dead-end elimination (DEE) theorem (8).
Our implementation of the DEE theorem
extends its utility to sequence design and
rapidly finds the globally optimal sequence
in its optimal conformation (4).

Previously we determined the different
contributions of core, surface, and boundary
residues to the scoring of a sequence ar-
rangement. The sequence predictions of a
scoring function, or a combination of scor-
ing functions, were experimentally tested in
order to assess the accuracy of the algorithm
and to derive improvements to it. We suc-
cessfully redesigned the core of a coiled coil
and of the streptococcal protein G ⇤1
(G⇤1) domain using a van der Waals poten-
tial to account for steric constraints and an
atomic solvation potential favoring the buri-
al and penalizing the exposure of nonpolar

surface area (4, 6). Effective solvation pa-
rameters and the appropriate balance be-
tween packing and solvation terms were
found by systematic analysis of experimental
data and feedback into the simulation. Sol-
vent-exposed residues on the surface of a
protein were designed with the use of a
hydrogen-bond potential and secondary
structure propensities in addition to a van
der Waals potential. Coiled coils designed
with such a scoring function were 10° to
12°C more thermally stable than the natu-
rally occurring analog (5). Residues that
form the boundary between the core and
surface require a combination of the core
and the surface scoring functions. The algo-
rithm considers both hydrophobic and hy-
drophilic amino acids at boundary positions,
whereas core positions are restricted to hy-
drophobic amino acids and surface positions
are restricted to hydrophilic amino acids.

In order to assess the capability of our
design algorithm, we have computed the
entire amino acid sequence for a small pro-
tein motif. We sought a protein fold that
would be small enough to be both computa-
tionally and experimentally tractable, yet
large enough to form an independently fold-
ed structure in the absence of disulfide bonds
or metal binding. We chose the ⇤⇤� motif
typified by the zinc finger DNA binding
module (9). Although this motif consists of
fewer than 30 residues, it does contain sheet,
helix, and turn structures. The ability of this
fold to form in the absence of metal ions or
disulfide bonds has been demonstrated by
Imperiali and co-workers, who designed a
23-residue peptide, containing an unusual
amino acid (D-proline) and a nonnatural
amino acid [3-(1,10-phenanthrol-2-yl)-L-
alanine], which achieved this fold (10); our
initial characterization of a partially comput-
ed sequence indicated that it also forms this
fold (11). In computing the full sequence for
this target fold, we use the scoring functions
from our previous work without modification
(12). The ⇤⇤� motif was not used in any of
our prior work to develop the design meth-
odology and therefore provides a test of the
algorithm’s generality.

The sequence selection algorithm requires
structure coordinates that define the target
motif ’s backbone (N, C�, C, and O atoms
and C�-C⇤ vectors). The Brookhaven Pro-
tein Data Bank (PDB) (13) was examined for
high-resolution structures of the ⇤⇤� motif,
and the second zinc finger module of the
DNA binding protein Zif268 was selected as
our design template (9, 14). In order to assign
the residue positions in the template structure
into core, surface, or boundary classes, the
orientation of the C�-C⇤ vectors was assessed
relative to a solvent-accessible surface com-
puted with only the template C� atoms (15).
The small size of this motif limits to one

B I. Dahiyat, Division of Chemistry and Chemical Engi-
neering, California Institute of Technology, mail code
147-75, Pasadena, CA 91125, USA.
S. L. Mayo, Howard Hughes Medical institute and Divi-
sion of Biology, California Institute of Technology, mail
code 147-75, Pasadena, CA 91125, USA.

*To whom correspondence should be addressed. E-mail:
steve@mayo.caltech.edu
†Present address: Xencor, Pasadena, CA 91106, USA.

RESEARCH ARTICLE

SCIENCE � VOL. 278 � 3 OCTOBER 1997 � www.sciencemag.org82

 o
n 

M
ay

 1
9,

 2
01

0 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

Dahiyat, BI, and SL Mayo.
Science 278, 5335 (3 October 1997): 82-7

th
er

,
th

e
BL

A
ST

se
ar

ch
fo

un
d

on
ly

lo
w

id
en

tit
y

m
at

ch
es

of
w

ea
k

st
at

ist
ic

al
sig

ni
fi-

ca
nc

e
to

fra
gm

en
ts

of
va

rio
us

un
re

la
te

d
pr

o-
te

in
s.

T
he

hi
gh

es
t

id
en

tit
y

m
at

ch
es

w
er

e
10

re
sid

ue
s

(3
6

pe
rc

en
t)

w
ith

P
va

lu
es

ra
ng

in
g

fro
m

0.
63

to
1.

0,
w

he
re

P
is

th
e

pr
ob

ab
ili

ty
of

a
m

at
ch

be
in

g
a

ch
an

ce
oc

cu
rr

en
ce

.R
an

do
m

28
-r

es
id

ue
se

qu
en

ce
s

th
at

co
ns

ist
of

am
in

o
ac

id
sa

llo
w

ed
in

th
e

⌦
⌦
⌅

po
sit

io
n

cl
as

sif
ic

a-
tio

n
de

sc
rib

ed
ab

ov
e

pr
od

uc
ed

sim
ila

r
BL

A
ST

se
ar

ch
re

su
lts

,w
ith

10
-o

r1
1-

re
sid

ue
id

en
tit

ie
s

(3
6

to
39

pe
rc

en
t)

an
d

P
va

lu
es

ra
ng

in
g

fro
m

0.
35

to
1.

0,
fu

rt
he

r
su

gg
es

tin
g

th
at

th
e

m
at

ch
es

fo
r

FS
D

-1
ar

e
st

at
ist

ic
al

ly
in

sig
ni

fic
an

t.
T

he
lo

w
id

en
tit

y
w

ith
an

y
kn

ow
n

pr
ot

ei
n

se
qu

en
ce

de
m

on
st

ra
te

s
th

e
no

ve
lty

of
th

e
FS

D
-1

se
qu

en
ce

an
d

un
de

r-
sc

or
es

th
at

no
se

qu
en

ce
in

fo
rm

at
io

n
fro

m
an

y
pr

ot
ei

n
m

ot
if

w
as

us
ed

in
ou

r
se

qu
en

ce
sc

or
in

g
fu

nc
tio

n.
In

or
de

rt
o

ex
am

in
e

th
e

ro
bu

st
ne

ss
of

th
e

co
m

pu
te

d
se

qu
en

ce
,w

e
us

ed
th

e
se

qu
en

ce
of

FS
D

-1
as

th
e

st
ar

tin
g

po
in

to
fa

M
on

te
C

ar
lo

sim
ul

at
ed

an
ne

al
in

g
ru

n.
T

he
M

on
te

C
ar

lo
se

ar
ch

re
ve

al
ed

hi
gh

sc
or

in
g,

su
bo

pt
im

al
se

-
qu

en
ce

si
n

th
e

ne
ig

hb
or

ho
od

of
th

e
op

tim
al

so
lu

tio
n

(4
).

T
he

en
er

gy
sp

re
ad

fro
m

th
e

gr
ou

nd
-s

ta
te

so
lu

tio
n

to
th

e
10

00
th

m
os

t
st

ab
le

se
qu

en
ce

is
ab

ou
t5

kc
al

/m
ol

,a
n

in
di

-
ca

tio
n

th
at

th
e

de
ns

ity
of

st
at

es
is

hi
gh

.T
he

am
in

o
ac

id
sc

om
pr

isi
ng

th
e

co
re

of
th

e
m

ol
-

ec
ul

e,
w

ith
th

e
ex

ce
pt

io
n

of
po

sit
io

n
7,

ar
e

es
se

nt
ia

lly
in

va
ria

nt
(F

ig
.

1)
.

A
lm

os
t

al
l

of
th

e
se

qu
en

ce
va

ria
tio

n
oc

cu
rs

at
su

rfa
ce

po
-

sit
io

ns
,

an
d

ty
pi

ca
lly

in
vo

lv
es

co
ns

er
va

tiv
e

ch
an

ge
s.

A
sn

14
,w

hi
ch

is
pr

ed
ic

te
d

to
fo

rm
a

st
ab

ili
zin

g
hy

dr
og

en
bo

nd
to

th
e

he
lix

ba
ck

-

A B

Fi
g.

2.
C

om
pa

ris
on

of
Zi

f2
68

(9
)a

nd
co

m
pu

te
d

FS
D

-1
st

ru
ct

ur
es

.(
A

)S
te

re
ov

ie
w

of
th

e
se

co
nd

zi
nc

fin
ge

r
m

od
ul

e
of

Zi
f2

68
sh

ow
in

g
its

bu
rie

d
re

si
du

es
an

d
zi

nc
bi

nd
in

g
si

te
.

(B
)

S
te

re
ov

ie
w

of
th

e

co
m

pu
te

d
or

ie
nt

at
io

ns
of

bu
rie

d
si

de
ch

ai
ns

in
FS

D
-1

.F
or

cl
ar

ity
,o

nl
y

si
de

ch
ai

ns
fro

m
re

si
du

es
3,

5,
8,

12
,1

8,
21

,2
2,

an
d

25
ar

e
sh

ow
n.

C
ol

or
fig

ur
es

w
er

e
cr

ea
te

d
w

ith
M

O
LM

O
L

(3
8)

.

Ta
bl

e
1.

N
M

R
st

ru
ct

ur
e

de
te

rm
in

at
io

n:
di

st
an

ce
re

st
ra

in
ts

,s
tru

ct
ur

al
st

at
is

tic
s,

an
d

at
om

ic
ro

ot
-m

ea
n-

sq
ua

re
(rm

s)
de

vi
at

io
ns

.
 S

A
�

ar
e

th
e

41
si

m
ul

at
ed

an
ne

al
in

g
st

ru
ct

ur
es

,
S

A
is

th
e

av
er

ag
e

st
ru

ct
ur

e

be
fo

re
en

er
gy

m
in

im
iz

at
io

n,
(S

A
) r

is
th

e
re

st
ra

in
ed

en
er

gy
m

in
im

iz
ed

av
er

ag
e

st
ru

ct
ur

e,
an

d
S

D
is

th
e

st
an

da
rd

de
vi

at
io

n.

D
is

ta
nc

e
re

st
ra

in
ts

In
tra

re
si

du
e

97
S

eq
ue

nt
ia

l
83

S
ho

rt
ra

ng
e

(�i
–

j�
�

2
to

5
re

si
du

es
)

59
Lo

ng
ra

ng
e

(�i
–

j�
⇤

5
re

si
du

es
)

35
H

yd
ro

ge
n

bo
nd

10
To

ta
l

28
4

S
tr

uc
tu

ra
ls

ta
tis

tic
s

rm
s

de
vi

at
io

ns
 S

A
�
⌃

S
D

(S
A

) r
D

is
ta

nc
e

re
st

ra
in

ts
(Å

)
0.

04
3

⌃
0.

00
3

0.
03

8
Id

ea
liz

ed
ge

om
et

ry
B

on
ds

(Å
)

0.
00

41
⌃

0.
00

02
0.

00
37

A
ng

le
s

(d
eg

re
es

)
0.

67
⌃

0.
02

0.
65

Im
pr

op
er

s
(d

eg
re

es
)

0.
53

⌃
0.

05
0.

51

A
to

m
ic

rm
s

de
vi

at
io

ns
(Å

)*
 S

A
�

ve
rs

us
S

A
⌃

S
D

 S
A
�

ve
rs

us
(S

A
) r

⌃
S

D

B
ac

kb
on

e
0.

54
⌃

0.
15

0.
69

⌃
0.

16

B
ac

kb
on

e
↵

no
np

ol
ar

si
de

ch
ai

ns
†

0.
99

⌃
0.

17
1.

16
⌃

0.
18

H
ea

vy
at

om
s

1.
43

⌃
0.

20
1.

90
⌃

0.
29

*A
to

m
ic

rm
s

de
vi

at
io

ns
ar

e
fo

rr
es

id
ue

s
3

to
26

,i
nc

lu
si

ve
.R

es
id

ue
s

1,
2,

27
,a

nd
28

w
er

e
di

so
rd

er
ed

[⌥
,⇧

,a
ng

ul
ar

or
de

r
pa

ra
m

et
er

s
(3

4)
⇥

0.
78

]a
nd

ha
d

on
ly

se
qu

en
tia

la
nd

�i
–

j�
�

2
N

O
Es

.
†N

on
po

la
r

si
de

ch
ai

ns
ar

e
fro

m

re
si

du
es

Ty
r3

,A
la

5
,I

le
7
,P

he
1
2
,L

eu
1
8
,P

he
2
1
,I

le
2
2
,a

nd
P

he
2
5
,w

hi
ch

co
ns

tit
ut

e
th

e
co

re
of

th
e

pr
ot

ei
n.

Fi
g.

3.
C

irc
ul

ar
di

ch
ro

is
m

(C
D

)m
ea

su
re

m
en

ts
of

FS
D

-1
.(

A
)F

ar
-U

V
C

D
sp

ec
tru

m
of

FS
D

-1
at

1°
C

.
Th

e
m

in
im

a
at

22
0

an
d

20
7

nm
in

di
ca

te
a

fo
ld

ed
st

ru
ct

ur
e.

(B
)T

he
rm

al
un

fo
ld

in
g

of
FS

D
-1

m
on

i-
to

re
d

by
C

D
.T

he
m

el
tin

g
cu

rv
e

ha
s

an
in

fle
ct

io
n

po
in

ta
t3

9°
C

.T
o

illu
st

ra
te

th
e

co
op

er
at

iv
ity

of
th

e
th

er
m

al
tra

ns
iti

on
,

th
e

m
el

tin
g

cu
rv

e
w

as
fit

to
a

tw
o-

st
at

e
m

od
el

[(3
9)

an
d

th
e

de
riv

at
iv

e
of

th
e

fit
is

sh
ow

n
(in

se
t)]

.
Th

e
m

el
tin

g
te

m
pe

ra
tu

re
de

te
r-

m
in

ed
fro

m
th

is
fit

is
42

°C
.

SC
IE

N
C

E
�V

O
L.

27
8
�3

O
C

T
O

BE
R

19
97

�w
w

w
.sc

ie
nc

em
ag

.o
rg

84

 on May 19, 2010 www.sciencemag.org Downloaded from 

bone, is among the most conserved surface
positions. The strong sequence conserva-
tion observed for critical areas of the
molecule suggests that, if a representative
sequence folds into the design target struc-
ture, then many sequences whose varia-
tions do not disrupt the critical interac-
tions may be equally competent. Even if
billions of sequences would successfully
achieve the target fold, they would repre-
sent only a very small proportion of the
1027 possible sequences.

Experimental validation. FSD-1 was
synthesized in order to allow us to charac-
terize its structure and assess the per-
formance of the design algorithm (24).
The far-ultraviolet (UV) circular dichro-
ism (CD) spectrum of FSD-1 shows mini-
ma at 220 nm and 207 nm, which is
indicative of a folded structure (Fig. 3A)
(25). The thermal melt is weakly cooper-
ative, with an inflection point at 39°C
(Fig. 3B), and is completely reversible.
The broad melt is consistent with a low
enthalpy of folding which is expected for a
motif with a small hydrophobic core. This
behavior contrasts the uncooperative ther-
mal unfolding transitions observed for
other folded short peptides (26). FSD-1 is
highly soluble (greater than 3 mM), and
equilibrium sedimentation studies at 100
⇥M, 500 ⇥M, and 1 mM show the protein
to be monomeric (27). The sedimentation
data fit well to a single species, monomer
model with a molecular mass of 3630 at 1
mM, in good agreement with the cal-
culated monomer mass of 3488. Also, far
UV-CD spectra showed no concentra-
tion dependence from 50 ⇥M to 2 mM,
and nuclear magnetic resonance (NMR)
COSY spectra taken at 100 ⇥M and 2 mM
were essentially identical.

The solution structure of FSD-1 was
solved by means of homonuclear 2D 1H

NMR spectroscopy (28). NMR spectra were
well dispersed, indicating an ordered protein
structure and easing resonance assignments.
Proton chemical shift assignments were de-
termined with standard homonuclear meth-
ods (29). Unambiguous sequential and short-
range NOEs (Fig. 4) indicate helical second-
ary structure from residues 15 to 26 in agree-
ment with the design target. Representative
long-range NOEs from the helix to Ile7 and
Phe12 indicate a hydrophobic core consistent
with the desired tertiary structure (Fig. 4B).

The structure of FSD-1 was determined
from 284 experimental restraints (10.1 re-
straints per residue) that were nonredundant
with covalent structure including 274 NOE
distance restraints and 10 hydrogen bond
restraints involving slowly exchanging
amide protons (30). Structure calculations
were performed with X-PLOR (31) with the
use of standard protocols for hybrid distance
geometry-simulated annealing (32). An en-
semble of 41 structures converged with good
covalent geometry and no distance restraint

violations greater than 0.3 Å (Fig. 5 and
Table 1). The backbone of FSD-1 is well
defined with a root-mean-square (rms) devi-
ation from the mean of 0.54 Å (residues 3 to
26). Consideration of the buried side chains
(Tyr3, Ala5, Ile7, Phe12, Leu18, Phe21, Ile22,
and Phe25) along with the backbone gives an
rms deviation of 0.99 Å, indicating that the
core of the molecule is well ordered. The
stereochemical quality of the ensemble of
structures was examined with PROCHECK
(33). Apart from the disordered termini and
the glycine residues, 87 percent of the resi-
dues fall in the most favored region and the
remainder in the allowed region of ⌃,⌅
space. Modest heterogeneity is evident in
the first strand (residues 3 to 6), which has
an average backbone angular order parame-
ter, �S⌥ (34), of 0.96 ⇧ 0.04 compared to the
second strand (residues 9 to 12) with an �S⌥
� 0.98 ⇧ 0.02 and the helix (residues 15 to
26) with an �S⌥ � 0.99 ⇧ 0.01. Overall,
FSD-1 is notably well ordered and, to our
knowledge, is the shortest sequence consist-

Fig. 4. NOE contacts for FSD-1. (A) Sequential and short-range NOE con-
nectivities. The d denotes a contact between the indicated protons. All
adjacent residues are connected by H⇤-HN, HN-HN, or H -HN NOE cross-
peaks. The helix (residues 15 to 26) is well defined by short-range connec-

tions, as is the hairpin turn at residues 7 and 8. (B) Representative NOE
contacts from aromatic to methyl protons. Several long-range NOEs from Ile7

and Phe12 to the helix help define the fold of the protein. The starred peak has
an ambiguous F1 assignment, Ile22 Hd1 or Leu18 Hd2.

Fig. 5. Solution structure of FSD-1. Stereoview showing the best-fit superposition of the 41 converged
simulated annealing structures from X-PLOR (31). The backbone C⇤ trace is shown in blue and the
side-chain heavy atoms of the hydrophobic residues ( Tyr3, Ala5, Ile7, Phe12, Leu18, Phe21, Ile22, and
Phe25) are shown in magenta. The amino terminus is at the lower left of the figure and the carboxyl
terminus is at the upper right of the figure. The structure consists of two antiparallel strands from
positions 3 to 6 (back strand) and 9 to 12 (front strand), with a hairpin turn at residues 7 and 8, followed
by a helix from positions 15 to 26. The termini, residues 1, 2, 27, and 28 have very few NOE restraints
and are disordered.
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ing entirely of naturally occurring amino
acids that folds to a well-ordered structure
without metal binding, oligomerization, or
disulfide bond formation (35).

The packing pattern of the hydrophobic
core of the NMR structure ensemble of
FSD-1 (Tyr3, Ile7, Phe12, Leu18, Phe21, Ile22,
and Phe25) is similar to the computed pack-
ing arrangement. Five of the seven residues
have ⌦1 angles in the same gauche , gauche�
or trans category as the design target, and
three residues match both ⌦1 and ⌦2 angles.
The two residues that do not match their
computed ⌦1 angles are Ile7 and Phe25,
which is consistent with their location at the
less constrained open end of the molecule.
Ala5 is not involved in its expected exten-
sive packing interactions and instead ex-
poses about 45 percent of its surface area
because of the displacement of the strand 1
backbone relative to the design template.
Conversely, Lys8 behaves as predicted by the
algorithm with its solvent exposure (60 per-
cent) and ⌦1 and ⌦2 angles matching the
computed structure. Because there are few
NOEs involving solvent-exposed side
chains, most of these side chains are disor-
dered in the solution structure, a state that
precludes examination of the predicted sur-
face residue hydrogen bonds. However,
Asn14 forms a hydrogen bond from its side
chain carbonyl oxygen as predicted, but to
the amide of Glu17, not Lys16 as expected
from the design. This hydrogen bond is
present in 95 percent of the structure ensem-
ble and has a donor-acceptor distance of
2.6 ⌅ 0.06 Å. In general, the side chains of
FSD-1 correspond well with the design algo-
rithm predictions, but further refinement of
the scoring function and rotamer library
should improve sequence selection and side
chain placement and improve the correla-
tion between the predicted and observed
structures.

We compared the average restrained
minimized structure of FSD-1 and the design
target (Fig. 6). The overall backbone rms
deviation of FSD-1 from the design target is
1.98 Å for residues 3 to 26 and only 0.98 Å

for residues 8 to 26 (Table 2). The largest
difference between FSD-1 and the target
structure occurs from residues 4 to 7, with a
displacement of 3.0 to 3.5 Å of the backbone
atom positions of strand 1. The agreement
for strand 2, the strand-to-helix turn, and the
helix is remarkable, with the differences
nearly within the accuracy of the structure
determination. For this region of the struc-
ture, the rms difference of ⇧, ⇤ angles be-
tween FSD-1 and the design target is only
14⌅ 9°. In order to quantitatively assess the
similarity of FSD-1 to the global fold of the
target, we calculated their supersecondary
structure parameter values (Table 2) (36,
37), which describe the relative orientations
of secondary structure units in proteins. The
values of ⌃, the inclination of the helix
relative to the sheet, and �, the dihedral
angle between the helix axis and the strand
axes (see legend to Table 2), are nearly
identical. The height of the helix above the
sheet, h, is only 1 Å greater in FSD-1. A
study of protein core design as a function of
helix height for G⌥1 variants demonstrated
that up to 1.5 Å variation in helix height has
little effect on sequence selection (37). The
comparison of supersecondary structure pa-
rameter values and backbone coordinates
highlights the excellent agreement between
the experimentally determined structure of
FSD-1 and the design target, and demon-
strates the success of our algorithm at com-
puting a sequence for this ⌥⌥⇥ motif.

The quality of the match between FSD-1
and the design target demonstrates the abil-
ity of our algorithm to design a sequence for
a fold that contains the three major second-
ary structure elements of proteins: sheet, he-
lix, and turn. Since the ⌥⌥⇥ fold is different
from those used to develop the sequence-
selection methodology, the design of FSD-1
represents a successful transfer of our algo-
rithm to a new motif. Further tests of the
performance of the algorithm on several dif-
ferent motifs are necessary, although its basis
in physical chemistry and the absence of
heuristics and subjective considerations
should allow the algorithm to be used in

many different structural contexts. Also, the
generation of various kinds of backbone tem-
plates for use as input to our fully automated
sequence selection algorithm could enable
the design of new protein folds. Recent re-
sults indicate that the sequence selection
algorithm is not sensitive to even fairly large
perturbations in backbone geometry and
should be robust enough to accommodate
computer-generated backbones (37).

The key to using a quantitative method for
the FSD-1 design, and for the continued de-
velopment of the methodology, is the tight
coupling of theory, computation, and experi-
ment used to improve the accuracy of the
physical chemical potential functions in our
algorithm. When combined with these poten-
tial functions, computational optimization
methods such as DEE can rapidly find se-
quences for structures too large for experimen-
tal library screening or too complex for
subjective approaches. Given that the FSD-1
sequence was computed with only a 4-Giga-
FLOPS computer (19), and that TeraFLOPS
computers are now available with PetaFLOPS
computers on the drawing board, the prospect
for pursuing even larger and more complex
designs is excellent.
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Table 2. Comparison of the FSD-1 experimentally
determined structure and the design target struc-
ture. The FSD-1 structure is the restrained energy
minimized average from the NMR structure deter-
mination. The design target structure is the sec-
ond DNA binding module of the zinc finger Zif268
(9)

Atomic rms deviations (Å)

Backbone, residues 3 to 26 1.98
Backbone, residues 8 to 26 0.98

Super-secondary structure parameters*

h (Å)
⌃ (degrees)
� (degrees)

*h, ⌃, and� are calculated as described (36, 37 ). h is the
distance between the centroid of the helix C⇥ coordi-
nates (residues 15 to 26) and the least-squares plane fit
to the C⇥ coordinates of the sheet (residues 3 to 12); ⌃ is
the angle of inclination of the principal moment of the helix
C⇥ atoms with the plane of the sheet; � is the angle
between the projection of the principal moment of the
helix onto the sheet and the projection of the average
least-squares fit line to the strand C⇥ coordinates (resi-
dues 3 to 6 and 9 to 12) onto the sheet.

FSD-1 Design target
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disulfide bond formation (35).
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core of the NMR structure ensemble of
FSD-1 (Tyr3, Ile7, Phe12, Leu18, Phe21, Ile22,
and Phe25) is similar to the computed pack-
ing arrangement. Five of the seven residues
have ⌦1 angles in the same gauche , gauche�
or trans category as the design target, and
three residues match both ⌦1 and ⌦2 angles.
The two residues that do not match their
computed ⌦1 angles are Ile7 and Phe25,
which is consistent with their location at the
less constrained open end of the molecule.
Ala5 is not involved in its expected exten-
sive packing interactions and instead ex-
poses about 45 percent of its surface area
because of the displacement of the strand 1
backbone relative to the design template.
Conversely, Lys8 behaves as predicted by the
algorithm with its solvent exposure (60 per-
cent) and ⌦1 and ⌦2 angles matching the
computed structure. Because there are few
NOEs involving solvent-exposed side
chains, most of these side chains are disor-
dered in the solution structure, a state that
precludes examination of the predicted sur-
face residue hydrogen bonds. However,
Asn14 forms a hydrogen bond from its side
chain carbonyl oxygen as predicted, but to
the amide of Glu17, not Lys16 as expected
from the design. This hydrogen bond is
present in 95 percent of the structure ensem-
ble and has a donor-acceptor distance of
2.6 ⌅ 0.06 Å. In general, the side chains of
FSD-1 correspond well with the design algo-
rithm predictions, but further refinement of
the scoring function and rotamer library
should improve sequence selection and side
chain placement and improve the correla-
tion between the predicted and observed
structures.

We compared the average restrained
minimized structure of FSD-1 and the design
target (Fig. 6). The overall backbone rms
deviation of FSD-1 from the design target is
1.98 Å for residues 3 to 26 and only 0.98 Å

for residues 8 to 26 (Table 2). The largest
difference between FSD-1 and the target
structure occurs from residues 4 to 7, with a
displacement of 3.0 to 3.5 Å of the backbone
atom positions of strand 1. The agreement
for strand 2, the strand-to-helix turn, and the
helix is remarkable, with the differences
nearly within the accuracy of the structure
determination. For this region of the struc-
ture, the rms difference of ⇧, ⇤ angles be-
tween FSD-1 and the design target is only
14⌅ 9°. In order to quantitatively assess the
similarity of FSD-1 to the global fold of the
target, we calculated their supersecondary
structure parameter values (Table 2) (36,
37), which describe the relative orientations
of secondary structure units in proteins. The
values of ⌃, the inclination of the helix
relative to the sheet, and �, the dihedral
angle between the helix axis and the strand
axes (see legend to Table 2), are nearly
identical. The height of the helix above the
sheet, h, is only 1 Å greater in FSD-1. A
study of protein core design as a function of
helix height for G⌥1 variants demonstrated
that up to 1.5 Å variation in helix height has
little effect on sequence selection (37). The
comparison of supersecondary structure pa-
rameter values and backbone coordinates
highlights the excellent agreement between
the experimentally determined structure of
FSD-1 and the design target, and demon-
strates the success of our algorithm at com-
puting a sequence for this ⌥⌥⇥ motif.

The quality of the match between FSD-1
and the design target demonstrates the abil-
ity of our algorithm to design a sequence for
a fold that contains the three major second-
ary structure elements of proteins: sheet, he-
lix, and turn. Since the ⌥⌥⇥ fold is different
from those used to develop the sequence-
selection methodology, the design of FSD-1
represents a successful transfer of our algo-
rithm to a new motif. Further tests of the
performance of the algorithm on several dif-
ferent motifs are necessary, although its basis
in physical chemistry and the absence of
heuristics and subjective considerations
should allow the algorithm to be used in

many different structural contexts. Also, the
generation of various kinds of backbone tem-
plates for use as input to our fully automated
sequence selection algorithm could enable
the design of new protein folds. Recent re-
sults indicate that the sequence selection
algorithm is not sensitive to even fairly large
perturbations in backbone geometry and
should be robust enough to accommodate
computer-generated backbones (37).

The key to using a quantitative method for
the FSD-1 design, and for the continued de-
velopment of the methodology, is the tight
coupling of theory, computation, and experi-
ment used to improve the accuracy of the
physical chemical potential functions in our
algorithm. When combined with these poten-
tial functions, computational optimization
methods such as DEE can rapidly find se-
quences for structures too large for experimen-
tal library screening or too complex for
subjective approaches. Given that the FSD-1
sequence was computed with only a 4-Giga-
FLOPS computer (19), and that TeraFLOPS
computers are now available with PetaFLOPS
computers on the drawing board, the prospect
for pursuing even larger and more complex
designs is excellent.
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Table 2. Comparison of the FSD-1 experimentally
determined structure and the design target struc-
ture. The FSD-1 structure is the restrained energy
minimized average from the NMR structure deter-
mination. The design target structure is the sec-
ond DNA binding module of the zinc finger Zif268
(9)

Atomic rms deviations (Å)

Backbone, residues 3 to 26 1.98
Backbone, residues 8 to 26 0.98

Super-secondary structure parameters*

h (Å)
⌃ (degrees)
� (degrees)

*h, ⌃, and� are calculated as described (36, 37 ). h is the
distance between the centroid of the helix C⇥ coordi-
nates (residues 15 to 26) and the least-squares plane fit
to the C⇥ coordinates of the sheet (residues 3 to 12); ⌃ is
the angle of inclination of the principal moment of the helix
C⇥ atoms with the plane of the sheet; � is the angle
between the projection of the principal moment of the
helix onto the sheet and the projection of the average
least-squares fit line to the strand C⇥ coordinates (resi-
dues 3 to 6 and 9 to 12) onto the sheet.

FSD-1 Design target

9.9
14.2
13.1

8.9
16.5
13.5
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De novo design of helical bundles
• use knowledge on natural occurring helical bundles to 

assemble and functionalize new folds and functions

and, recently, the design of proteins that adopt a unique
conformation has been accomplished. Examples include
peptides of approximately 25 residues patterned after the
zinc finger motif.47-51 Further, approximately 20-residue
peptides that adopt marginally stable antiparallel !-sheets
have been described,52-56 and native-like two-helix,57

three-helix,13 and four-helix58,59 bundles have been de-
signed and structurally characterized. Here we describe a
family of dimeric four-helix bundles with properties
ranging from highly mobile molten globules to fully
native-like folds. An analysis of these proteins has led to
a deeper understanding of conformational specificity as
well as the design of a new class of metalloproteins that
serve as models of larger, functional proteins.

Determinants of the Free Energy Gap
Dimeric four-helix bundles occur in nature in the form
of noncovalently self-assembled proteins such as Rop.60

These proteins adopt bundles with the helices lying in
either parallel or antiparallel orientations. Dimeric helical
bundles have a large number of possible topologies and
hence are ideally suited for studies of the determinants
of conformational specificity. While a single-chain four-
helix bundle with short connecting loops has only two
topologiessclockwise-turning or counterclockwise-turnings
a homodimeric four-helix bundle has six possible topolo-
gies (Figure 2): Four topologies have clockwise- or
counterclockwise-turning loops that connect neighboring
helices on either the same or opposite sides of the
bundle.61 Alternatively, the loops can cross diagonally over
the tops of the bundle in a motif denoted the bisecting
U, which was first described in the de novo-designed
protein R2D.58 Thus, the successful design of dimeric
helical bundles requires stabilization of one topology while
destabilizing the other five possible topologies.

The residues that comprise the loops between the
helices may play an important role in determining con-
formational specificity. Loop residues between helices can
adopt a number of different geometries (φ,ψ angles),
analogous to the well-known turn motifs that connect

antiparallel !-hairpins.62 Two frequently occurring three-
residue loops, helix-(RL-!-!)-helix and helix-(γ-RL-!)-
helix, are comprised of two common helical motifs.10,62

First, the C-capping Schellman motif (helix-RL-!) caps the
end of the first helix.63 Second, the N-capping motif (!-
helix) or hydrophobic staple (!-!-helix) caps the start of
the second helix.64 The two motifs are defined by confor-
mational preferences, which are matched with sequence
preferences that help define the turn site. Thus, it is not
surprising that the conformational specificity, and the
thermodynamic stability, of a helix-loop-helix motif
depends on both the composition and the length of its
loop sequence.

For example, the thermodynamic stability of Rop is
modulated over 3.6 kcal mol-1, depending on the nature
of a single residue in its helix-(RL-!)-helix loop.65 Also,
insertion of Gly residues into this loop have been shown
to be entropically destabilizing relative to the natural
sequence by 0.5-1.0 kcal mol-1 for each Gly residue
inserted.66 Thus, a well-designed loop can stabilize a
protein by several kilocalories per mole relative to a
randomly chosen or poorly designed sequence.67 In some
cases, loop residues can also play an important role in
conformational specificity. In one particularly extreme
example, a single-residue replacement of Pro for Ala31 in
the loop of the dimeric helical bundle, Rop, switches this
protein’s topology from an anti counterclockwise-turning
bundle to a bisecting U!68

The R2 family of dimeric four-helix bundle proteins
(Figure 3) provides an excellent opportunity to examine
other determinants of conformational specificity. An early
member of this family, R2B,69 consisted of a pair of
interconnected, identical helices, whose sequences con-
sisted of only Leu, Glu, and Lys. Although this peptide
dimerized to form an exceedingly stable helical bundle,
it adopted molten globule-like conformations.20 The dy-
namic character of R2B most probably arose from rapid
motions of side chains in the bundle and the formation
of multiple, interconverting topologies. With identical
sequences for helices 1 and 2 (Figure 3), and a flexible
loop, the six different topologies illustrated in Figure 2
should be nearly energetically degenerate and therefore
roughly equally populated. In the next generation design,
R2C, the sequence degeneracy of the helices was reduced,
and the diversity of the side chains within the core was
increased.70 Half of the Leu residues were replaced by side
chains with aromatic and more conformationally re-
stricted !-branched apolar side chains, resulting in a
peptide, R2C, that showed an increase in its ability to adopt

FIGURE 2. A dimeric, four-helix bundle can adopt six distinct
topologies. The topology diagrams shown are for the three possible
clockwise-turning helical bundles. Counterclockwise-turning helical
bundles are also possible and have interfacial interactions different
from their clockwise-turning correlates.

FIGURE 3. Amino acid sequences of the R2 family, reflecting the
hierarchical approach to protein design. Each peptide is comprised
of 35 residues with the N-terminus acetylated and the C-terminus
amidated. R2B is comprised solely of leucine residues in the
hydrophobic core positions. R2C is comprised of a more diverse set
of nonpolar and aromatic residues in the hydrophobic core positions.
R2D has three additional changes at positions 7, 26, and 30.
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of a fold.85-87 In this work, protein sequences were
prepared that were random within the constraints of a
hydrophobic/hydrophilic pattern. For example, a series
of single-chain four-helix bundles with the same hydro-
phobic pattern as R2B has been shown to adopt compact
structures with significant helical content. Individual
members of the library have various degrees of native-
like behavior, as assessed from their thermodynamic
properties and the degree of dispersion of their NMR
spectra. However, structures have not been determined
for these and other random-sequence proteins, so it is not
clear what fraction of the members of these libraries have
a uniquely folded structure.

Thus, the hydrophobic/hydrophilic pattern is an im-
portant driving force that strongly predisposes a protein
toward a family of related folds (e.g., clockwise- and
counterclockwise-turning four-helix bundles). For some
folds, such as coiled coils, a hydrophobic period may be
sufficient to specify an elongated helical bundle. However,
our studies with R2D suggest that more fine-tuned inter-
actions may frequently contribute to a uniquely folded
state.

The process of protein design has certain parallels with
the folding of natural proteins. Forming collapsed molten
globule-like states is relatively rapid, indicating that there
is a small free energy barrier to this step in folding, and
this is often the easy part of the design process. The slow
step in folding and the difficult step in design is usually
the transition from a relatively noncooperative condensed
state to a fully native state.

From Structure to Function: Design of Metallopro-
teins. The above studies indicate that de novo protein

design has increased our understanding of how amino
acid sequence specifies native protein structure. The rules
for designing native-like four-helix bundle proteins are
now well in hand, and it is possible to use this technology
to address how an amino acid sequence specifies catalytic
function. Toward this goal, many groups are pursuing the
design of metalloproteins (reviewed recently10,88). There
are basically three approaches to designing mimics of
metal-binding sites: In the first, one uses automated
methods to graft a metal-binding site into the structure
of a natural protein of known structure.89-92 A second
approach has been to design small, flexible peptides that,
although intrinsically flexible, are nevertheless able to fold
around a metal ion. Examples of such peptides include
Cu(II)-binding motifs related to Gly-Gly-His,93-96 as well
as small peptides that assemble into Fe4S4 clusters.97,98

However, complete control of a cofactor’s environment
might be best effected through the de novo design99-102

of proteins whose active sites are defined by the favorable
free energy of folding of the polypeptide chain. There has
also been much progress made in the de novo design of
proteins that bind metalloporphyrins92-95,103-105 and Zn-
(II).20,106 The structures of some simple porphyrin peptide
complexes have been solved by NMR.107,108 However, the
structures of larger designed proteins with bound cofac-
tors have not been solved, possibly because they have
dynamically averaging structures.41,104,109,110

As the principles and methods for de novo protein
design have matured, it has recently become possible to
design structurally defined models for metalloproteins.
The diiron class of proteins, which are capable of per-
forming a diverse range of functions yet contain a four-

FIGURE 8. X-ray structure of the di-Zn(II) form of DF1 (2.5 Å resolution), which is nearly identical to the intended design. The backbone of
the structure plus the ligands are shown in the two views. At left, a Tyr phenolic group hydrogen bonds to a Glu carboxylate (a second,
symmetry-related Tyr-Glu interaction is not shown for clarity). At right, hydrogen bonds between Asp carboxylates and His side chains are
shown.
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Like the design model, the Top7 crystal
structure is judged to be a novel topology by
the TOPS server. The strongest structural
similarity found in a Dali search of the PDB
(33) is to a discontinuous portion of the 668-
residue protein S-adenosylmethionine decar-
boxylase, which has a large 68-residue inser-
tion between strands 1 and 2, and the third
and fourth strands are connected by an unre-
fined loop instead of a helix. According to A.
Murzin, the curator of the Structural Classi-
fication of Proteins (SCOP) database, the
Top7 fold is not present in SCOP (34, 35).
Implications. The 1.17-Å backbone atom

RMSD between the Top7 design model and the
crystal structure implies that deep minima in the
free energy function used in design correspond
to deep minima in the actual free-energy land-
scape and hence are an important validation of
the accuracy of current potential functions. This
atomic-level accuracy contrasts sharply with
the low accuracy of ab initio structure predic-
tions for naturally occurring sequences: The
most accurate structure predictions in the Crit-
ical Assessment of Structure Prediction exper-
iments for 90- to 100-residue proteins have
RMSDs greater than 4 Å from the experimen-
tally determined structure. Why does the simul-
taneous optimization of sequence and structure
identify the global free energy minimum,
whereas the optimization of structure for fixed
sequence does not? The answer may involve
both of the challenges facing ab initio structure
prediction, the vast size and ruggedness of the
conformational space to be searched and the
limited accuracy of current potential functions.
The capability to alter the sequence and hence
reconfigure the landscape may greatly facilitate

the search for low-free-energy protein struc-
tures as compared to standard ab initio predic-
tion, where the sequence is fixed. In addition,
Top7 lacks functional constraints, which can
lead to locally suboptimal regions in native
structures that are particularly challenging for
structure prediction, and the more extensive
optimization of the folding free energy may
partially compensate for inaccuracies in the po-
tential functions. Finally, it should be noted that
the design process focused entirely on minimiz-
ing the free energy of the folded monomeric
structure; attaining a highly stable new structure
did not require extensive negative design
against possible alternative conformations (36,
37) nor consideration of the kinetic process of
protein folding (38).

The design of Top7 shows that globular
protein folds not yet observed in nature not
only are physically possible but can be ex-
tremely stable. This extends the earlier obser-
vation that helical coiled coil geometries not
found in nature can be generated by compu-
tational protein design (15). The protein ther-
apeutics and molecular machines of the fu-
ture should thus not be limited to the struc-
tures sampled by the biological evolutionary
process. The methods used to design Top7
are, in principle, applicable to any globular
protein structure and open the door to the
exploration and use of a vast new world of
protein structures and architectures.
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(C) Stereorepresentation of the effectively super-
posable side chains in the cores of the designed
model and the solved structure.
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signed with the use of an initial version of the
protocol with a damped Lennard-Jones repulsive
term and a Monte Carlo optimization without the
minimization step were observed experimentally
to be quite stable but appeared to have somewhat
molten cores (26). To optimize steric packing,
the atomic radii were reparameterized on the
basis of the distances of closest approach of atom
pairs in high-resolution protein structures, ex-
plicit protons were included on all atoms, the
penalty for atom-atom overlaps was greatly
steepened, and the full Monte Carlo minimiza-
tion protocol was used for varying the backbone,
resulting in the generation of much lower energy
sequence-structure pairs (20% of the final 860
models had more favorable Lennard-Jones ener-
gies than an average protein in the PDB). With
these improvements, the protocol was used to
design a protein sequence called Top7 (27).

The average Lennard-Jones energies for the
buried residues in Top7 become favorable dur-
ing the relaxation process (table S1), and, al-
though the structural changes during the iterative
refinement process are modest (the final protein
backbone model has an RMSD of 1.1 Å from the
starting model), they bring about dramatic
changes in the designed sequence: Only 31% of
the Top7 residues are identical to those in the
starting sequence. Neither the Top7 sequence
nor the sequence before the iterative sequence-
structure refinement process have significant
similarity to any naturally occurring protein se-
quence; the closest match to the Top7 sequence
found with the use of PSI-BLAST (28) in the
Non-Redundant protein sequence database is
weaker than would be expected by random
chance (E value ! 1.6).
Biophysical and structural character-

ization of Top7. The folding, stability, and
structure of the Top7 protein (29) were analyzed
with the use of a variety of biophysical methods.
The Top7 protein is highly soluble (at 25 to 60
mg ml"1) and is monomeric as determined by
gel filtration chromatography. The circular di-
chroism (CD) spectrum of Top7 is characteristic
of #/$ proteins (Fig. 2A), and the protein is
remarkably thermally stable: The CD spectrum
at 98°C is nearly indistinguishable from that at
25°C. At intermediate concentrations (%5 M)
of guanidine hydrochloride (GuHCl), Top7 un-
folds cooperatively with an increase in tempera-
ture and exhibits cold denaturation (Fig. 2B).
Fitting these data to the Gibbs-Helmholtz equa-
tion gave a change in heat capacity at constant
pressure (&°Cp) per residue associated with un-
folding of about 10 cal deg"1 mol"1, a typical
value for well-folded proteins of this size (30).
The GuHCl-induced chemical denaturation of
Top7 is cooperative, and the steep transition is
characteristic of the two-state unfolding expect-
ed for a small, monomeric, single-domain pro-
tein (Fig. 2C). Fitting the chemical denaturation
data to a two-state unfolding model yields a free
energy of unfolding of 13.2 kcal mol"1 at 25°C,
indicating that Top7 is more stable than most

proteins of similar size (31). The nuclear Over-
hauser effect spectroscopy (NOESY) and hetero-
nuclear single-quantum coherence (HSQC)
spectra of Top7 (Fig. 2, D and E) exhibit features
characteristic of a folded protein with substantial
$-sheet content. The HSQC spectrum contains
the expected number of cross peaks, and the
dispersion is comparable to that of #/$ proteins
of similar size. Strong backbone NH-H# cross
peaks and the observation of H# resonances
downfield of the water signal (to 6 parts per
million) indicate the presence of a $ sheet,
whereas NH-NH peaks are consistent with a
partial helical character for the protein.

Crystallization trials with Top7 yielded
crystals that diffracted to 2.5 Å. Remarkably, a
strong molecular replacement (MR) solution to
the phase problem was found with the use of
the design model. This suggested immediately
that the design model was quite close to the true
structure: Even the small deviations of nuclear
magnetic resonance (NMR) solution structures
from x-ray crystal structures can make molec-
ular replacement searches fail. To obtain unbi-
ased phase information, we produced and crys-
tallized a selenomethionyl (SeMet)-substituted
variant of Top7 with a surface lysine at position
37 mutated to methionine, and we solved the

x-ray crystal structure to 2.5 Å by direct re-
building into an unbiased single-wavelength
anomalous difference (SAD) electron density
map (Fig. 3B) and residual difference Fourier
maps (32). The final Rwork and Rfree were 0.268
and 0.293, respectively (table S2).

The high-resolution crystal structure reveals
that the Top7 protein adopts the designed topol-
ogy (Fig. 4A). Indeed, the structure is strikingly
similar to the design model at atomic resolution
(1.17 Å RMSD over all backbone atoms). The
overall protein structure is very well ordered,
with the exception of two turns (comprising
residues 11 to 15 and 24 to 31), each of which
exhibit elevated B-factors and poor quality elec-
tron density. The first of these two turns and the
immediately adjoining residues from its neigh-
boring strand deviate the most from the compu-
tational model. However, even in this region, the
all-atom RMSD between the two models does
not exceed 2.8 Å. In contrast, the C-terminal half
of the x-ray structure is well ordered and very
similar to the computational model; for example,
the region from Asp78 to Gly85 has an all-atom
RMSD of 0.79 Å (Fig. 4B). Many side chains in
the core of the solved structure are effectively
superposable with those of the designed Top7
(Fig. 4C).

Fig. 3. Schematic representation of Top7 in unbiased SAD density. (A and B) Stick representations
of residues 46 to 76 from the computationally designed Top7 (left, green) and from the 2.5 Å x-ray
structure (right, red) are shown in unbiased density (blue). The map was generated from SAD
phasing from a single SeMet-substituted variant of Top7, followed by density modification. (C and
D) Ribbon diagrams of Top7 with residues 46 to 76 highlighted in red. The two diagrams are related
by a 90° rotation around the vertical axis.
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Like the design model, the Top7 crystal
structure is judged to be a novel topology by
the TOPS server. The strongest structural
similarity found in a Dali search of the PDB
(33) is to a discontinuous portion of the 668-
residue protein S-adenosylmethionine decar-
boxylase, which has a large 68-residue inser-
tion between strands 1 and 2, and the third
and fourth strands are connected by an unre-
fined loop instead of a helix. According to A.
Murzin, the curator of the Structural Classi-
fication of Proteins (SCOP) database, the
Top7 fold is not present in SCOP (34, 35).
Implications. The 1.17-Å backbone atom

RMSD between the Top7 design model and the
crystal structure implies that deep minima in the
free energy function used in design correspond
to deep minima in the actual free-energy land-
scape and hence are an important validation of
the accuracy of current potential functions. This
atomic-level accuracy contrasts sharply with
the low accuracy of ab initio structure predic-
tions for naturally occurring sequences: The
most accurate structure predictions in the Crit-
ical Assessment of Structure Prediction exper-
iments for 90- to 100-residue proteins have
RMSDs greater than 4 Å from the experimen-
tally determined structure. Why does the simul-
taneous optimization of sequence and structure
identify the global free energy minimum,
whereas the optimization of structure for fixed
sequence does not? The answer may involve
both of the challenges facing ab initio structure
prediction, the vast size and ruggedness of the
conformational space to be searched and the
limited accuracy of current potential functions.
The capability to alter the sequence and hence
reconfigure the landscape may greatly facilitate

the search for low-free-energy protein struc-
tures as compared to standard ab initio predic-
tion, where the sequence is fixed. In addition,
Top7 lacks functional constraints, which can
lead to locally suboptimal regions in native
structures that are particularly challenging for
structure prediction, and the more extensive
optimization of the folding free energy may
partially compensate for inaccuracies in the po-
tential functions. Finally, it should be noted that
the design process focused entirely on minimiz-
ing the free energy of the folded monomeric
structure; attaining a highly stable new structure
did not require extensive negative design
against possible alternative conformations (36,
37) nor consideration of the kinetic process of
protein folding (38).

The design of Top7 shows that globular
protein folds not yet observed in nature not
only are physically possible but can be ex-
tremely stable. This extends the earlier obser-
vation that helical coiled coil geometries not
found in nature can be generated by compu-
tational protein design (15). The protein ther-
apeutics and molecular machines of the fu-
ture should thus not be limited to the struc-
tures sampled by the biological evolutionary
process. The methods used to design Top7
are, in principle, applicable to any globular
protein structure and open the door to the
exploration and use of a vast new world of
protein structures and architectures.
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• define a new topology > design sequence to fit backbone > relax 
the backbone to fit the sequence > iterate (using ROSETTA)

• top7 is soluble, stable, monomeric, unfolds cooperatively 
sequence is unique (no good homolog by BLAST search)

• energy function is good for representing its biophysics 

• implications for enlargement of the protein universe 
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The Nobel Prize in Chemistry 2024 was divided, one half awarded to 
David Baker "for computational protein design", the other half jointly to 
Demis Hassabis and John M. Jumper "for protein structure prediction"
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▪ Application to study protein evolution and function 
▪ Protein engineering for therapeutics, synthetic biology and biotechnology 
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The protein sequence design problem is to find, given a pro-

tein backbone structure of interest, an amino acid sequence 

that will fold to this structure. Physically based approaches 

like Rosetta treat sequence design as an energy optimization 

problem, searching for the combination of amino acid iden-

tities and conformations that have the lowest energy for a 

given input structure. Recently deep learning approaches 

have shown promise in rapidly generating candidate amino 

acid sequences given monomeric protein backbones without 

need for compute intensive explicit consideration of 

sidechain rotameric states (1–7). However, the methods de-

scribed thus far do not apply to the full range of current pro-

tein design challenges, and have not been extensively 

validated experimentally. 

We sought to develop a deep learning–based protein se-

quence design method broadly applicable to design of mono-

mers, cyclic oligomers, protein nanoparticles, and protein-

protein interfaces. We began from a previously described 

message passing neural network (MPNN) with 3 encoder and 

3 decoder layers and 128 hidden dimensions which predicts 

protein sequences in an autoregressive manner from N to C 

terminus using protein backbone features – distances be-

tween Cα-Cα atoms, relative Cα-Cα-Cα frame orientations and 

rotations, and backbone dihedral angles–as input (1). W
e first 

sought to improve performance of the model on recovering 

the amino acid sequences of native single-chain proteins 

given their backbone structures. A set of 19,700 high 

resolution single-chain structures from the PDB were split 

into train, validation and test sets (80/10/10) based on the 

CATH (8) protein classification (see methods). We found that 

including distances between N, Cα, C, O and a virtual Cβ 

placed based on the other backbone atoms as additional in-

put features resulted in a sequence recovery increase from 

41.2% (baseline model) to 49.0% (experiment 1), see Table 1 

below; interatomic distances evidently provide a better in-

ductive bias to capture interactions between residues than di-

hedral angles or N-Cα-C frame orientations. We next 

introduced edge updates in addition to the node updates in 

the backbone encoder neural network (experiment 2). Com-

bining additional input features and edge updates leads to a 

sequence recovery of 50.5% (experiment 3). To determine the 

range over which backbone geometry influences amino acid 

identity, we tested 16, 24, 32, 48, and 64 nearest Cα neighbor 

neural networks (fig. S1A), and found that performance was 

saturated at 32-48 neighbors. Unlike the protein structure 

prediction problem, locally connected graph neural networks 

can accurately model the structure to sequence mapping 

problem because the optimality of an amino acid at a partic-

ular position is largely determined by the immediate protein 

environment. 

To enable application to a broad range of single and 

multi-chain design problems, we replaced the fixed N to C 

terminal decoding order with an order agnostic autoregres-

sive model in which the decoding order is randomly sampled 
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While deep learning has revolutionized protein structure prediction, almost all experimentally characterized 

de novo protein designs have been generated using physically based approaches such as Rosetta. Here we 

describe a deep learning–based protein sequence design method, ProteinMPNN, with outstanding 

performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a 

sequence recovery of 52.4%, compared to 32.9% for Rosetta. The amino acid sequence at different 

positions can be coupled between single or multiple chains, enabling application to a wide range of current 

protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using X-ray 

crystallography, cryoEM and functional studies by rescuing previously failed designs, made using Rosetta 

or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target binding 

proteins. 
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De novo design of protein structure and 

function with RFdiffusion
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Jason Yim2,6,15, Helen E. Eisenach1,2,15, Woody Ahern1,2,7,15, Andrew J. Borst1,2, Robert J. Ragotte1,2, 

Lukas F. Milles1,2, Basile I. M. Wicky1,2, Nikita Hanikel1,2, Samuel J. Pellock1,2, Alexis Courbet1,2,8, 

William Sheffler1,2, Jue Wang1,2, Preetham Venkatesh1,2,9, Isaac Sappington1,2,9, 
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There has been considerable recent progress in designing new proteins using deep- 

learning methods1–9. Despite this progress, a general deep-learning framework for 

protein design that enables solution of a wide range of design challenges, including 

de novo binder design and design of higher-order symmetric architectures, has yet to 

be described. Di"usion models10,11 have had considerable success in image and 

language generative modelling but limited success when applied to protein modelling, 

probably due to the complexity of protein backbone geometry and sequence–structure 

relationships. Here we show that by #ne-tuning the RoseTTAFold structure prediction 

network on protein structure denoising tasks, we obtain a generative model of protein 

backbones that achieves outstanding performance on unconditional and topology- 

constrained protein monomer design, protein binder design, symmetric oligomer 

design, enzyme active site sca"olding and symmetric motif sca"olding for therapeutic 

and metal-binding protein design. We demonstrate the power and generality of the 

method, called RoseTTAFold di"usion (RFdi"usion), by experimentally characterizing 

the structures and functions of hundreds of designed symmetric assemblies, metal- 

binding proteins and protein binders. The accuracy of RFdi"usion is con#rmed by the 

cryogenic electron microscopy structure of a designed binder in complex with in$uenza 

haemagglutinin that is nearly identical to the design model. In a manner analogous to 

networks that produce images from user-speci#ed inputs, RFdi"usion enables the 

design of diverse functional proteins from simple molecular speci#cations.

De novo protein design seeks to generate proteins with specified 

structural and/or functional properties, for example, making a bind-

ing interaction with a given target12, folding into a particular topology13 

or containing a catalytic site4. Denoising diffusion probabilistic models 

(DDPMs), a powerful class of machine learning models recently dem-

onstrated to generate new photorealistic images in response to text 

prompts14,15, have several properties well suited to protein design. First, 

DDPMs generate highly diverse outputs, as they are trained to denoise 

data (for instance, images or text) that have been corrupted with Gauss-

ian noise. By learning to stochastically reverse this corruption, diverse 

outputs closely resembling the training data are generated. Second, 

DDPMs can be guided at each step of the iterative generation process 

towards specific design objectives through provision of conditioning 

information. Third, for almost all protein design applications it is neces-

sary to explicitly model three-dimensional (3D) structures; rotation-

ally equivariant DDPMs can do this in a global representation frame 

independent manner. Recent work has adapted DDPMs for protein 

monomer design by conditioning on small protein ‘motifs’5,9 or on sec-

ondary structure and block-adjacency (‘fold’) information8. Although 

promising, these attempts have shown limited success in generating 

sequences that fold to the intended structures in silico5,16, probably due 

to the limited ability of the denoising networks to generate realistic 

protein backbones, and have not been tested experimentally.

We reasoned that improved diffusion models for protein design 

could be developed by taking advantage of the deep understanding of 

protein structure implicit in powerful structure prediction methods 
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The protein sequence design problem is to find, given a pro-

tein backbone structure of interest, an amino acid sequence 

that will fold to this structure. Physically based approaches 

like Rosetta treat sequence design as an energy optimization 

problem, searching for the combination of amino acid iden-

tities and conformations that have the lowest energy for a 

given input structure. Recently deep learning approaches 

have shown promise in rapidly generating candidate amino 

acid sequences given monomeric protein backbones without 

need for compute intensive explicit consideration of 

sidechain rotameric states (1–7). However, the methods de-

scribed thus far do not apply to the full range of current pro-

tein design challenges, and have not been extensively 

validated experimentally. 

We sought to develop a deep learning–based protein se-

quence design method broadly applicable to design of mono-

mers, cyclic oligomers, protein nanoparticles, and protein-

protein interfaces. We began from a previously described 

message passing neural network (MPNN) with 3 encoder and 

3 decoder layers and 128 hidden dimensions which predicts 

protein sequences in an autoregressive manner from N to C 

terminus using protein backbone features – distances be-

tween Cα-Cα atoms, relative Cα-Cα-Cα frame orientations and 

rotations, and backbone dihedral angles–as input (1). W
e first 

sought to improve performance of the model on recovering 

the amino acid sequences of native single-chain proteins 

given their backbone structures. A set of 19,700 high 

resolution single-chain structures from the PDB were split 

into train, validation and test sets (80/10/10) based on the 

CATH (8) protein classification (see methods). We found that 

including distances between N, Cα, C, O and a virtual Cβ 

placed based on the other backbone atoms as additional in-

put features resulted in a sequence recovery increase from 

41.2% (baseline model) to 49.0% (experiment 1), see Table 1 

below; interatomic distances evidently provide a better in-

ductive bias to capture interactions between residues than di-

hedral angles or N-Cα-C frame orientations. We next 

introduced edge updates in addition to the node updates in 

the backbone encoder neural network (experiment 2). Com-

bining additional input features and edge updates leads to a 

sequence recovery of 50.5% (experiment 3). To determine the 

range over which backbone geometry influences amino acid 

identity, we tested 16, 24, 32, 48, and 64 nearest Cα neighbor 

neural networks (fig. S1A), and found that performance was 

saturated at 32-48 neighbors. Unlike the protein structure 

prediction problem, locally connected graph neural networks 

can accurately model the structure to sequence mapping 

problem because the optimality of an amino acid at a partic-

ular position is largely determined by the immediate protein 

environment. 

To enable application to a broad range of single and 

multi-chain design problems, we replaced the fixed N to C 

terminal decoding order with an order agnostic autoregres-

sive model in which the decoding order is randomly sampled 
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While deep learning has revolutionized protein structure prediction, almost all experimentally characterized 

de novo protein designs have been generated using physically based approaches such as Rosetta. Here we 

describe a deep learning–based protein sequence design method, ProteinMPNN, with outstanding 

performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a 

sequence recovery of 52.4%, compared to 32.9% for Rosetta. The amino acid sequence at different 

positions can be coupled between single or multiple chains, enabling application to a wide range of current 

protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using X-ray 

crystallography, cryoEM and functional studies by rescuing previously failed designs, made using Rosetta 

or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target binding 

proteins. 
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There has been considerable recent progress in designing new proteins using deep- 

learning methods1–9. Despite this progress, a general deep-learning framework for 

protein design that enables solution of a wide range of design challenges, including 

de novo binder design and design of higher-order symmetric architectures, has yet to 

be described. Di"usion models10,11 have had considerable success in image and 

language generative modelling but limited success when applied to protein modelling, 

probably due to the complexity of protein backbone geometry and sequence–structure 

relationships. Here we show that by #ne-tuning the RoseTTAFold structure prediction 

network on protein structure denoising tasks, we obtain a generative model of protein 

backbones that achieves outstanding performance on unconditional and topology- 

constrained protein monomer design, protein binder design, symmetric oligomer 

design, enzyme active site sca"olding and symmetric motif sca"olding for therapeutic 

and metal-binding protein design. We demonstrate the power and generality of the 

method, called RoseTTAFold di"usion (RFdi"usion), by experimentally characterizing 

the structures and functions of hundreds of designed symmetric assemblies, metal- 

binding proteins and protein binders. The accuracy of RFdi"usion is con#rmed by the 

cryogenic electron microscopy structure of a designed binder in complex with in$uenza 

haemagglutinin that is nearly identical to the design model. In a manner analogous to 

networks that produce images from user-speci#ed inputs, RFdi"usion enables the 

design of diverse functional proteins from simple molecular speci#cations.

De novo protein design seeks to generate proteins with specified 

structural and/or functional properties, for example, making a bind-

ing interaction with a given target12, folding into a particular topology13 

or containing a catalytic site4. Denoising diffusion probabilistic models 

(DDPMs), a powerful class of machine learning models recently dem-

onstrated to generate new photorealistic images in response to text 

prompts14,15, have several properties well suited to protein design. First, 

DDPMs generate highly diverse outputs, as they are trained to denoise 

data (for instance, images or text) that have been corrupted with Gauss-

ian noise. By learning to stochastically reverse this corruption, diverse 

outputs closely resembling the training data are generated. Second, 

DDPMs can be guided at each step of the iterative generation process 

towards specific design objectives through provision of conditioning 

information. Third, for almost all protein design applications it is neces-

sary to explicitly model three-dimensional (3D) structures; rotation-

ally equivariant DDPMs can do this in a global representation frame 

independent manner. Recent work has adapted DDPMs for protein 

monomer design by conditioning on small protein ‘motifs’5,9 or on sec-

ondary structure and block-adjacency (‘fold’) information8. Although 

promising, these attempts have shown limited success in generating 

sequences that fold to the intended structures in silico5,16, probably due 

to the limited ability of the denoising networks to generate realistic 

protein backbones, and have not been tested experimentally.

We reasoned that improved diffusion models for protein design 

could be developed by taking advantage of the deep understanding of 

protein structure implicit in powerful structure prediction methods 
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▪ AF2 has been key to filter potentially good protein designs  
▪ Experimental testing is the ultimate validation of designs 
▪ AI methods enhanced the experimental rate of success  
▪ Protein engineering is now feasible for therapeutics, synthetic biology and 

biotechnology 

76Pipeline of today’s protein design

▪ RFdiffusion ▪ ProteinMPNN ▪ AF2 
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77Pipeline of today’s protein design

▪ AF2 has been key to filter potentially good protein designs  
▪ Experimental testing is the ultimate validation of designs 
▪ AI methods enhanced the experimental rate of success  
▪ Protein engineering is now feasible for therapeutics, synthetic biology and 

biotechnology 

validation using cryoEM
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▪ Denoising Diffusion Models - as those used in DALL-E  
▪ Trained to denoise noisy images, they can generate images by iteratively 

denoising pure noise

78Machine learning for protein design

András Béres



▪ the reverse process is learned using a neural network  
▪ its loss function encourages the reverse process to accurately estimate 

how the data transitions from one noisy step to the previous step.



https://www.bakerlab.org/2022/11/30/diffusion-model-for-protein-design/
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The protein sequence design problem is to find, given a pro-
tein backbone structure of interest, an amino acid sequence 
that will fold to this structure. Physically based approaches 
like Rosetta treat sequence design as an energy optimization 
problem, searching for the combination of amino acid iden-
tities and conformations that have the lowest energy for a 
given input structure. Recently deep learning approaches 
have shown promise in rapidly generating candidate amino 
acid sequences given monomeric protein backbones without 
need for compute intensive explicit consideration of 
sidechain rotameric states (1–7). However, the methods de-
scribed thus far do not apply to the full range of current pro-
tein design challenges, and have not been extensively 
validated experimentally. 

We sought to develop a deep learning–based protein se-
quence design method broadly applicable to design of mono-
mers, cyclic oligomers, protein nanoparticles, and protein-
protein interfaces. We began from a previously described 
message passing neural network (MPNN) with 3 encoder and 
3 decoder layers and 128 hidden dimensions which predicts 
protein sequences in an autoregressive manner from N to C 
terminus using protein backbone features – distances be-
tween Cα-Cα atoms, relative Cα-Cα-Cα frame orientations and 
rotations, and backbone dihedral angles–as input (1). We first 
sought to improve performance of the model on recovering 
the amino acid sequences of native single-chain proteins 
given their backbone structures. A set of 19,700 high 

resolution single-chain structures from the PDB were split 
into train, validation and test sets (80/10/10) based on the 
CATH (8) protein classification (see methods). We found that 
including distances between N, Cα, C, O and a virtual Cβ 
placed based on the other backbone atoms as additional in-
put features resulted in a sequence recovery increase from 
41.2% (baseline model) to 49.0% (experiment 1), see Table 1 
below; interatomic distances evidently provide a better in-
ductive bias to capture interactions between residues than di-
hedral angles or N-Cα-C frame orientations. We next 
introduced edge updates in addition to the node updates in 
the backbone encoder neural network (experiment 2). Com-
bining additional input features and edge updates leads to a 
sequence recovery of 50.5% (experiment 3). To determine the 
range over which backbone geometry influences amino acid 
identity, we tested 16, 24, 32, 48, and 64 nearest Cα neighbor 
neural networks (fig. S1A), and found that performance was 
saturated at 32-48 neighbors. Unlike the protein structure 
prediction problem, locally connected graph neural networks 
can accurately model the structure to sequence mapping 
problem because the optimality of an amino acid at a partic-
ular position is largely determined by the immediate protein 
environment. 

To enable application to a broad range of single and 
multi-chain design problems, we replaced the fixed N to C 
terminal decoding order with an order agnostic autoregres-
sive model in which the decoding order is randomly sampled 
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While deep learning has revolutionized protein structure prediction, almost all experimentally characterized 
de novo protein designs have been generated using physically based approaches such as Rosetta. Here we 
describe a deep learning–based protein sequence design method, ProteinMPNN, with outstanding 
performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a 
sequence recovery of 52.4%, compared to 32.9% for Rosetta. The amino acid sequence at different 
positions can be coupled between single or multiple chains, enabling application to a wide range of current 
protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using X-ray 
crystallography, cryoEM and functional studies by rescuing previously failed designs, made using Rosetta 
or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target binding 
proteins. 
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and B with sequence A1, A2,… and B1, B2,…,
the amino acids for chains A and B have to
be the same for corresponding indices; we
implement this by predicting unnormalized
probabilities for A1 and B1 first and then com-
bining these two predictions to construct a
normalized probability distribution from
which a joint amino acid is sampled (Fig. 1C).
For pseudosymmetric sequence design, res-
idues within or between chains can be sim-
ilarly constrained; for example, for repeat
protein design, the sequence in each repeat
unit can be kept fixed. Multistate design of
single sequences that encodes two or more
desired states can be achieved by predicting
unnormalized probabilities for each state
and then averaging; more generally, a linear
combination of predicted unnormalized prob-
abilities with some positive and negative co-
efficients canbeused toupweight ordownweight
specific backbone states to achieve explicit
positive or negative sequence design. The ar-
chitecture of this multichain and symmetry-
aware (positionally coupled) model, which we
call ProteinMPNN, is outlined schematically
in Fig. 1A.We trained ProteinMPNNonprotein

assemblies in the PDB (as of 2 August 2021)
determined by x-ray crystallography or cryo–
electronmicroscopy (cryo-EM) to better than
3.5-Å resolution and with fewer than 10,000
residues (see methods).
For a test set of 402 monomer backbones,

we redesigned sequences using Rosetta fixed
backbone combinatorial sequence design [one
round of the PackRotamersMover (11, 12) with
default options and the beta_nov16 score func-
tion] and ProteinMPNN. Although requiring
only a small fraction of the compute time
(1.2 versus 258.8 s on a single CPU for 100 res-
idues), ProteinMPNN had a much higher over-
all native sequence recovery (52.4 versus 32.9%),
with improvements across the full range of
residue burial from protein core to surface
(Fig. 2A). Differences between designed and
native amino acid biases for the core, bound-
ary, and surface regions for the two methods
are shown in fig. S2.
We further evaluated ProteinMPNN on a

test set of 690monomers, 732 homomers (with
fewer than 2000 residues), and 98 heteromers.
Themedian sequence recoveries over all residues
were 52% for monomers, 55% for homomers,

and 51% for heteromers, and the median se-
quence recoveries over interface residues were
53% for homomers and 51% for heteromers (Fig.
2B). In all three cases, sequence recovery corre-
lated closely with residue burial, ranging from
90 to 95% in the deep core to 35%on the surface
(fig. S1B); the amount of local geometric context
determines how well residues can be recovered
at specific positions.

Training with backbone noise improves model
performance for protein design

Although protein sequence design approaches
have often focused on maximizing sequence
recovery for protein backbones from high-
resolution crystal structures, this is not necessar-
ily optimal for actual proteindesignapplications.
We found that trainingmodels on backbones
to which Gaussian noise (SD = 0.02 Å) had
been added improved sequence recovery on
confident protein structure models generated
by AlphaFold [average predicted local-distance
difference test (IDDT) > 80.0] from UniRef50,
whereas the sequence recovery on unperturbed
PDB structures significantly decreased (Table
1); crystallographic refinement may impart
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Fig. 1. ProteinMPNN architecture. (A) Distances between N, Ca, C, O, and
virtual Cb are encoded and processed using a message-passing neural network
(Encoder) to obtain graph node and edge features. The encoded features,
together with a partial sequence, are used to generate amino acids iteratively
in a random decoding order. (B) A fixed left-to-right decoding cannot use
sequence context (green) for preceding positions (yellow), whereas a model
trained with random decoding orders can be used with an arbitrary decoding

order during the inference. The decoding order can be chosen such that
the fixed context is decoded first. (C) Residue positions within and between
chains can be tied together, enabling symmetric, repeat protein, and
multistate design. In this example, a homotrimer is designed with the coupling
of positions in different chains. Predicted unnormalized probabilities for
tied positions are averaged to get a single probability distribution from which
amino acids are sampled.
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▪ Backbone distances are encoded and processed 
using a message-passing neural network 
(Encoder) to obtain graph node and edge 
features.  

▪ The encoded features, together with a partial 
sequence, are used to generate amino acids 
iteratively in a random decoding order.



Article

Preclinical proof of principle for orally delivered
Th17 antagonist miniproteins

Graphical abstract

Highlights
d Computational design yielded low- and sub-pM minibinders

of IL-17A and IL-23R

d IL-23R minibinders are extremely resistant to heat, acid, and

proteolysis

d Oral IL-23R minibinder is as effective as a clinical mAb in

mouse colitis

Authors
Stephanie Berger, Franziska Seeger,

Ta-Yi Yu, ..., Matthias Siebeck,

Roswitha Gropp, David Baker

Correspondence
berger389@gmail.com (S.B.),
dabaker@uw.edu (D.B.)

In brief
De novo proteins can be computationally

designed with sub-picomolar affinity and

extreme stability to enable oral

administration and were effective in a

model of colitis.

Berger et al., 2024, Cell 187, 4305–4317
August 8, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.cell.2024.05.052 ll

Article

Preclinical proof of principle for orally delivered
Th17 antagonist miniproteins

Graphical abstract

Highlights
d Computational design yielded low- and sub-pM minibinders

of IL-17A and IL-23R

d IL-23R minibinders are extremely resistant to heat, acid, and

proteolysis

d Oral IL-23R minibinder is as effective as a clinical mAb in

mouse colitis

Authors
Stephanie Berger, Franziska Seeger,

Ta-Yi Yu, ..., Matthias Siebeck,

Roswitha Gropp, David Baker

Correspondence
berger389@gmail.com (S.B.),
dabaker@uw.edu (D.B.)

In brief
De novo proteins can be computationally

designed with sub-picomolar affinity and

extreme stability to enable oral

administration and were effective in a

model of colitis.

Berger et al., 2024, Cell 187, 4305–4317
August 8, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.cell.2024.05.052 ll

Article

Preclinical proof of principle for orally delivered
Th17 antagonist miniproteins

Graphical abstract

Highlights
d Computational design yielded low- and sub-pM minibinders

of IL-17A and IL-23R

d IL-23R minibinders are extremely resistant to heat, acid, and

proteolysis

d Oral IL-23R minibinder is as effective as a clinical mAb in

mouse colitis

Authors
Stephanie Berger, Franziska Seeger,

Ta-Yi Yu, ..., Matthias Siebeck,

Roswitha Gropp, David Baker

Correspondence
berger389@gmail.com (S.B.),
dabaker@uw.edu (D.B.)

In brief
De novo proteins can be computationally

designed with sub-picomolar affinity and

extreme stability to enable oral

administration and were effective in a

model of colitis.

Berger et al., 2024, Cell 187, 4305–4317
August 8, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.cell.2024.05.052 ll



M
at

te
o 

D
al

 P
er

ar
o 

83

PeSTo: binding interfaces CARBonAra: molecular design 

Protein Structure Transformer @LBM

Krapp et al. Nat Comms 2024Krapp et al. Nat Comms 2023
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84Unique ability — context awareness

▪ large-scale benchmark

1000 structures sampled with maximum 30% sequence identity 
and separate C.A.T.H. classification from training setcolicin E7

▪ example with context
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85Can we re-engineer an enzyme?
▪TEM-1 serine β-lactamase

▪  sequences generation with substrate as constraint  
▪  selected 10 top-ranked predictions based on plDDT 
▪  4/10 designs are soluble and monomeric  
▪  they are folded and more thermostable than wild-type TEM-1 
▪  catalytically active at high T - not as the wild-type yet 
▪  represent a separate subclass of β-lactamases 

nitrocefin

 10 

 

Figure 4 | β-lactamase enzyme engineering and experimental characterization. (a) Nitrocefin 
docked using AutoDock Vina20 at the active site of the serine β-lactamase TEM-1 (PDB: 1BT5). 
Relevant residues for substrate recognition and hydrolysis are shown in blue, nitrocefin in green, 
and the catalytic water molecule in red. (b) Prediction confidence with and without the substrate 
and the catalytic water for the relevant amino acids at the catalytic pocket. (c-d) Experimental 
characterization of the 4 soluble designs based on the TEM-1 backbone. (c) Thermal denaturation 
profiles presented as the circular dichroism signal at 222 nm against temperature (see also 
Supplementary Figures 7-9 for further structural characterization). (d) Catalytic activity as fraction 
of substrate converted to product upon hydrolysis of 200 μM nitrocefin by TEM-1 and the TEM-like 
lactamase designs, at different temperatures. Proteins were incubated at the indicated 
concentration. (e) Extract of the phylogenetic tree of class A β-lactamases focused on TEM β-
lactamases (see Supplementary Figure 10). (f) Correlation of the predictions with deep 
sequencing analysis of TEM-1. (g) Correlation variation by adding the context (nitrocefin and 
catalytic water) for the amino acids close (in Cβ distance) to the substrate. 

 

 In order to test designed TEM-like enzymes, we sampled CARBonAra’s 

predictions with docked nitrocefin using imprinting. Imprinting in CARBonAra allows to 

specify arbitrary sequence information to any position in the backbone scaffold as prior 

information for the prediction. By randomly imprinting a previously predicted amino 

acids, this protocol allows to generate diversity in sampled sequences while using the 

maximum confidence prediction ensuring high quality sequences (see Methods). 

Using this approach, we generated 900 sequences and ranked them using the 

predicted lDDT provided by AlphaFold (pLDDT) in single-sequence mode (see Deleted: p
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only 50% sequence identity

Krapp et al. Nat Comms 2024
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86The future is bright and exciting …
… biomolecular design will address many societal needs  

vaccines & antivirals 

smart medicines 

drug delivery

artificial photosynthesis 

CO2 sequestration 

plastic degradation 

▪ Medicine ▪ Biotechnology ▪ Sustainability 

SM proteomics with 
biological nanopores 
(Nat Chem 2021)

FAST-PETase     
(Nature 2022)

SARS-CoV-2 RBD 
nanoparticle immunogen (Cell 2020) 

protein-silicon devices 

bio-based computers 

nanoscale manufacturing 



We weren’t alone !!!! 87
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https://www.designinglifewithai.com/

contact the MAKE team for 
ongoing projects offered by labs


