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Outline of lecture 8:

• energy minimization techniques 
• steepest descent 
• conjugated gradient 

• introduction to Molecular Dynamics (MD) 
• initialize the system 
• integration methods 
• choosing the correct time-step  
• calculation of relevant quantities 
• free-energy sampling 
• state-of-the-art of MD simulations 
• current limitations 



Paradigm in Structural Biology 

X-ray/NMR 

structure functionsequence

structure prediction 
ab initio folding

thermodynamics 
kinetics

- knowledge-based: structural databases 
- first principles:

molecular 
modeling



What we need for modeling at the 
molecular mechanics (MM) level

For a molecular simulation or modeling one needs:  

1. a representation of the biomolecules at a certain level 
of resolution (i.e. initial conditions) 

2. a functional form for the potential energy for molecular 
mechanics (MM) 

3. a search algorithm or optimizer/minimizer     
(minimization can be used to find favorable regions in 
the conformational space; sampling techniques to 
compute dynamics and thermodynamic quantities)



Molecular mechanics potentials
• molecular mechanics (MM) potential energy gives 

minimum-energy conformation of a molecule 

• based on physics, but uses simplified “ball-and-spring” 
models (classical physics, Newton equation), which 
mask the quantum nature (Schrodinger equation) 

• are empirical, i.e. calibrated to describe the quantum 
nature of chemical bonds and short-range interactions

UMM = Ubonded + Unon−bonded
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Empirical potential energy function

• large number of parameters fitted to represent  experimental data 
or QM calculated quantities (usually structure and thermodynamic of 
small molecules) 

• “trial and error” or least-squares fitting methods to converge to a 
consistent set of parameters  

• coupling/correlation between parameters, thus parameterization of a 
force field (FF) is a global task  

• assumption that parameters can be transferable to different 
contexts (specialized vs. generalized FF)
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MM empirical potential 
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Optimization
• it is a central problem in every science 

• it can be final goal of modeling 

• or starting point for more advanced calculations 

• in chemistry and biology: determination of the low-
energy conformation for a given energy function U(r)

Chandler Lab, Berkeley

• but also the search for 
maxima associated with 
chemical reactions, etc, 

• in general used to describe 
the energy landscape of a 
system



Energy minimization
• global and local minima of a function f(x) 

• stationary points: minima, saddle points, maxima 

• landscape for a energy function f(x)=U(r)

minx{f(x)}
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Procheck: http://www.ebi.ac.uk/pdbsum/

leucine (Leu, L)

http://www.ebi.ac.uk/pdbsum/


An example: alkanes

• 2 degrees of freedom for U(r)



Minimization algorithms

• can make use of derivatives of U(r) or not  

• quick answer, less time, less memory 

• choice of method is problem-dependent  

• most methods go downhill, multi initial starting points 

• combination of experimental inputs and models for 
generating more initial states 

• no method can surely locate                                     
global minimum from an                                        
arbitrary starting position



Derivative minimization methods

• direction of the gradient gives direction                        to 
search for the local/global minimum  

• magnitude of the gradient gives the                   
steepness of the local slope 

• 1st and 2nd order methods (also 0th order methods) 

• Taylor expansion of real U(x) introduces approximations

U(x) = U(xk) + (x− xk)U �(xk) + (x− xk)T · U”(xk) · (x− xk)/2 + ...

U �(xk) = gk gi(x) = ∂f(x)/∂xi

U
��(xk) = Hi,j(x) = ∂

2
f(x)/∂xi∂xj

• gradient

• hessian or force 
constant matrix



• Steepest descend (SD): move in the direction parallel to 
the net force (downhill), i.e. 

• how long should be the step along  the gradient?                              

First-order methods	

sk = −gk/|gk|



First-order methods	
• 1. line search: bracket the minimum; gradient at the 

minimum will be orthogonal to the previous direction  

• 2. arbitrary step:                                           
consistently increased or reduced to minimize energy 

• SD is good to relieve high-energy features, very robust  
far from minima, it has problems when close to them

xk+1 = xk + λksk
gk · gk−1 = 0

f(x, y) = x2 + 2y2; f0 = f(9, 9)



Convergence criteria	

• true minimum is difficult to reach for any method 

• consider machine precision:                                                  
(double precision ~10-15, single precision 10-7) 

• need for a convergence threshold to stop search 

• monitor the energy drop and decide a threshold for 
energy between successive steps, or monitor change in 
coordinates, or the maximum value of the gradient in 
every dimension  

• depend on the step following minimization, it can be 
more or less stringent 

1 + �m = 1



Caveats

• use different starting points; perturb your structure or 
use different models or experimental structures 

• use different methods, and combination of methods  

• use different force fields (e.g. for small molecules) 

• check hessian eigenvalues (close to minimum all are 
positive, apart 6 zero terms) 

• check artefacts from non-bonded cutoff methods  

• use Monte-Carlo or heuristic search alternatively 



Molecular Dynamics 
• the motion of the particles is realistic, MD is able to get 

information about the mechanistic aspects of 
transformations undergone by the system (e.g., the 
mechanism of a chemical binding or the folding kinetic of 
a polymer).



Statistical mechanics in a nutshell
• relates microscopic to macroscopic observables 

• gives a probability to find a given microstate with energy Ei 

• p(Ei) follows the Boltzmann distribution 

• Z  is called partition function (normalization) 

• key thermodynamic quantities can be computed
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Statistical mechanics
• we can express thermodynamic function in term of Z 

• or Gibbs free energy: 

• derivation from second law of thermodynamics: dS>0 

• maximization of Shannon entropy with the physical 
constraint, average E is constant by effect of thermal bath 
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Molecular Dynamics 
• the motion of the particles is realistic, MD is able to get 

information about the mechanistic aspects of 
transformations undergone by the system (e.g., the 
mechanism of a chemical reaction or the folding kinetic 
of a polymer). 

• MD trajectories can be directly used to obtained 
thermodynamically averaged quantities         
(ergodic theorem: trajectory followed by a dynamical 
system explores the phase space according to its 
statistical probability):
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Newton’s laws of motion
• 1. a body rests or moves at constant velocity unless a 

force acts upon it 

• 2. force equals the rate of change of momentum (F=ma) 

• 3. to every action there is an equal and opposite reaction 

• thus the trajectory of a particle is obtained by solving the 
differential equations derived from the Newton’s law 
(equations of motion):
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Integrating the equations of motion
• using realistic potentials the force on each particle xi 

(i=1,...,N) changes whenever it moves (motion is 
coupled to all particles in the systems)  

• need for finite difference methods to solve numerically 
the equations of motion 

• the integration is broken down into many small steps, 
each of them separated by a fixed time, δt (timestep) 

• flow diagram for MD: 

• force calculation is the                                                   
most cpu-demanding step 

• various integrators to                                               
propagate atomic positions
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System initialization
• positions are derived from an experimental source (X-

ray, NMR, etc.), or from a homology-based model that has 
been previously prepared and minimized 

• velocities are assigned using a Boltzmann distribution: 

•                            : equipartition theorem (kBT/2 per DoF) 

• from the velocities you have a way to measure the 
temperature T of your system

System initialization
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Force calculations
• from the potential U(r), you can calculate forces and 

acceleration on the N atoms of your system: 

• for instance, for the LJ potential part: 

• once you have the force contribution for each atom you 
can calculate its trajectory till the next timestep
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Integration methods
• all use positions, velocities and accelerations of 

particles, and approximate them as a Taylor series: 

• Verlet algorithm (1967) is the most widely used method 
for MD:

r(t + δt) = 2r(t)− r(t− δt) + δt2a(t)
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Verlet algorithm

• uses positions at time (t - δt) and accelerations, but no 
velocities, which can be derived from positions: 

• easy implementation, memory needed is modest 

•              is a small term, which can lead to loss of 
precision (i.e. no conservation of energy) 

• velocity calculation is postponed 

• it is not a self-starting algorithm

r(t + δt) = 2r(t)− r(t− δt) + δt2a(t)
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Velocity Verlet
• it give positions, velocities and accelerations at the 

same time and does not compromise precision 

• 3-stage calculation: first positions at (t+δt), then forces 
at (t+δt) and finally velocities at (t+δt) 

• Leap-frog is another common algorithm, where position 
and velocities are not synchronized though 

• both are time-reversible and symplectic integrators

Velocity Verlet
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same time and does not compromise precision

• 3-stage calculation: first positions at (t+δt), then forces 
at (t+δt) and finally velocities at (t+δt)

• Leap-frog is another common algorithm, where 
position and velocities are not synchronized though

• both are time-reversible and symplectic integrators

v(t + �t) = v(t) + 1/2�t[a(t) + a(t + �t)]
r(t + �t) = r(t) + �tv(t) + 1/2�t2a(t)

http://en.wikipedia.org/wiki/Symplectic_integrator


Choosing the integrator
• importance of energy conservation:                              

E~cost; H=T+U in the microcanonical ensemble     
(NVE constant) 

• as timestep increases, energy RMS fluctuations 
increase (tolerance: ΔE/E~10-4) 

• for a given timestep, the drift of energy in short or long 
trajectory can vary for different algorithms



Choosing the timestep

• timestep (δt) is crucial for MD: need for a compromise 

• too short: the trajectory will cover only a limited region 
of the phase-space 

• too large: integration of the equations of motion will 
produce instabilities and failure in energy conservation 

• rule of thumb: 0.1*(shortest motion time in the system)



Choosing the timestep
• in practice for biomolecular systems δt~1 fs        

(shortest motion is bond fluctuations involving H atoms, 
for instance C-H bond: ~10 fs) 

• multiple time step integration (RESPA), or freezing of 
fast fluctuations (all H-X or X-Y bonds with SHAKE, 
RATTLE, etc.) will permit a δt~2 fs



MD ensembles
• microcanonical (NVE), but thermodynamic variables T 

and P are more convenient, they are usually closer to 
the experimental setup  

• in (NVE) from kinetic energy you can calculate T: 

• statistical ensembles connect microscopic to 
macroscopic quantities: canonical (NVT, Helmhotz free-
energy); isothermal-isobaric (NPT, Gibbs free-energy) 

• use of thermostats or barostats allows to control other 
quantities and to produce the appropriate ensemble
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NVT: coupling thermostat
• rescaling of velocities:  

• more gently approach coupling to a thermostat of given 
temperature T, using a fictitious frictional coefficient 
(Berendsen) 

• the τ constant controls the strength of the coupling:   when 
large (>1ps), cT ~1 (no scaling, microcanonical) when 
small (<0.01ps), the energy exchange between the 
system and the thermal bath is very significant (but this 
does not rigorously produce a canonical ensemble)
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Canonical NVT ensemble
• extended system methods to produce rigorously 

thermodynamic ensemble 

• additional degrees of freedom to the system H             
(e.g. Nose´-Hoover) 

• xt is the effective scaling parameter, ζt is the friction 
coefficient, mt is a fictitious mass (control the rate of the 
thermalization process) 
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NPT ensemble
• more practical ensemble, closer to experimental setup 

• controlling pressure, it is possible to equilibrated density 
of your system to target values (e.g. 1 g/cm3 for water) 

• scale the volume or couple a pressure bath: 

• scaling can be applied isotropically or anisotropically  

• extended methods to produce rigorous version of the 
isothermal-isobaric NPT
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MD setup and production 
• check and prepare your system (starting from 

experiments or predictions) 

• define the simulation cell, solvate, add physiological 
concentration of salt (e.g. 150 mM of NaCl) 

• minimize the energy to relax possible initial frustrations  

• gradually heat up the system to desired T 

• equilibrate first the solvent,,                                              
light atom, then the side                                              
chains, finally the                                                  
backbone of your protein 

• complete equilibration and                                               
enter in production mode



Ewald methods
• used for calculating electrostatic energy of systems in 

periodic boundary conditions (unit cell charge = 0) 

• minimum-image convention: each atom interacts with 
the closest periodic image of the other N-1 atoms  

• different unit cell lattice geometry 

• use of fast fourier transforms to compute the 
electrostatic energy in the real and reciprocal lattice



Deviation and  fluctuation from reference 

atomic fluctuation ~0.25-0.60(Å) 

• Root mean square deviation, RMSD

• Root mean square fluctuations, RMSF
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and Arg121 on L7; His196 on L10; Cys221 of L12 and
His263 on L14) are correlated (Fig. 6A), suggesting that
the H-bond network at the active site is highly organized.
The large-scale motion of the system involves mainly the
two extreme regions along the 2-fold axis dividing the
!-sandwich: (i) loops forming the active site region, L3 and
L12, and (ii) L4 and L9 (whose motion is correlated, Figure
6A). A visual analysis of the first essential eigenvectors
motion reveals a concerted movement of loops L3 and L12
towards the zinc centre (in SM). Furthermore, the projec-

tion of the first essential eigenvectors on C" backbone
atoms confirms that the region of the active site is quite
rigid during the dynamics (in SM).

The zinc coordination features are maintained during
the dynamics: the maximum deviations of bonds and
angles involving the zinc ion are 0.2 Å and 15°, respec-
tively. In the active site, most inter-residue interactions
are also maintained (Table I, Fig. 2). The zinc-bound OH
group H-bonds O#2@Asp120, H@Cys221, H-N#@His263
and solvent water molecules (Fig. 2). The non-coordinating

Fig. 5. RMS-fluctuations. The experimentally derived B-factors (A) and calculated RMS fluctuations (B, C)
are visually depicted on the backbone representation of the 3bc2 X-ray structure (notice the lack of L3 loop),
BcII and BcII-CEF models, respectively. The zinc ion is represented as a sphere, and CEF in cylinders. Colors
scale ranges from red (minimum mobility) to blue (maximum mobility). The calculated and experimentally
derived RMS fluctuations per residue are compared for BcII (D) and BcII-CEF (E) models. Active site residues
and loops are indicated in abscissa (Asp120* stands for His116, His118, Asp120, and Arg121 residues,
Figure 1).

Fig. 4. MD averaged structures. A-B: Comparison between the X-ray structure (in gray) and the MD
averaged structures of BcII (in red, A), and BcII-CEF (in blue, B). C: Comparison between the two
MD-averaged structures. The zinc ions are represented as spheres, and CEF as sticks.
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the ideal gas distribution) 
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with X-ray diffraction 
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Time-dependent properties

• correlation function between x and y dataset can be 
extracted from MD trajectories 

• if normalized you obtain data in [-1,1] range and w.r.t. mean 
values
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Sampling the free energy landscape
• reaction coordinates, barrier crossing: ΔG or ΔF 

• to cross a free-energy barrier:	                                     
with τ0 ∼10−12 s: i.e. 1 kcal/mol barrier can be explored in 
∼ps; 5 kcal/mol in ∼ns; 10 kcal/mol µs or longer 

• rule of thumb: sampling should exceed timescales of 
interest by ∼10-fold.  
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s:

1 kcal/mol : ∼ ps, 5 kcal/mol : ∼ ns, 10 kcal/mol : µs or longer
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• System size and complexity increase required timescales (equilibration

of ions, complex landscapes, multiple minima)
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(human acyl-protein thioesterase)

X-ray crystallography 
{xi, yi, zi}i=1,...,N



solvation 
pH 

post-translational modifications 
interactions network 

temperature effects (kBT) 
..... 

molecular modeling 
and simulations

{xi(t), yi(t), zi(t)}i=1,...,N

Laboratory for Biomolecular Modeling - LBM, http://lbm.epfl.ch

http://lbm.epfl.ch


"Immune Recognition" by David Goodsell 



State-of-the-art of molecular simulations
• up to 102 millions of atoms (e.g. viruses, ribosome)

James Gumbart, et al.  
Structure, 17:1453-1464, 2009.

http://www.youtube.com/watch?v=pupVZl347H0

drug binding 
on a kinase

HIV-1 
capsid

protein 
translocation

Zhao et al. Nature, 497:643-646, 2013

http://www.youtube.com/watch?v=pupVZl347H0
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Molecular mechanism of SARS-CoV2 

https://www.youtube.com/watch?v=gDtTsP9-TrQ


State-of-the-art of molecular simulations
      Whole-cell Martini 

model of JCVI-syn3A. 
The four stages of cell 
building are shown on 
the side. The final 
system contains 60,887 
soluble proteins (light 
blue), 2,200 membrane 
proteins (blue), 503 
ribosomes (orange), a 
single 500 kbp circular 
dsDNA (yellow), 1.3 
million lipids (green), 
1.7 million metabolites 
(dark blue), 14 million 
ions (not shown) and 
447 million water beads 
(not shown) for a total 
of 561 million beads 
representing more than 
six billion atoms. 

https://doi.org/10.3389/fchem.2023.1106495



• up to the millisecond timescale

State-of-the-art of molecular simulations

villin folding

http://www.youtube.com/watch?v=gFcp2Xpd29IVoelz et al. J. Am. Chem. Soc., 2010, 132, 1526

Freddolino, et al.. Biophysical Journal, 94:L75-L77, 2008.

http://www.youtube.com/watch?v=gFcp2Xpd29I


High-Performance Computing (HPC) resources

HPC@EPFL  BlueGene/P KUMA - EPFL HPC - 12 PetaFLOPS

CSCS ALPS- 435 PetaFlops

http://www.top500.org/lists

Anton D.E. Shaw Research 

http://www.top500.org/lists/


Current limitations of MD simulation
• approximations and errors inherent to any force field  

• systematic errors related with algorithm precision 

• calculations of free energy differences are still very 
difficult to converge  

• time scale and sampling problem → statistical error: 
conformational transitions that require >10 µs cannot be 
easily simulated by conventional molecular dynamics 
techniques (this is related to sizescale as well) 

• some solution for sampling: enhanced sampling 
techniques, MD with implicit solvent (approximate) – 
Brownian dynamics – Monte Carlo, coarse-grained 
MD (see in the next lectures)



MM FF limitations

• transferability 

• accuracy of parametrization 

• functional form (e.g. can add polarizability) 

or many-body terms  

• many different force fields (specific vs. generalized) 

• approximation in treating long-range interactions 

• can be expensive for very large systems (e.g. ~106 atoms)

µind = αE α : polarizability



Failure of a force field
• enhanced computer power allows 

to run longer MD simulations, and 
to discover failures in the models

shows that these errors are not very significant in shorter
(10 ns or less) simulations and do not invalidate most pre-
vious simulations with these force fields, where none or only
one of these transitions is evident. However, it is clear that
this error needs to be corrected because within a very few
years standard MD simulations of NAs will approach 100 ns
in length, and in this range of simulation, massive irrevers-
ible a/g transitions disrupt the duplex structure (see results
below).
In this article we present a full reparameterization of the

a/g torsional term to derive a new AMBER force field, based
on AMBER-parm99, which will be named parmbsc0. This
new force field, not only appears to model accurately the
structural and dynamic properties of a large variety of NAs
over current MD simulation time scales (;10 ns) but also
provides very good representations of these structures in sim-
ulations 20 times longer. The extensive use of the Mare
Nostrum supercomputer in Barcelona and supercomputing
facilities in Brno and the Pittsburgh Supercomputing Center
has allowed us to perform a comprehensive and intensive test
of the force field (near 1 ms of unrestrained trajectories on 97
different structures, 2 of them 200 ns long), a study that is
orders of magnitude greater than those reported in any
previous parameterization work and that guarantees that this
modified AMBER force field can be safely used to study
NAs in a time scale at least one order of magnitude greater
than current parm94 and parm99 versions.

METHODS

Reference quantum mechanical calculations

Many studies support the overall very satisfactory performance of the

parm99 (or parm94) force field, with the most serious artifact reported so far

being the a/g imbalance occurring in longer B-DNA simulations (see

Introduction). Thus, we have adopted a conservative reparameterization pro-
tocol in which we have modified the minimum number of parameters re-

quired to correct the a/g conformational transition. In particular, the obvious

choice was to reparameterize the a and g torsional parameters. For this
purpose, we chose an extended model (Fig. 1) to explore the potential energy

surface (grid spacing 30!) associated with rotations around a and g torsions.

The model was chosen to place the a and g torsions in a correct chemical

environment while maintaining the simplicity needed to reduce potential
sources of noise in the quantum mechanical calculations. The system was

fully optimized (at both LMP2/6-311G(d) and B3LYP/6-311G(d) levels)

(41–43) at each point of the potential energy surface except for a and g
(fixed at values of the grid) as well as d, which was fixed at either B- (d ¼
156.5!) or A- (d ¼ 84.0!) fibber values. As described below the use of these

particular d values for restraint instead of other possible values does not have
any impact on the fitted parameters. In summary, four potential energy sur-
faces were built up to represent the a/g space for DNA and RNA. As noted

below, all these data were merged to improve the statistical quality of the

fitting.

To further test the quality of the force field potential, CCSD(T)/complete
basis set calculations (44,45) were performed on the four minima regions.

These calculations were carried out by reoptimizing the B3LYP geometry

(keeping only d constant at A- or B-standard values) at the MP2/aug-cc-

pVDZ level. Single point calculations were then performed at the MP2/aug-
cc-pVXZ (X¼D,T) levels extrapolating to infinite basis set with the method

developed by Halkier et al. (45). Finally, MP2 / CCSD(T) corrections
were included using the 6-311G(d) basis set.

Force field fitting

With our conservative approach, aimed to retain the beneficial features of the

AMBER parm94-99 parameterizations, only torsional parameters involving

a and g torsions were refined, and all other parameters were kept at standard
parm99 values (charges for the model system used in the parameterization

were determined from standard RESP/6-31G(d) (46) calculations in AMBER).

The residual energy (Eq. 1) was fitted to an extended Fourier series (Eq. 2),

where the barrier and the phase angle for each periodicity (1, 2, or 3) term
were adjusted to obtain the minimum error. Note that the use of the Fourier

expansion has no physical foundation and is just a simple empirical cor-

rection useful to fit residual QM-classical energies.
In principle, although any dihedral angle(s) can be used to fit a torsion,

we chose to follow the standard nomenclature using the O39-P-O59-C59 and
O59-C59-C49-C39 atoms to represent a and g dihedrals. This differs slightly

from the original parm99 force field, where the g torsion is defined by the
O5-C59-C49-O49 atoms using the same set of atom types (OS-CT-CT-OS) as

the sugar ring torsion O49-C49-C39-O39 and all other anomeric torsions. To

avoid altering other conformational profiles (such as that of sugar puckering)

a new atom type (CI) was introduced and assigned to C59. Defining a new
atom type for the C59 makes intuitive sense because it is expected that the

O59-C59-C49-O49 anomeric torsion, adjacent to the phosphorus, should be

distinct from the standard (OS-CT-CT-OS) anomeric torsion.

Ei;j
res ¼ Ei;j

QM " Ei;j
parm99ðnoa;gÞ; (1)

where i,j stand for a combination of a/g torsions, and parm99 (no a,g)
means a parm99 calculation with all standard parameters but those involving

a/g set to zero. All energy values are referred to a common structure.

Ei;j
res [Ei;j

a;g ¼ +
k

+
l

+
3

n¼1

Vn

2
½11 cosðnf" zÞ&; (2)

where k stands for a torsion, a or g, l stands for the number of dihedral

angles (F) used to describe this torsion, and z is the phase angle.

Multiple different fitting algorithms were explored. A direct nonlinear

fitting of the residual plot was initially investigated and discarded because it

FIGURE 1 Schematic representation of the molecular model used to pa-

rameterize a and g torsions. The atom-type definition is also displayed.
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the MD simulations presented here, the longest ever pub-
lished for parm94/99, backed by similar results on a wide
variety of NA structures by this group, ranging from DNA
minicircles to A-tract DNA to a large set of DNA duplexes,
confirm that although reliable results can be obtained in short
or medium (,20 ns) simulations, severe artifacts will be
found over longer simulations.
Two independent 200-ns MD simulations were performed

with the parmbsc0 force field using different starting
geometries and velocities. In both cases, the duplex samples
the same region of the conformational space, which is close
to the experimental structure (see Table 4, Figs. 4 and 5, and
complete data at http://mmb.pcb.ub.es/PARMBSC0). The
simulated duplex remains within the range of helical param-
eters expected for a canonical B-form duplex in aqueous
solution, showing an improvement in global helical twist
representation with respect to parm94 and parm99 force fields.
As expected from the regularity of the duplex, the Watson-
Crick hydrogen-bonding scheme is fully maintained except

for some breathing events at the nucleobases at the ends of
the helix (see Supplementary Fig. S4 and trajectory videos at
http://mmb.pcb.ub.es/PARMBSC0). The sugar puckers mainly
sample the South region, as expected for a B-DNA, but a
nonnegligible percentage of N-puckering is observed. In fact,
the integration of puckering populations using a two-state
model shows ;9% (T), 12% (C), 7% (A), and 3% (G) of
North puckering in the simulations, which are close to the
most accurate NMR estimates of the population of N-sugars
in B-DNA (14% (T), 24% (C), 5% (A), and 6%(G); see
Isaacs and Spielmann (52)). Finally, it is worth noting that
the new force field not only provides a good global geometry
of the duplex but also reproduces some sequence-dependent
variations in the structure (such as the undertwist of
d(CG) steps; Fig. 6) or the higher tendency of C to display
N-puckerings, which might be important to understand bio-
logical properties of DNA (see Table 4). Note that all these
details are lost in long parm94 or parm99 simulations (see
Table 4 and Supplementary Fig. S5).
Additional comparisons were carried out taken as refer-

ence values of B-DNA structures in a manually cured subset
of the NDB database, where anomalous duplexes (containing
drugs, mismatches, etc.) were removed (53). These compar-
isons need to be taken with some caution because we are now
comparing simulated data for a given duplex with experimen-
tal data for a large set of different oligos of different lengths
and sequences, but in any case, if the force field works well,
we should find similarity in the distribution of backbone tor-
sions and helical parameters between MD simulations and
the experimental database. Results in Supplementary Fig. S6
confirm that the distribution of torsions sampled by parmbsc0
simulations reproduce very well that found in the experimen-
tal databases, and the same is detected for helical parameters
(see Supplementary Fig. S7). In both cases, the improvement
with respect to parm99 calculations is very clear. Not sur-
prisingly, the greatest improvement in performance between
parmbsc0 and parm99 is found for the a and g torsion and
for the closely coupled x one (see Supplementary Fig. S6). In
terms of helical parameters, the greatest improvement of
parmbsc0 is found in the helical twist (see Supplementary
Fig. S7).
As the standard deviations of the various averages

indicate, the parmbsc0 force field does not allow a rigid
picture of DNA. On the contrary, the structure is very flex-
ible, and many reversible transitions are found. The most
common of these changes is that between BI (around 82%)
and BII (18%) forms. This transition, the equilibrium con-
stant of which is well reproduced by parmbsc0 MD simu-
lations (see Table 4), occurs with a very high frequency
during the two 200-ns trajectories, indicating that the force
field is not rigidifying the structure (Fig. 7). Many a/g transi-
tions are also detected in the simulations, but all of them are
reversible after a few nanoseconds. This finding indicates
that the new force field, while maintaining the necessary flex-
ibility, captures properly the a/g equilibrium (an example of

FIGURE 3 MD simulations of Dickerson’s dodecamer with parm94

(orange) and parm99 (magenta) force fields. Average values from x-ray
(black) and NMR (red) experiments (for the same sequence) are shown as

solid straight lines with the associated standard association as dashed lines.

(A) Percentage of canonical a/g torsions. (B) Average twist. (C) RMSd (Å)

from crystal data.
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the time evolution of one individual set of a/g values in Fig. 7,
additional examples at Supplementary Fig. S8, and complete
data at http://mmb.pcb.ub.es/PARMBSC0), without an arti-
factual rigidification of the structure.

Is the parmbsc0 force field applicable
to different sequences?

We have compared the performance of parm99 and parmbsc0
in relatively short (3-ns) simulations of 38 different duplexes
taken from the Nottingham database. Although these simu-
lations are too short to fully sample the conformational space
of these systems, they make it possible to evaluate the per-
formance of the reparameterized force fields in the important
initial process of relaxing and equilibrating experimental
(NMR or x-ray crystallographic) starting structures. Results
in Fig. 8 show that the new force field behaves very well in
all cases studied, providing stable trajectories, with RMSd
from the respective MD-averaged conformations around 1.2
Å, and around 1.6–2.8 Å from experimental structures, the
largest deviations being found in all the cases for the longest
duplexes. Analysis of the 36 trajectories did not reveal any
artifactual behavior or local distortions that might indicate
potential sequence-dependent errors in the simulations (see
Supplementary Fig. S9). We can then safely recommend the
use of parmbsc0 to study any B-DNA duplex.

Can parmbsc0 repair incorrect structures?

Previous simulations show that parmbsc0 leads to a correct
representation of the a/g configurational space in very long
simulations started from a crystal structure without anom-
alous a/g conformations. In fact, transitions to minor a/g
conformers are not avoided but are reversible in the nano-
second time scale (see Fig. 7 bottom), suggesting that the

force field is robust enough to recover from starting struc-
tures containing a few isolated anomalous conformations.
It is, however, unclear what will happen when the MD simu-
lation starts from a very severely distorted conformation
containing many a/g transitions. To evaluate this point, we
performed a series of simulations of the DNA duplex (d(CCA-
TGCGCTGAC)!d(GTCAGCGCATGG)), which should exist
in the B-form in solution, starting with the very corrupted struc-
ture obtained previously by Varnai and Zakrzewska (37) at the
end of their 50-ns-long parm99 force field simulation. The
duplex initially contained 13 anomalousa/g conformers, which
severely distorted the backbone. However, the parmbsc0 sim-
ulation that started with this structure corrected the anoma-
lous conformations within 25 ns in three distinct simulations
(with different initial conditions), leading to samplings close to
those expected for a canonical B-helix (see Fig. 9). Extension
of this trajectory to 100 ns simulation time (data not shown)
confirms that the duplex is maintained in the canonical
region. Similar simulations performed with shorter oligonu-
cleotides (such as d(GCGC)2; data not shown) confirm the
ability of the parmbsc0 force field to correct erroneous NA
conformations. In summary, we can conclude, based on our
validation on a large set of NA structures, that the parmbsc0
force field can safely be used to study canonical B-DNAs
over long temporal scales and is robust enough to recognize
and repair large structural errors while still preserving the
essential flexibility of the duplex, not artificially penalizing
a/g transitions as required for a correct representation of
distorted NAs (for example, those in complexes with
proteins).

Can parmbsc0 be used to represent RNAs?

Considering the changes introduced in parmbsc0 with re-
spect to parm99 and the similarity of a/g potential energy

FIGURE 4 Structures of Dickerson’s dodecamer ob-
tained by averaging the last 5 ns of the trajectories obtained

with parm99 and parmbsc0 force fields. The crystal struc-

ture is shown as reference.
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explaining the pathological behavior detected in parm94/
parm99 MD simulations.

Simulations of Dickerson’s dodecamer

No oligonucleotide has been the subject of more studies,
both theoretical and experimental, than the DD (d(CGC-

GAATTGCGC)2). All the experimental data indicate that it is
a stable duplex pertaining to the B-family, but with sizable
sequence dependence in its helical parameters. Analysis of 12
structures of DD deposited in the PDB (six solved by x-ray
crystallography and six by NMR) show that all sugars are in
South and South-East regions except some cytidines, which
in certain structures sample N regions. All backbones are in
the canonical g!g1 a/g region, without any nucleotide in the
g1t region. The major groove width is around 18 Å, and the
minor groove oscillates between 10 (NMR) and 12 (x-ray) Å.
Hydrogen bonding is well preserved in all experimental
structures, though local distortions of linearity appear. The
average roll is around 0! (x-ray) or 3! (NMR), and the
average twist is 346 3! (NMR) or 356 0.3! (x-ray), with a
clear dependence on sequence (stronger in x-ray-derived
structures; Table 4).
DD has been successfully simulated over the 1- to 50-ns

time scale using parm94 or parm99 (see Introduction), but
longer simulations approaching the 100-ns barrier are scarce
(51). Analysis of Fig. 3 shows that at around 60 ns the structure
of the duplex is severely distorted because of numerous a/g
transitions to the g1t region (Figs. 3 and 4 and extended data at
Supplementary Fig. S3; http://mmb.pcb.ub.es/PARMBSC0).
These transitions, similar to those reported in shorter trajec-
tories (see, for example, ABC simulations), are stochastic in
nature and irreversible on the 100-ns time scale for both
parm94 and parm99 force fields. A few of these transitions
could be tolerated in the duplex, but when they accumulate,
they result in a considerable departure of the structure from
the canonical B-form: lower helical twist (average twist
around 30! (parm94) or 26! (parm99); see Table 4), distorted
grooves, and even the wrong puckering population. Clearly,

TABLE 2 Energies (kcal/mol) relative to the canonical
g!g1 minimum computed at different levels of theory

Geometry Energy g! g! g1 g! g1 g1 g1 t (pathol)

Energy maps B3LYP/6-311G(d) 0.9 0.8 2.4 6.8

LMP26-311G(d) 1.3 0.7 2.2 8.0

Parm99 2.5 3.5 1.9 4.3
parmbsc0 1.4 2.6 2.3 8.1

MP2 /

aug-cc-pVDZ

MP2 /complete

basis set

2.0 2.4 2.7 –

CCSD(T) /complete

basis set

2.1 2.4 2.8 –

Parm99 2.8 4.2 2.0 –

parmbsc0 1.8 3.2 2.0 –

Top entries correspond to the energy minima in the QM maps, and those at

the bottom to geometries reoptimized at the quoted level of theory. The

pathological g1t conformation is not a minimum, and optimization drives

geometry out of the region.

TABLE 3 Force field parameters describing the a/g torsion in
parmbsc0 force field

Torsion No. of dihedrals Vn/2 Phase Periodicity

X-CI-OS-X 3 1.15 0 3

X-CI-OH-X 3 0.5 0 3

X-CI-CT-X 9 1.4 0 3

CT-OS-CT-CI 1 0.383 0 !3
CT-OS-CT-CI 1 0.1 180 2

H1-CI-CT-OS 1 0.25 0 1

H1-CI-CT-OH 1 0.25 0 1
H1-CT-CI-OS 1 0.25 0 1

H1-CT-CI-OH 1 0.25 0 1

CI-CT-CT-CT 1 0.18 0 !3

CI-CT-CT-CT 1 0.25 180 !2
CI-CT-CT-CT 1 0.2 180 1

OS-P-OS-CI 1 0.185181 31.79508 !1
OS-P-OS-CI 1 1.256531 351.9596 !2
OS-P-OS-CI 1 0.354858 357.24748 3
OH-P-OS-CI 1 0.185181 31.79508 !1
OH-P-OS-CI 1 1.256531 351.9596 !2
OH-P-OS-CI 1 0.354858 357.24748 3
CT-CT-CI-OS 1 1.17804 190.97653 !1
CT-CT-CI-OS 1 0.092102 295.63279 !2
CT-CT-CI-OS 1 0.96283 348.09535 3
CT-CT-CI-OH 1 1.17804 190.97653 !1
CT-CT-CI-OH 1 0.092102 295.63279 !2
CT-CT-CI-OH 1 0.96283 348.09535 3

Vn/2 are in kcal/mol, and phase angles in degrees. For atom description see

Fig. 1. Van der Waals and bond and angle parameters involving the new CI

atom are taken from equivalent ones in parm99. A library file containing all
parameters is accessible from http://mmb.pcb.ub.es/PARMBSC0. Note that

we use standard nomenclature in AMBER datafile, where a negative value

of periodicity means that additional Fourier terms for the dihedral will

follow. Values in bold are those that were parameterized here under the
restraint imposed by the other parameters transferred from standard parm99.

TABLE 4 Selected parameters describing an average
Dickerson’s dodecamer (DD) from x-ray, NMR, and MD
simulations (parm94, parm99, and parmbsc0)

Parameter NMR X-ray parm94 parm99 parmbsc0

Average twist 34 6 2 35 6 0.1 30 6 2 26 6 4 33 6 1

Average roll 3 6 1 0 6 0.5 4 6 2 4 6 2 3 6 2

mG-width 12 6 1 10 6 0.2 13 6 2 12 6 1 12 6 1
MG-width 18 6 3 18 6 0.3 20 6 1 21 6 1 19 6 1

% S-puckering ;100 6 0 89 6 5 75 6 16 96 6 5 93 6 6

G ;100 100 85 6 15 98 6 6 97 6 6
C ;100 64 6 16 80 6 18 96 6 8 88 6 12

A ;100 100 56 6 36 94 6 12 94 6 12

T ;100 100 72 6 27 94 6 12 91 6 14

% g! g1 98 6 4 99 6 2 66 6 17 67 6 8 98 6 4
No. H-bonds 26 6 0 26 6 0 26 6 0.3 25 6 1 26.0 6 0.1

% BI in

(BI/BII) Eq.

98 6 4 87 6 3 84 6 8 80 6 6 82 6 7

Rotational parameters are in degrees, and distances in Å. The canonical

g!g1 is defined in regions of a 240–360! and g 0–120!. North is defined
by phase angles smaller than 90!.
No detailed NMR analysis of sugar puckering is provided in DD structures

deposited in PDB. Accurate estimates for a related sequence suggest an

average South population around 81%, with more purines than pyrimidines
in the South conformations (see text for details).
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ABSTRACT We present here the parmbsc0 force field, a refinement of the AMBER parm99 force field, where emphasis has
been made on the correct representation of the a/g concerted rotation in nucleic acids (NAs). The modified force field corrects
overpopulations of the a/g ¼ (g1,t) backbone that were seen in long (more than 10 ns) simulations with previous AMBER
parameter sets (parm94-99). The force field has been derived by fitting to high-level quantum mechanical data and verified by
comparison with very high-level quantum mechanical calculations and by a very extensive comparison between simulations
and experimental data. The set of validation simulations includes two of the longest trajectories published to date for the DNA
duplex (200 ns each) and the largest variety of NA structures studied to date (15 different NA families and 97 individual
structures). The total simulation time used to validate the force field includes near 1 ms of state-of-the-art molecular dynamics
simulations in aqueous solution.

INTRODUCTION

Although the first molecular dynamics (MD) simulations of
proteins were published in the late 1970s (1,2), the first
restrained simulations of nucleic acids (NAs) did not appear
until the mid-1980s (3,4), and reliable unrestrained simula-
tions of these molecules were not possible until the mid-
1990s, when new force fields were developed and methods
for the proper representation of long-range electrostatic ef-
fects were incorporated into simulation codes (5–12). This
time lag illustrates the technical problems intrinsic to the MD
simulation of very charged and flexible polymers, such as
NAs, in aqueous solution.
With these difficulties addressed, the last decade has seen a

wide use of MD to study a very large number of NAs (13–18)
in water for simulation periods in the range 1–50 ns. Most of
these simulations have used explicit models of solvent and
the particle mesh Ewald method (PME) (5) to account for
long-range electrostatic effects. Although others are avail-
able, the force fields implemented in AMBER and CHARMM
have been the most widely used (6–8,10). In particular, MD
simulations using AMBER force fields have been shown to
accurately reproduce the structural and dynamic properties

of a large variety of canonical and noncanonical NAs in
water (13–20). Moreover, they have satisfactorily described
complex conformational changes such as the A / B
transition in duplex and triplex DNAs (21–27) and have per-
formed well in simulations of DNAs in extreme environments
(28–30). Finally, several systematic studies have demon-
strated the excellent ability of the standard AMBER force
field to reproduce very high-level QM data for hydrogen
bond and stacking interactions in the gas phase (31–36).
Overall, these studies suggest that the AMBER force field is
physically meaningful and retains a proper balance between
intramolecular and intermolecular forces.
The latest versions of the AMBER force field, parm94 and

parm99 (6,10), were parameterized when ‘‘state-of-the-art’’
simulations were on the 1-ns time scale and QM calculations
were limited to small model systems and to moderate levels
of theory. Quite surprisingly, both still perform well in
simulations in the 10-ns range, which is the normal simu-
lation period at the present time. However, in an extended
MD simulation of a DNA duplex, Varnai and Zakrzewska
(37) found massive a/g transitions to the gauche1, trans
geometry (away from the g",g1 state), which introduced
severe distortions in DNA in 50-ns trajectories. This ef-
fect, which was later found in other simulations by different
groups, emerged as a general sequence-independent problem
of parm99 or parm94 simulations (see simulations from the
Ascona B-DNA consortium, http://humphry.chem.wesleyan.
edu:8080/MDDNA, and more extensive simulations by our
collaborative groups) (38–40). Fortunately, analysis of data
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Current common MD engines
• CHARMM: Karplus Harvard, http://www.charmm.org/ 

• AMBER: Kollman UCSF, http://ambermd.org/ 

• GROMOS: van Gunsteren, ETHZ, www.igc.ethz.ch/
GROMOS/index 

• DESMOND: Shaw, http://www.deshawresearch.com/ 

• GROMACS: http://www.gromacs.org 

• LAMMPS: http://lammps.sandia.gov 

• ACEMD: http://multiscalelab.org/acemd 

• NAMD: http://www.ks.uiuc.edu/Research/namd/

http://www.charmm.org
http://www.igc.ethz.ch/GROMOS/index
http://www.igc.ethz.ch/GROMOS/index
http://www.deshawresearch.com
http://www.gromacs.org
http://lammps.sandia.gov
http://multiscalelab.org/acemd


Multiscale resolution in modeling

• electrons 

• atoms 

• amino-acids  

• domains 

• mesoscopic to continuum
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Speeding up timescales of Chemical 
Reactions 

• Enzymes enhance the rate of                                      
chemical reactions by several                                          
orders of magnitude (e.g. arginine 
decarboxylase, alkaline 
phosphatase, staphylococcal 
nuclease up to 1014 fold) 

• the transition rate depends on the 
activation barrier 

• and enzymes affect this, not the R 
and P states

Γreactants→products ∝ e−Gbarrier/kBT



MM
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bonds

anglesdihedrals

evaluated with some wavefunction Ψ0, is certainly a function of the nuclear posi-
tions {RI}. But at the same time it can be considered to be a functional of the
wavefunction Ψ0 and thus of a set of one–particle orbitals {ψi} (or in general of
other functions such as two–particle geminals) used to build up this wavefunction
(being for instance a Slater determinant Ψ0 = det{ψi} or a combination thereof).
Now, in classical mechanics the force on the nuclei is obtained from the deriva-
tive of a Lagrangian with respect to the nuclear positions. This suggests that a
functional derivative with respect to the orbitals, which are interpreted as classical
fields, might yield the force on the orbitals, given a suitable Lagrangian. In addi-
tion, possible constraints within the set of orbitals have to be imposed, such as e.g.
orthonormality (or generalized orthonormality conditions that include an overlap
matrix).

Car and Parrinello postulated the following class of Lagrangians 108

LCP =
∑

I

1
2
MIṘ2

I +
∑

i

1
2
µi

〈
ψ̇i

∣∣∣ψ̇i

〉

︸ ︷︷ ︸
kinetic energy

− 〈Ψ0|He|Ψ0〉︸ ︷︷ ︸
potential energy

+ constraints︸ ︷︷ ︸
orthonormality

(41)

to serve this purpose. The corresponding Newtonian equations of motion are ob-
tained from the associated Euler–Lagrange equations

d

dt

∂L
∂ṘI

=
∂L
∂RI

(42)

d

dt

δL
δψ̇!

i

=
δL
δψ!

i

(43)

like in classical mechanics, but here for both the nuclear positions and the orbitals;
note ψ!

i = 〈ψi| and that the constraints are holonomic 244. Following this route of
ideas, generic Car–Parrinello equations of motion are found to be of the form

MIR̈I(t) = − ∂

∂RI
〈Ψ0|He|Ψ0〉+

∂

∂RI
{constraints} (44)

µiψ̈i(t) = − δ

δψ!
i

〈Ψ0|He|Ψ0〉+
δ

δψ!
i

{constraints} (45)

where µi (= µ) are the “fictitious masses” or inertia parameters assigned to the
orbital degrees of freedom; the units of the mass parameter µ are energy times a
squared time for reasons of dimensionality. Note that the constraints within the
total wavefunction lead to “constraint forces” in the equations of motion. Note also
that these constraints

constraints = constraints ({ψi}, {RI}) (46)

might be a function of both the set of orbitals {ψi} and the nuclear positions {RI}.
These dependencies have to be taken into account properly in deriving the Car–
Parrinello equations following from Eq. (41) using Eqs. (42)–(43), see Sect. 2.5 for
a general discussion and see e.g. Ref. 351 for a case with an additional dependence
of the wavefunction constraint on nuclear positions.
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H = HQM + HMM + HQM/MM}
coupling term

QM: First principles Density functional theory MD

MM: Classical molecular dynamics (e.g. AMBER, Gromos force fields)

 QM/MM: - boundary atom (ad hoc monovalent pseudopotential or H capping)
- hierarchical scheme to compute Coulomb interactions

Hybrid QM/MM molecular dynamics

Car, Parrinello, PRL 1985, Laio, Vandevondele, Rothlisberger JCP 2004, Dal Peraro et al., Curr. Opin. Struct. Biol. 2007



CcrA complexed with cefotaxime  

• stable Michaelis complex 
  OH-β-lactam distance=3.3(2)Å 
   during 5 ns MD and 20ps QM/MM 

• Zn2-bound WAT is the 
  only water between the 
  zinc center and CEF in 5Å 

➡Classical force-field based MD is 
used as a tool to sample 
conformational space within the 
nanosecond timescale 

 

Reactant state

Text

Zn1Zn2

Asp120

His263

His116

His118

His196

Cys221

CEF  
(cefotaxime)

Asn233

OH

WAT
dRC

Thermodynamic integration along the reaction coordinate dRC 
DFT-BLYP, Martins-Troullier PPs, 70 Ry cutoff,  
Nose’ thermostat at 300 K,  
2 reactions pathways for a total of ~150 ps trajectory

CcrA MβL from Bacteroides fragilis 



• OH- loses Zn2 coordination 
• Zn1, Zn2 flexibility  
• WAT  protonates β-lactam N 
• N-C β-lactam bond breaks 
•  WAT replaces OH- as an hydroxide 

• ΔF = 18(2) kcal/mol  is in good 
agreement with experiments  
• if Asn233 does H-bond β-lactam: 
formation of a high unfavorable 
intermediate (Path II) 
 

water-mediated single-step

Asn233

Zn1Zn2

Asp120

His263

His116

His118

His196

CEF*

OH-WAT

Path I 
Path II

... from transition state to products

Dal Peraro et al., JACS 2007
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Coarse-graining degrees of freedom

• CG is the process of consistently reduce the complexity of 
your problem integrating out degrees of freedom which 
can be in principle neglected for your system.  

• the CG process implies a simplification of your potential 
that is not always rigorous and includes approximations 

• what you obtain is an effective potentials which is 
parametrized to reproduce given properties

VQM → VMM → VCG−MM → Vmesoscopic



Coarse-graining degrees of freedom
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VCG
• CG FF models are not topologically 

biased on the native structure 
• softer interactions allow for longer 

timestep in MD simulations 
• sampling on the millisecond timescale 
• accuracy can be a problem (e.g. no 

explicit electrostatic contribution) 
• biases on the secondary structures

Coarse-grained force fields



Coarse-grained MARTINI FFMapping atoms onto CG sites

Validation: antimicrobial peptides
can form toroidal pores

Magainin H2 in a DPPC bilayer, at low concentration (a) and high
concentration.

Magainin H2 in a DPPC bilayer, at low concentration (a) and high concentration

Monticelli et al, JCTC 2008 
Klein and coworkers 

• MARTINI CG FF has functional 
form similar to MM FF 

• 4-to-1 mapping from MM to CG 
• very convenient for membranes 

and peptide-membrane 
interactions





arXiv:2310.18278v1 [q-bio.BM] 27 Oct 2023

New directions
universal and computationally efficient machine-learned CG model for proteins

Fig. 1 Conceptual illustration of the pipeline for building and testing a transferable, bottom-up,
machine-learned, CG protein force field from a diverse dataset of all-atom simulations, a chosen
CG resolution, and a set of basic physical prior energy terms (bonds, angles, dihedrals, and purely
repulsive interactions).

prior energy term. Control simulations with only the prior energy term only visit the
unfolded state (SI Fig. S5).

For all four fast-folding proteins, the CG model predicts metastable folding and
unfolding transitions, i.e., both folded and unfolded states have a free energy minimum.
The folded states are predicted with a fraction of native contacts Q close to 1, and low
RMSD values, closely resembling the correct native state (Fig. 2). Interestingly, for
CLN025, the model is also able to stabilize the same misfolded state with misaligned
TYR1 and TYR2 residues as found in the reference atomistic simulations (see Fig. 5
below).

For 3 of the 4 proteins in Fig. 2 the free energy basin containing the native state
is the global minimum, while for protein BBA it is a local minimum, indicating that
all proteins are able to fold/unfold correctly. However, the relative free energy di!er-
ence between the folded and unfolded states does not exactly match those from the
reference atomistic free energy surfaces. For Chignolin, Trpcage and Villin the model
performs much better than for BBA. BBA contains both helical and anti-parallel beta-
sheet motifs, and the di”culty of correctly stabilizing its folded state with CG models
has been reported in previous works [37, 60] using bottom-up or partially bottom-up
approaches, often with concern that the stabilization of beta sheets requires specific
higher body-order terms in CG models [61]. While Fig. 2 focuses on the folding/un-
folding pathway as shown in the collective variables RMSD and fraction of native

5
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Fig. 3 Extrapolative performance of CGSchNet on two large proteins withheld from the training
and validation sets. For each protein, the carbon-alpha root mean square fluctuations of the folded
state to the crystal structure are shown and compared to the ones of the reference (AMBER) all-atom
simulations. An exploration of the free energy surface as a function of the fraction of native contacts,
Q, and the carbon alpha RMSD to the native state, obtained through PT simulations is represented.
Furthermore, a folding trajectory starting from a completely elongated structure is shown, together
with structures illustrating folding and a comparison with the crystal structure (gray). a) 54-residue
Homeodomain (PDB code 1ENH), b) 73-residue alpha3D (PDB code 2A3D). For the computation of
the RMSF of the CGSchNet model, a window of a trajectory staying folded for more than 1 million
MD steps was chosen. More details can be found in the SI.
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