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Outline of lecture 9:

* multiscale simulations
* integrative modeling
e structure-based drug design

e protein design



solvation

molecular modeling pH
and simulations post-translational modifications

iInteractions network
1zi(t), yi(t), Zi(t)}izl,...,]\f temperature effects (ksT)

Laboratory for Biomolecular Modeling - LBM,


http://lbm.epfl.ch

Current common MD engines
¢ CHARMM: Karplus Harvard, http://www.charmm.org/

e AMBER: Kollman UCSF, http://ambermd.org/

¢ GROMOS: van Gunsteren, ETHZ, www.igc.ethz.ch/
GROMOS/index

e DESMOND: Shaw, http://www.deshawresearch.com/
¢ GROMACS: http://www.gromacs.org

o | AMMPS: http://lammps.sandia.gov

e ACEMD: http://multiscalelab.org/acemd

e NAMD: http://www.ks.uiuc.edu/Research/namd/


http://www.charmm.org
http://www.igc.ethz.ch/GROMOS/index
http://www.igc.ethz.ch/GROMOS/index
http://www.deshawresearch.com
http://www.gromacs.org
http://lammps.sandia.gov
http://multiscalelab.org/acemd

Multiscale resolution in modeling

® clectrons

® atoms

® amino-acids

® domains

® mesoscopic to continuum
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Speeding up timescales of Chemical

Reactions
2
® Enzymes enhance the rate of % o
chemical reactions by several 5 -2
orders of magnitude (e.g. : e
arginine decarboxylase, alkaline o
phosphatase, staphylococcal B i St
nuclease up to 1014 fold)
N A -
e the transition rate depends on the o o @ e o
activation barrier o oo soomyen o
ENZYME PRESENT
Preactants_)products x e_Gba’r’mﬁer/kBT Figure 3.2ab Physical Biolagy af the Cell (= Garland Seienca 2009)
" <— lysozyme turnover rate, =~ 0.5s™"
e and enzymes affect this, not the i B
R and P states
£

10°



Hybrid QM/MM molecular dynamics

H=Hgoyvm+Hypm + Honvmm
w_/
coupling term

QM.: First principles Density functional theory MD

¢z’ > — <\I!0]He\\110> +  constraints
N—— —
potential energy ~ Orthonormality

Lcp = Z %MIR% + Z %Ni <¢z
T i

kinetic energy

MM: Classical molecular dynamics (e.g. AMBER, Gromos force fields)

QM/MM: - boundary atom (ad hoc monovalent pseudopotential or H capping)
- hierarchical scheme to compute Coulomb interactions

Car, Parrinello, PRL 1985, Laio, Vandevondele, Rothlisberger JCP 2004, Dal Peraro et al., Curr. Opin. Struct. Biol. 2007



CcrA MBL from Bacteroides fragilis
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Thermodynamic integration along the reaction coordinate drc
DFT-BLYP, Martins-Troullier PPs, 70 Ry cutoff,
Nose’ thermostat at 300 K,

2 reactions pathways for a total of ~150 ps trajectory

Reactant state

CcrA complexed with cefotaxime

- stable Michaelis complex
OH-B-lactam distance=3.3(2)A
during 5 ns MD and 20ps QM/MM

« Zn2-bound WAT is the
only water between the
zinc center and CEF in 5A

= (Classical force-field based MD is
used as a tool to sample

conformational space within the
nanosecond timescale



... from transition state to products

water-mediated single-step

Dal Peraro et al., JACS 2007

AF / kcal mol”’

* OH- loses Zn2 coordination
- Zn1, Zn2 flexibility

« WAT protonates 3-lactam N
« N-C B-lactam bond breaks

- WAT replaces OH- as an hydroxide

- AF = 18(2) kcal/mol is in good
agreement with experiments
e if Asn233 does H-bond B-lactam:
formation of a high unfavorable

intermediate (Path Il)

——Path |
---Path ll

—
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Coarse-graining degrees of freedom

® CG is the process of consistently reduce the complexity
of your problem integrating out degrees of freedom which
can be in principle neglected for your system.

VQM — VMM — VCG—MM — Vmesoscopic

® the CG process implies a simplification of your potential
that is not always rigorous and includes approximations

® what you obtain is an effective potentials which is
parametrized to reproduce given properties



New directions

universal and computationally efficient machine-learned CG model for proteins

Diverse All-Atom
Protein Simulations

OO

Sheets,
Coils,
Dimers,

SRR}
Nt

Physical Simulate New
. Sequence Using
Constraints Learned CG Force Field

&

50

Y

X, Z
|

v v

RMSD, Q, DSSP, ...

rILRN

CG Coordinates &
CG Atom Type Embedding

CG Mapping

arXiv:2310.18278v1 [g-bio.BM] 27 Oct 2023

Graph Neural Network

CG PMF, CG Forces

Property Prediction
& Comparison with
Experiment



Coarse-graining degrees of freedom
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CHj

Coarse-grained force fields

\Viele

OH

/

CH,

e CG FF models are not topologically
biased on the native structure

e softer interactions allow for longer
timestep in MD simulations

e sampling on the millisecond timescale

e accuracy can be a problem (e.g. no
explicit electrostatic contribution)

e biases on the secondary structures




Coarse-grained MARTINI FF

e MARTINI CG FF has functional
form similar to MM FF

e 4-to-1 mapping from MM to CG

e very convenient for membranes
and peptide-membrane
interactions

Monticelli et al, JCTC 2008
Klein and coworkers

intermediate charged
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e COmpany of
© 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 257-268 doi: 10.1242/jcs.176040 ’ Bio]oglsts

=" ARTICLE SERIES: IMAGING

S

COMMENTARY

Computational ‘microscopy’ of cellular membranes

Helgi l. Ingolfsson, Clement Arnarez, Xavier Periole and Siewert J. Marrink*

Quantum

- atoms, electrons and electron
clouds included

- explicit solvent
- quantum mechanics

pse A

nm
All-atom

- all or most atoms present
- explicit solvent
- molecular dynamics

ns

LB WLLL R Ui

Coarse-grained

- beads comprising a few atoms
- explicit or implicit solvent

| - molecular dynamics

-
1z

=
3

Supra-coarse-grained
- interaction sites comprising
many atoms, protein parts
or proteins
- implicit solvent

- stochastic dynamics

Continuum
- materials as a continuous mass

- implicit solvent
- continuum mechanics
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Structural biology methods are strongly based
on theory and computation!

—

Fourier
transform

/N

3D image
reconstruction

100 A

Kaufmann B et al. PNAS 2006;103:12400-12404



Combine cryo-EM and X-ray structures

surface rendering of the 3D image
reconstruction of WNV (green) in complex
with Fab E16 (blue) at 15-A resolution

integrative modeling

Kaufmann B et al. PNAS 2006;103:12400-12404



Integrative Modeling

Individual subunits Volumetric maps

e X-ray crystallography e Cryo-EM

* NMR e Electron tomography
e Cryo-EM * SAXS, SANS

* Homology models * AFM

Structural flexibility

* Side-chain and backbone sampling
e Elastic network models
* NMR ensembles

e FRET, DEER EPR
* Molecular dynamics

9 Time (ns) y

3C, chromatin

conformation capture;

4C, circularized 3C; 5C, carbon-copy

3C; AFM, atomic force microscopy; ChlP—exo,

ChIP—seq with an exonuclease sample preparation

step; ChlP—seq, chromatin immunoprecipitation followed
by sequencing; DEER EPR, double electron—electron
resonance electron paramagnetic resonance; FRET,
fluorescence resonance energy transfer; H/D exchange,
hydrogen—deuterium exchange; NMR, nuclear magnetic
resonance; Hi-C, genome-wide 3C; rmsd, root-mean-square
deviation; SANS, small-angle neutron scattering; SAXS,
small-angle X-ray scattering.

F
T

Spatial connectivity

* Mutagenesis

* Evolutionary couplings
* Chemical crosslinking
* Proteomics

e H/D exchange
* ChIP-seq and ChlP-exo
* 3C, 4C, 5C and Hi-C

j 5 5@;@' Near-atomic-resolution structure

Dal Peraro et al. Nat. Rev. Microbiol. 2016

of supramolecular assemblies
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(the dawn of) Integrative mo

Pauling and Corey protein structure papers (1951):

X-ray myoglobin 1959 (Kendrew and Perutz)



http://www.pnas.org/site/misc/classics1.shtml

Integ rative mOdel i ng IMP: integrative modeling platform

http://salilab.org/imp/
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3 comparative models EM density map proteomics data Anchor graph Anchor graph Symmetry axis
2 (from ModBase) (from EMDB)

Q (from BioG RID} segmentation segmentation detection

\ 4 :
Fitting-based Fitting-based Cn
assembly assembly
configuration configuration

5
geometric EM quality of fit pairwise subcomplex
complementarity connectivity connectivity

Translation of data into
representation and scoring

Rigid-body
minimization

Sampling of good scoring
configurations

density map fits partial configurations density map fits partial configurations

v k

https://modbase.compbio.ucsf.edu/multifit/

J

Russel et al. (2012) Putting the Pieces Together: Integrative
Modeling Platform Software for Structure Determination of
Macromolecular Assemblies.

PLoS Biol 10(1): e1001244. doi:10.1371/journal.pbio.1001244

Analyze space of found
configurations

ensemble of configurations single configuration



https://[pdb-dev.wwpdb.org

¢ PDB-Dev

Prototype Archiving System for Integrative Structures Released Entries: 758

Home About Deposit Contact FAQ a0 I Keyword Search (eqg., NPC AND 3DEM| Q Saearch Tips

Welcome to PDB-Dev News All News
PRE-Dav is a prototyne archiving systam far structural modals abtainad uszing integrative ar hybrd moadeling ard is fundea by the NSF A8l Develapmant Pragram. Structural charastenratien of many camplex
macromolecular asssmblies is noreasingly carred out using integrative modeling, whera a combination of complementary exparimenial and computaticnal techniques is used to determine the structure. The structurs PDB-Dev Publication

macels cbtared thraugh integrative madeling are colleeted, archivea ana disseminatad to the puble through PDE-Dew. Once tha meshanisms for pracessing intagrative moadals are fully astablished threugh PDE-Dev,

the kay components will be integrated with the wwPDE Onelep systam and the PC3-Devy holdings will ke moved into the PLE. Recant updstes i FOB-Dey, inclading the development of a new data hanvesting syeiem, have been

publishec in Actz Crystalographica Section Do Valzt B et al, New sytem for archiving integrative
structures, Acta Cryst. 2021; D77: 1485-1486. doi10.1107/S20597983 210108711

Released PDB-Dev Structures New Data Harvesting System

Ve have developad a new Data Harvesting System that provides a web intarface for depositors (o
assembie all the information required for archiving integrative stroctures in BDE-Daev and o create a
complart mmC/= file. This includas the submission of integrative siructures, associatad spatial
restraints and starting models usea, madeling protocols anc metaciata infarmation. Read more....

BioExcel Webinar

Recently, the PDE-Dov team participated in the BloExcel webinar serles. The webrmar presentation was
titled "POB-Dev: A prototype system for archiving integrative structures". The recorded version of the
viebonar s avallable on youtube.

Visualization of Structures using Molstar

AR visualization of structuras Lsing Malstar is oy dvallable on PRE-Dav. Structuras in 2DA-Cev 2an ke
directly viguslized from the respective entry pages. Nolstar can visualize stomic and multi-scale
structures. Read more...

PDEDEV_00000028 PDEDEV_0DO00DOZY? PDBDEV_D0000039 Welcome to the Updated PDB-Dev website
Myalold-darived growth factor with KDEL Human COPB Signalosome Nucleotide exclsion repalr complex The PDE-Daw web intarfaca has heen rovamped to provide dynamie, reapansive and maobile-frinndly
receptor | R : B veb pspes. PDB-Dev wabsite now incluces a new ssrvice that facilitates search and ratrieval of
celeays Jgle” SULU-U0- 00 e L LULU-02-10)
Rulunsns Dulse 200 B-17-18 Integrative structures archived in FOB-Dev, Read more...
Duuss taa gat 101073008818 15542117 Puhleatiae Aol 101002 nar0e? 1237
PULNZINON a6l 16103841667 - 015136775
Whitepaper from the Integrative Modeling Community
- In March 2013, a satellite werkshaoo tted "Working tevaards federating structural medels ane data” was
held at the Biophysical Society Annual meating in Baltimore, Marylanc. A whitepaper summanzing the
cutzomes of the worksmop was recently published mthe jcumal Structure, Read more...
p X JUL NN Supported by

National Science Faundation

'!UTIJN DATA BAMNK

Sali et al., Structure 2015



e.g., the Nuclear Pore Complex
... combining AF and cryoEM/ET

yeast NPC :
~-52 MDa complex

-550 protein subunits of 30 different types |- '

DOI: 10.1126/science.abm9506



Research Units > Structural biology > Kosinski group > Assembline Related: EMBL Hamburg

Assembline

Assembline is an assembly line of macromolecular assemblies!

Assembline is a multi-step protocol for integrative structural modeling of macromolecular
complexes based on electron microscopy, cross-linking mass spectrometry and other data. The
protocols is based on our Xlink Analyzer and external software: Integrative Modeling Plafform (IMP),
Python Modeling Interface (PMI), UCSF Chimera, and imp-sampcon. Comparing to other methods,
Assembline enables efficient sampling of conformational space through a multi-step procedure,

provides new modeling restraints, and includes a unique configuration system for setting up the
modelling project.

Complexes modeled using Assembline

Human pore complex

o Type VIl secretion system Elongator complex
(Science, 2016) Human pore complex (bioRxiv, 2021)

(Science Advances, 2021) (EMBO Reports, 2017)

.’." i
N Lo A “ Py

Budding yeast nuclear pore complex (Nature, 2020) Fission yeast nuclear pore complex (Science, 2021)

Code

e Assembline installation package for Anaconda

e Assembline code

e Installation instructions and manual Rantos V., Karius K., and Kosinski J. Integrative structural modeling of macromolecular complexes using Assembline, Nature Protocols, 2021



Individual subunits

e X-ray crystallography
* NMR

* Cryo-EM

* Homology models

Integrative Modeling

Volumetric maps

e Cryo-EM

e Electron tomography
* SAXS, SANS

* AFM

Structural flexibility

* Side-chain and backbone sampling
e Elastic network models
* NMR ensembles

e FRET, DEER EPR
* Molecular dynamics

9 Time (ns) y

3C, chromatin
conformation capture;

4C, circularized 3C; 5C, carbon-copy

3C; AFM, atomic force microscopy; ChlP—exo,

ChIP—seq with an exonuclease sample preparation

step; ChlP—seq, chromatin immunoprecipitation followed
by sequencing; DEER EPR, double electron—electron

resonance electron paramagnetic resonance; FRET,
fluorescence resonance energy transfer; H/D exchange,
hydrogen—deuterium exchange; NMR, nuclear magnetic
resonance; Hi-C, genome-wide 3C; rmsd, root-mean-square
deviation; SANS, small-angle neutron scattering; SAXS,

small-angle X-ray scattering.

F
T

P

Dal Peraro et al. Nat. Rev. Microbiol. 2016

Spatial connectivity

* Mutagenesis

* Evolutionary couplings
* Chemical crosslinking
* Proteomics

e H/D exchange
* ChIP-seq and ChlP-exo
* 3C, 4C, 5C and Hi-C

£ Near-atomic-resolution structure
of supramolecular assemblies



Protein-protein interaction interfaces

Enzyme-Substrate
(2008B)
Ubiquitin bound to
ubiquitin ligase

Enzyme-Inhibitor (1JTG)
Beta-lactamase bound to
beta-lactamase inhibitor

Antibody-Antigen
(SMXW)
Sonic hedgehog
bound to the S5E1
fab fragment

Berman H. M. et al., The Protein Data Bank, Nucleic Acids Research, 2000



Structure w
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PeSTo .
, Interfaces
Atomic \ R
element )

PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces
Krapp L. F. et al. Nature Communications, 2023
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Protein Structure Transformer

Input stats

input atomic structure
(atomic element)

:

'
' geom. transformer (8 nn) | | r~3.4A

P x8

geom. transformer (16 nn)
) x8

geom. transgormer (32 nn)
" x8

geom. transformer (64 nn) r~8.2A
4 x8

geom. residue pool

interface model (MLP)

4

predicted interface

Input

— Geometry
— Atom element

)
o Interface =

© notinterface

Output state
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\J

Output

— Translation invariant

— Rotation equivariant

— Interaction order invariant



PeSTo for protein-protein interfaces prediction
... comparison with state of the art

: 1 1.0 1.0
Protein 093
Interface 2 ' 0.93
S 0.87
k) Q O
c = =
= < <
Q Q
.. -0.5 2 O
Y = =
s S 3 3
! | E - ; 0.64
(" g =
e 3 | o
X p, c
4 0 .
o | e B e £ x
Streptogrisin B with ovomucoid - unbound “ - @ u"_’ Q >
conformation (0.93 A RMSD) with a ROC o § a . 2 %
AUC of 96% = %)

Gainza P. et al., Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nature Methods, 2020
Tubiana J. et al., ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction, Nature Methods, 2022



Interfaces are dynamic

Enzyme-Substrate Enzyme-Inhibitor (1JTG) Antibody-Antigen
(200B) Beta-lactamase bound to (BMXW)
Ubiquitin bound to beta-lactamase inhibitor Sonic hedgehog

ubiquitin ligase bound to the SE1

fab fragment



Interface recovery through molecular simulation

Elafin complexed with porcine pancreatic elastase (1FLE)

r
(e

g
.

N
(V)

RMSD [A]
N
o

static
predicti

-
=

-
D

200 400 60D 800 1000
time [ns]

o

-
<o

2
>

RCC AUC
= o
IS o

<
N

o
o

200 400 600 800 1000
time [ns]

0

unbound porcine pancreatic elastase



Interface recovery through molecular simulation

Elafin complexed with porcine pancreatic elastase (1FLE)

. 1 2.6
Protein
Interface R 24
5
= 22
)
2.0
_ -0.5 =
static
o a3 1.8
predicti i
[
IS 1.6
2 0 200 400 60D 800 1000
0 time [ns]

RCC AUC
= o
IS o

<
N

o
o

200 400 600 800 1000
time [ns]

unbound porcine pancreatic elastase = dynamic prediction

(after 1 us of MD simulation)

revealing cryptic binding sites
and potential allosteric mechanisms



k Other binding interfaces of proteins

Protein-protein Protein-DNA-ions Protein-lipid




Extending prediction to other interacting interfaces

nucleic acid & ion interface

1.0 —
1
0.8 -
o :
© =
0.6 =
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S -0.5
% 0.4- —— protein (auc: 0.91) )
2 —— DNA/RNA (auc: 0.90) 8
- —— ion (auc: 0.88) £
' ligand (auc: 0.85) S
- lipid (auc: 0.76) 1ZNS Nucleic acid o
0.0

0.0 0.2 0.4 0.6 0.8 1.0 ColE7 endonuclease domain
False Positive Rate
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Proteome-wide interface prediction - aka interfaceome

Human proteome prediction using the AF-

EBI database
(only high-quality models, 7464 of 20504)

correlation with protein function and

features

DNA binding -
Zinc finger 4
Metal binding -
Calcium binding -
Nucleotide binding -
Binding site -
Active site -
Glycosylation - orotein
Site - nucleic acid
Lipidation - L
Intramembrane -+ igand
Transmembrane - .g.
Topological domain - lipid

0 10 20 30 40 50 60 70
annotated interfaces [%]

ion n ligand
protein n lipid
dna/rna n ion
protein n dna/rna
protein n ion
protein n ligand
ion n lipid

ligand n lipid
dna/rna n lipid
dna/rna n ligand

mutation site
pathogenic
benign

random residue

interface cross-talk

51%

20 40 60

overlapping interfaces [%]

correlation with protein
mutations

60
within interfaces [%]

R



@ http://pesto.epfl.ch

Fabio Cortés

PeSTo

PeSTo (Protein Structure Transformer) is a parameter-free geometric deep
learning method to predict protein interaction interfaces from a protein
structure. It is available for free without registration as an online tool. A
manuscript of the method is in preparation and will be available soon.

Learn more about this project in this preprint at Biorxiv.

How to use

Copy-paste your atomic coordinates in PDB format, or upload a PDB file from
your drive, or fetch a protein structure/model from:

* The protein data bank by typing a PDB ID. Example: 2CUA
* The AlphaFold-EBI database by typing a Uniprot ID. Example: P27695
* Upload your own PDB formated structure

Then click "Detect chains”, select one or more, and submit your job to run the
prediction. Your results should be available in less than a minute. If an error
occurs, the PDB file might be not correctly formated or the input structure is
too big

[2C UA ] Fetch PDB/AF-EBI Upload PDB

r a
Copy-Paste molecule here

Chain
A0
A0
A0
A0
A0
A:0
A0
A0

Protein

DNA-RNA Lipid Ligand lon
)
P
2N
Polymer 1

hitps://pesto.epflchvapi//. . | Mode! 1 | Instance 1 555 | A | MET 53 loccupancy 0.99)

Res Name Res ID Prediction
ASP 13 0.64
THR 51 0.91
VAL 52 0.54
MET 53 0.99
ALA 54 0.96
GLY 55 0.97
ASN 56 0.98
ASP 57 0.91


http://pesto.epfl.ch

Paths to drug discovery and the role
of computational chemistry

1. The process of Drug Discovery (& Development)

2. Structure-based Drug Design

courtesy of Marco De Vivo, PhD

Laboratory of Molecular Modeling and Drug Discovery
Istituto Italiano di Tecnologia- Genoa, Italy



Drug Discovery & Development

- Some facts -

FDA approvals in 2020
53 New Drugs Approved
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Fig. 1| Novel FDA approvals since 1993, Annual numbers of new molecular  newapprovalsin 2020. Approvals by the Center for Biologics Evaluation and
entities (NMEs) and biologics license applications (BLAs) approved by  Research (CBER), for products such as vaccines and gene therapies, are not
the FDA's Center for Drug Evaluation and Research (CDER). See |ABLE 1 for  included in this drug count (see IABLE 2). Source: FDA.

Source:
Asher Mullard,
Nature Reviews Drug Discovery, February (2021)



Drug Discovery & Development

- Some facts -

Approval by therapeutic area 2020
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Fig. 2 | CDER approvals by selected therapeutic areas. Source: Nature Reviews Drug
Source: Discovery, FDA.

Asher Mullard,
Nature Reviews Drug Discovery, February (2021)



Enzymes and catalytic activity

Protein substrate

Catalytic function

Protein target




Protein binding and inhibition

Small molecules

Great binder !

Protein target

C_
.
-
.
'
-



Drug design

Pocket

Small molecules Small molecule

>
modification

Protein target

vagee

From a good inhibitor to a potential drug



Drug design

Pocket

Small molecules Small molecule
>

modification

Protein target

Similar binding but DIFFERENT properties!



Small molecules drugs

H
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Abilify A

/H o (antipsychotic) ® ‘
Qy,
\/é X, OCHj5
- Cymbalta
: C/ﬂj? (pain and anxiety)

Plavix N O Etoposide

(antiplatelet agent) /@L \>—-s N= (cancer)
N/\ 0 N \_3\:/}7
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|
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Prozac
(antidepressant)

Nexium
//Jj Q OH OH O (gastric acid)
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7/ N OH
O —_—
2oV Ci LY
\U\/N\) O F
Gleevec Lipitor Ibuprofen
(cancer) (Cholesterol) up

(inflammation)



Drug Discovery & Development

Sequence of steps

Drug
Candidate

CLINICAL TRIALS

Drug
Candidate ‘




Drug Discovery & Development

Average time requested for it

Drug
Candidate

Tlme___)15__)15__)2_61

Zero (~6 years for discovery)

CLINICAL TRIALS

Drug
Candidate

— | 5 e— ) § — ) § m—

(~7.5 years for development)

Total fime (on average) = ~13.5 years



Drug Discovery & Development

Average cost requested for it

Drug
Candidate

(~820 S Million for discovery)

CLINICAL TRIALS

Drug
Cand|d0’re

(~960 S Million for development)

Total cost on average = ~1.78 S Billion for one NME

Source: How to improve R&D productivity: the pharmaceutical indusiry’s grand challenge
Steven M. Paul, Nat. Review Drug Discovery March Vol. 9 2010



Computational Drug Design

Two approaches:

& Structure-Based Drug Design - SBDD

Drug design based on the inferaction of the ligand with
the 3D dimensional structure of the receptor

¢ Ligand-Based Drug Design - LBDD
Jnknown structure of the receptor.
Drug design based on the key features of active compounds.

Hypothesis:
Ligands similar to an active ligand are more likely to be active
than random ligands. (pharmacophore models)



Computational Drug Design

Approaches and methodes:

& Structure-Based Drug Design - SBDD

Docking (Glide, Dock, Autodock, ICM... efc)
Kitchen D., Naf. Review Drug Discovery Vol. 3 Nov. 2004

De novo design (BOMB, SMoG, BREED.. etc)
Gisbert Schneider and Uli Fechner, , Nat. Review Drug Discovery Vol. 4 Aug. 2005

< Ligand-Based Drug Design - LBDD

Quantitative Structure-Activity Relationship (QSAR)
Markus A. Lill, Drug Discovery Today, Vol. 12 Dec. 2007

Ligand similarity approaches (2D or 3D)
Johann Gasteiger, J. Med. Chem. 49, 22, 2006.



Structure-Based Drug Design

MUST: 3-dimensional stfructure of the target.

Sources of structures:

W=

Crystallography

NMR sfructures

Cryo-EM

Homology or AF structures

AABZ24882 TYHMCOFHCRYVNNHSGEELYECNERSEAFSCPSHLOQCHERRQ IGEETHEHNQCGEAFPT 60
ARBZegol 00— YECNQCGEAFAQHSSLECHYRTHIGEEPYECNQCGEAFSK 40
AAB24882 PSHLOYHERTHIGEEPYECHQCGOAFKKCSLLOQRHERTHIGEKPYE -CNQCGEAFAQ- 116

AABZ24881 H-HLQCHERTHIGEKPYECNQCGEAFSOHGLLORHERTHIGEKPYMNY INMVEPLHNEG 98

HHNRN HLHFXFXFHNRINNIN XXX %X . %€ 3 I I I I I NN . * .






Ligand Docking

Two problem to solve:
1. Posing (the easy part)

1. Scoring (the tough part)

Docking and scoring in virtual screening for drug discovery: methods and applications
Douglas B. Kitchen et al Drug Discovery, Vol. 3, Nov 2004



Ligand Docking - Scoring

The quantitative modeling of receptor — ligand Iinteractions can be

achieved by de1

‘ermining the equilibrium binding constant Keq. The binding

constant Keg s di

rectly related to the Gibbs free energy:

AG,,, =-RTInkK,

AGl)iim’ = AH —TAS = Gcomple..\f — (Grecepmr =+ Gh’gmm’)-

Why it is so difficult to score compounds:

Experimental ra

At T=298K the en
-16.7 kcal/mol

In other words, a

nge of binding affinities: from 102 M (mM) to 10-12M (pM)

fhalpic contribution fo the AGyinging IS between -2.4 kcal/mol and

change in binding (free) energy of ~1.5 kcal/mol alters the binding

affinity of one order of magnitude (1=298) IllI



Ligand Docking - Scoring
Scoring Functions FOR DOCKING CALCULATIONS:

* Force-Field Based (Physics-based)
* Empirical
* Knowledge-based

* Descriptor-based

Classification of Current Scoring Functions
Liu and Wang, JCIM 2015, 55 (3), pp 475-482

Consensus Scoring

Consensus scoring are more often applied in Virtual Screening



Ligand Docking - Scoring

AG, =F, . —TAS A +AG

Epmm from FF:

solute solvent

. . V,
EALW — Z Kl" (7‘ o re(])z =+ Z Kﬂ(ﬁ T ﬁeq); + Z Tn[l T COS(IZd) o )/)]

bonds angles dihedrals ~
Py Aij  Bij | 49, .
12 6 ' ~p.. | o

AS.oiute: The solute entropy consists of four terms, namely translationdl,
rotational, vibrational, and conformational entropy.

AQsovent: ThE solvent free energy consists of the two terms: 1) a nonpolar
and a polar term.




E .. +E =

electrostatic

A B.

Total energy Is given by the sum of energy terms.

For two atoms i and |, A; and Bjj are van der Waals parameters for
given atom types, d; is the inferatomic distance, g; and g; are
fomic parfial charges, and ¢(d;) is a distance-dependent

di

a

electric function.

Ligand Docking - Scoring

_ 9,4,
T+ 2 14+3320 —
2|l a )0,




Virtual screening

An exercise carried
out by computational
means aimed af
predicting which
molecules from an
ensemble will likely
display some activity
against a target.

VLS is usually
Implemented as an
iterative docking
simulation at the
target binding site.




How can we evaluate the virtual screening
performance?

Enrichment factor :

Example:
Suppose to have 10 active cmpds In a database of 1000 cmpds

(1% of active compounds)

Random pick: 1 out of 100 should be active. (1% chance)

>

O
|

—

Actve cmpds
found
I

| | » ranked cmpds
100 500 1000




Ligand Docking - Scoring

Speed Accuracy

Docking
Virtual Screning
Etc ..

Molecular Dynamics
Quantum Mechanics
Etc..




New directions

Published as a conference paper at ICLR 2023

DIFFDOCK: DIFFUSION STEPS, TWISTS,
AND TURNS FOR MOLECULAR DOCKING

Gabriele Corso*, Hannes Stiark*, Bowen Jing*, Regina Barzilay & Tommi Jaakkola
CSAIL, Massachusetts Institute of Technology

ligand & ranked poses &
e > DIFFDOCK > ©dp
protein confidence score
reverse diffusion over
W J;f“‘\w t=T translations, rotations and torsions t=0 @
l\\/ ~. N > l ---------------------------------------- >

- ‘N',’ .:::I'/ \l,/’ \
;‘j’_,'.';l’g\\\::'ﬁf ~
e _ 4 : P -
Y ./ ) ' y :
i | )
7 + Vo4 k.

w-"’
ot

Figure 1: Overview of DIFFDOCK. Left: The model takes as input the separate ligand and protein
structures. Center: Randomly sampled initial poses are denoised via a reverse diffusion over trans-
lational, rotational, and torsional degrees of freedom. Right:. The sampled poses are ranked by the
confidence model to produce a final prediction and confidence score.



Cell

A Deep Learning Approach to Antibiotic Discovery

Graphical Abstract

Directed message
passing neural network

Antibiotic predictions

(upper limit 10% +)
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Drug Repurposing Hub
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Authors

Jonathan M. Stokes, Kevin Yang,
Kyle Swanson, ..., Tommi S. Jaakkola,
Regina Barzilay, James J. Collins

Correspondence

regina@csail.mit.edu (R.B.),
jimjc@mit.edu (J.J.C.)

In Brief

A trained deep neural network predicts
antibiotic activity in molecules that are
structurally different from known
antibiotics, among which Halicin exhibits
efficacy against broad-spectrum
bacterial infections in mice.
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" The folding paradigm

myoglobin

sequence structure function

evolution (billion year)

= Prediction of final structure and binding helps discovering new biology
= Not all the questions are answered though by AF2 !

(o))
()]

Matteo Dal Peraro
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"= The sequence space is enormous

Matteo Dal Peraro

structure
space

= potential sequence space for proteins of 150 amino acids 20150 ~ 10195
= atoms In the observed universe ~1080

= the sequences explored by evolution are much less (~1010-20) structures lesser
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=PFL The inverse folding problem — dESign

Matteo Dal Peraro

functional
space

= Application to study protein evolution and function
= Protein engineering for therapeutics, synthetic biology and (bio)technology
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== Multiple tasks for protein design

Protein-protein interface design

Protein design

\ ”~
= create de novo proteins ‘- « S = create high affinity binders
> N

= explore new folds = therapeutic biologics

= embed new functions = artificial sensors/probes

Enzyme design
y ,7_”; :0\'

= tailor enzymatic function = explore DNA interactions

= new therapeutic solutions

el

* Filled colored circles - flexible side chains
o empty colored circles — flexible amino acid: design

= iImprove thermostability
= catalyse new reactions




*PFL The origins: the Paracelsus challenge (‘94)

® Rose and Creamer: convert a protein to another fold
changing no more than 50% of its sequence

[ ML YKL ILRNGK T LKGETT TEAVDAATAEKVFEQYANDNGVDGENTYDDATKTFTVTE™

54% =1 MTEKAILALNTAKFLRTQAAVLAAELEXLGAQEANDNAVDLED TADDLYKTLLVLA-

-50%

— GTEQEKTALNMARY IRSQTLTLLEKLNELDADEQAD ICESLEDHADELYRSCLARF —

Dalal et al., Protein alchemy: Changing -sheet into a-helix,
O Nature Structural & Molecular Biology 1997

—41%

Fig. 1 Ribbon representation?? of the folds of
a, the B1 domain of IgG-binding protein G> and
b, Rop®. ¢, An alignment of the sequences of
the B1 domain (blue), Rop (red) and Janus.
Residues in Janus are coded as follows: blue,
residues from B1; red, residues from Rop;
underlined red, RNA-binding residues in Rop'3;
green, residues that are conserved in both Rop
and B1; black, ‘a’ and ‘d’ position residues that
are different from those in wild-type Rop;
orange, the first residue of the turn between
Helix 1 and Helix 2. The D30G mutation was
introduced in the turn of Janus because a previ-
ous study demonstrated that this point muta-
tion increases the stability of Rop3. The percent
identity between the different sequences are
indicated. The seven amino acid, unstructured
C-terminal tail of Rop (Gly-Asp-Asp-Gly-Glu-
Asn-Leu) extends beyond the sequence depict-
ed for both Rop and Janus and is also not
shown in (b). It was retained in Janus because it
increases the solubility of wild type Rop3'.
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Design of a zinc-less zinc finger

De Novo Protein Design: Fully
Automated Sequence Selection

Bassil I. Dahiyat{ and Stephen L. Mayo* :

The first fully automated design and experimental validation of a novel sequence for an
entire protein is described. A computational design algorithm based on physical chemical
potential functions and stereochemical constraints was used to screen a combinatorial
library of 1.9 X 1027 possible amino acid sequences for compatibility with the design
target, a BRa protein motif based on the polypeptide backbone structure of a zinc finger
domain. A BLAST search shows that the designed sequence, full sequence design 1
(FSD-1), has very low identity to any known protein sequence. The solution structure of
FSD-1 was solved by nuclear magnetic resonance spectroscopy and indicates that
FSD-1 forms a compact well-ordered structure, which is in excellent agreement with the
design target structure. This result demonstrates that computational methods can per-
form the immense combinatorial search required for protein design, and it suggests that
an unbiased and quantitative algorithm can be used in various structural contexts.

Dahiyat, Bl, and SL Mayo. FSD-1 NMR determination
Science 278, 5335 (3 October 1997): 82-7

comparison of FSD-1 desighed and NMR

Table 2. Comparison of the FSD-1 experimentally
determined structure and the design target struc-
ture. The FSD-1 structure is the restrained energy
minimized average from the NMR structure deter-
mination. The design target structure is the sec-
ond DNA binding module of the zinc finger Zif268
9)

Atomic rms deviations (A)

Backbone, residues 3 to 26 1.98
Backbone, residues 8 to 26 0.98

Super-secondary structure parameters™
FSD-1  Design target

o

h (A 9.9 8.9
0 (degrees) 14.2 16.5

Zlf268 FSD_1 design () (degrees) 13.1 13.5




De novo design of helical bundles

® use knowledge on natural occurring helical bundles to
assemble and functionalize new folds and functions

o et
i

1 45 1
Helix 1 HEIiI 2

syn

| H
!
‘e

%
]
-

anti

The ‘Due Ferry’ (two-iron; DF) family

DeGrado and coworkers, ACCOUNTS OF CHEMICAL RESEARCH / VOL. 33, NO. 11, 2000



Design of a new protein fold Top7

® define a new topology > design sequence to fit backbone > relax
the backbone to fit the sequence > iterate (using ROSETTA)

® top/ is soluble, stable, monomeric, unfolds cooperatively
sequence is unigue (no good homolog by BLAST search)

® energy function is good for representing its biophysics

RMSD: 1.2 A
(much better
than prediction)

Kuhiman, B, G Dantas, GC Ireton, G Varani, BL Stoddard, and D Baker.
"Design of A Novel Globular Protein Fold with Atomic-level Accuracy."
Science 302, no. 5649 (21 November 2003): 1364-8.



The Nobel Prize in Chemistry 2024 was divided, one half awarded to
David Baker "for computational protein design”, the other half jointly to
Demis Hassabis and John M. Jumper "for protein structure prediction”

[11. Niklas Elmched © Nobel Prize [1l. Niklas Elmched © Nobel Prize [1l. Niklas Elmeched © Nobel Prize
QOutreach Qutreach Qutreach

David Baker Demis Hassabis John M. Jumper

Prize share: 1/2 Prize share: 1/4 Prize share: 1/4

~
w

Matteo Dal Peraro
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- Machine learning for protein design

cience

Matteo Dal Peraro

/ - ess
oiffusion mode! FO‘W

¢\ sinde
step

= Application to study protein evolution and function
= Protein engineering for therapeutics, synthetic biology and biotechnology
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="~ Pipeline of today’s protein design

Backbone Sequence Computational
Generation Design Filtering / Oracle

Design

Criteria )

Experimental
Filtering

credits to Baker Lab

—>

= RFdiffusion = ProteinMPNN = AF2

= AF2 has been key to filter potentially good protein designs
= Experimental testing is the ultimate validation of designs
= Al methods enhanced the experimental rate of success

= Protein engineering is now feasible for therapeutics, synthetic biology and
biotechnology

~
(o]

Matteo Dal Peraro
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="~ Pipeline of today’s protein design

I
w
0y

mm RFdiffusion (ours)
Bl RosettaDesign

Matteo Dal Peraro

RFdiffusion 2D Class Averages 3D Reconstruction

o
W
o

o
N
w

HE0822
c3

O
N
(S

o
[
wu

o
—
o

HE0626
Cé

Experimental Success Rate (%)

. . . HA IL-7Ra INSR PD-L1 TrkA
validation using cryoEM Target

credits to Baker Lab

= AF2 has been key to filter potentially good protein designs
= Experimental testing is the ultimate validation of designs
= Al methods enhanced the experimental rate of success

= Protein engineering is now feasible for therapeutics, synthetic biology and
biotechnology



**" Machine learning for protein design

Forward diffusion
Image noisy image noise

Andrés érs
= Denoising Diffusion Models - as those used in DALL-E

= [rained to denoise noisy images, they can generate images by iteratively
denoising pure noise

~l
(o]

Matteo Dal Peraro



Article

De novo design of protein structure and
function with RFdiffusion

Unconditional

https://doi.org/101038/s41586-023-06415-8  Joseph L. Watson'?'*, David Juergens'?>'>, Nathaniel R. Bennett'**'*, Brian L. Trippe®**%,
Jason Yim*®™®, Helen E. Eisenach™*", Woody Ahern™*™%, Andrew J. Borst'?, Robert J. Ragotte'?,

Keceived: 14 December 2022 Lukas F. Milles'?, Basile |. M. Wicky'?, Nikita Hanikel'?, Samuel J. Pellock'?, Alexis Courbet'%®, Symmetric noise
Accepted: 7 July 2023 William Sheffler'?, Jue Wang'?, Preetham Venkatesh'%?, Isaac Sappington'?®,
Published online: 11 July 2023 Susana Vazquez Torres'??, Anna Lauko'??, Valentin De Bortoli®, Emile Mathieu', 3
ubtl sl Sergey Ovchinnikov™, Regina Barzilay®, Tommi S. Jaakkola®, Frank DiMaio'?, Minkyung Baek™ G
Open access & David Baker'*"™ —
Diffusion model
o Binding target
Forward (noising) process
<«
_) et
J\/EOJ) m S|ng|e m
£ step
sian - 2% Protein Functional motif
Gaug a o AL ote
noise “us &“ i —> w4 Fe “es structure
£ r.{{J ‘. \'..;%’ 34-' .
X T U Xt Xt_1 u 0
»> . . . :
. Symmetric motif Symmetric scaffolding
Reverse (generative) process RS B,
w8 Tale B G,
. . WAL 4 =
= the reverse process is learned using a neural network ,é’ oF :
s 5

= |ts loss function encourages the reverse process to accurately estimate
how the data transitions from one noisy step to the previous step.



https://www.bakerlab.org/2022/11/30/diffusion-model-for-protein-design/



Science

RESEARCH ARTICLES

Cite as: J. Dauparas et al., Science
10.1126/science.add2187 (2022).

Robust deep learning-based protein sequence design using
ProteinMPNN

J. Dauparas'’?, I. Anishchenko’?, N. Bennett">?, H. Bai">*, R. J. Ragotte"?, L. F. Milles"?, B. I. M. Wicky"?2,
A. Courbet'>*, R. J. de Haas®, N. Bethel>*, P. J. Y. Leung’?3, T. F. Huddy"?, S. Pellock"2, D. Tischer'?, F. Chan'?,
B. Koepnick!'2, H. Nguyen'2, A. Kang'2, B. Sankaran®, A. K. Bera’2, N. P. King'2, D. Baker’2**

Department of Biochemistry, University of Washington, Seattle, WA, USA. 2Institute for Protein Design, University of Washington, Seattle, WA, USA. 3Molecular Engineering
Graduate Program, University of Washington, Seattle, WA, USA. “Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA. 5Department of Physical
Chemistry and Soft Matter, Wageningen University and Research, Wageningen, Netherlands. Berkeley Center for Structural Biology, Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley Laboratory, Berkeley, CA, USA.

*Corresponding author. Email: dabaker@uw.edu

While deep learning has revolutionized protein structure prediction, almost all experimentally characterized
de novo protein desighs have been generated using physically based approaches such as Rosetta. Here we
describe a deep learning—based protein sequence design method, ProteinMPNN, with outstanding
performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a
sequence recovery of 52.4%, compared to 32.9% for Rosetta. The amino acid sequence at different
positions can be coupled between single or multiple chains, enabling application to a wide range of current
protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using X-ray
crystallography, cryoEM and functional studies by rescuing previously failed designs, made using Rosetta
or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target binding
proteins.

= Backbone distances are encoded and processed
using a message-passing neural network
(Encoder) to obtain graph node and edge
features.

= The encoded features, together with a partial
seguence, are used to generate amino acids

iteratively in a random decoding order.

A chain A Chain B

ProteinMPNN
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Cell

Preclinical proof of principle for orally delivered

Th17 antagonist miniproteins

Graphical abstract

orally
administered

IL-17RA
minibinder
Kp ~10 pM

PK PD

v Gl tissues Vv IBD
v Serum efficacy
In mice

Authors

Stephanie Berger, Franziska Seeger,
Ta-Yi Yu, ..., Matthias Siebeck,
Roswitha Gropp, David Baker

Correspondence

berger389@gmail.com (S.B.),
dabaker@uw.edu (D.B.)

Highlights

e Computational design yielded low- and sub-pM minibinders
of IL-17A and IL-23R

e IL-23R minibinders are extremely resistant to heat, acid, and
proteolysis

e Oral IL-23R minibinder is as effective as a clinical mAb in
mouse colitis

Berger et al., 2024, Cell 187, 4305-4317
August 8, 2024 © 2024 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.cell.2024.05.052




=L Protein Structure Transformer @LBM
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=PF

- Unique ability — context awareness

= example with context = large-scale benchmark

without context
with context

: /\ )\5_7
& AV | P 7
v Bl B ¥ | @
! | ? | 1]

protein DNA RNA  ligand io'n lipid
protein interface type

1000 structures sampled with maximum 30% sequence identity
and separate C.A.T.H. classification from training set

colicin E7

(o)
N

Matteo Dal Peraro
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- Can we re-engineer an enzyme?

= [EM-1 serine B-lactamase

only 50% sequence identity

D1

nitrocefin

D4
D2
D3

SHV-16

= sequences generation with substrate as constraint

= selected 10 top-ranked predictions based on pIDDT

= 4/10 designs are soluble and monomeric

= they are folded and more thermostable than wild-type TEM-1
= catalytically active at high T - not as the wild-type yet

= represent a separate subclass of 3-lactamases

»

‘ ~|TEM-1

l_SH\M 00

SHV-1

E TEM-193
1~ TEM-194

* TEM-239

o)
()]

Matteo Dal Peraro
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Krapp et al. Nat Comms 2024
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The future is bright and exciting ...

... biomolecular design will address many societal needs

= Medicine = Biotechnology

vaccines & antivirals protein-silicon devices

smart medicines bio-based computers

drug delivery nanoscale manufacturing

SM proteomics with
dhid "W  biological nanopores
s 4 (Nat Chem 2021)

SARS-CoV-2 RBD
nanoparticle immunogen (Cell 2020)

(o]
(o]

Matteo Dal Peraro

= Sustainability

artificial photosynthesis
CO2 sequestration

plastic degradation

FAST-PETase
(Nature 2022)
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We weren’t alone !!!!

Google DeepMind About v  Research Technologies v Impact Discover v

AlphaProteo generates novel proteins
for biology and health research

S SEPTEMBER 2024

Protein Design and Wet Lab teams

< Share
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Home Our team On-going_Projects Open Projects Tools Help us ontact us

DeSig n i n g Life E P F L https://www.designinglifewithai.com/
With AI M AKE I contact the MAKE team for

ongoing projects offered by labs

USEFUL,CREATIVE,SUSTANABLE, B

We're thrilled to introduce "Designing Life with Al"
at EPFL, where Al and protein design intersect,
involving faculty, professors, and 40 students
collaborating on topics like binder design and
phosphosite engineering to kinase remodeling.
After a year of innovative research, our projects
are now being tested in the wet-lab, and we're
working on creating a pipeline and resources for
new students, aiming to expand our project and

make EPFL a hub for protein design.




