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Outline of lecture 8:

 energy minimization techniques
e steepest descent
e conjugated gradient

e introduction to Molecular Dynamics (MD)
e Initialize the system
* integration methods
e choosing the correct time-step
e calculation of relevant quantities
e free-energy sampling
e state-of-the-art of MD simulations
e current limitations



Paradigm in Structural Biology
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seguence

molecular structure predi_ction thermodynamics
modeling ab Initio folding kinetics

- knowledge-based: structural databases
- first principles: ihZU(R,t) = HU(R, )



What we need for modeling at the
molecular mechanics (MM) level

For a molecular simulation or modeling one needs:

1. a representation of the biomolecules at a certain level
of resolution (i.e. initial conditions)

2. a functional form for the potential energy for molecular
mechanics (MM)

3. a search algorithm or optimizer/minimizer
(minimization can be used to find favorable regions in
the conformational space; sampling techniques to
compute dynamics and thermodynamic quantities)



Molecular mechanics potentials

e molecular mechanics (MM) potential energy gives
minimum-energy conformation of a molecule

® pbased on physics, but uses simplified "ball-and-spring”
models (classical physics, Newton equation), which
mask the quantum nature (Schrodinger equation)

® are empirical, I.e. calibrated to describe the quantum
nature of chemical bonds and short-range interactions

UMM Ubanded + Unan bonded

{ Ubanded — Ubond angle Utarsion

Unon—bonded — Uelectrostatz’cs 1 UVdW




Empirical potential energy function

® large number of parameters fitted to represent experimental data
or QM calculated quantities (usually structure and thermodynamic of
small molecules)

® “trial and error” or least-squares fitting methods to converge to a
consistent set of parameters

® coupling/correlation between parameters, thus parameterization of a
force field (FF) is a global task

® assumption that parameters can be transferable to different
contexts (specialized vs. generalized FF)



MM empirical potential




Optimization

e |t IS a central problem In every science
® it can be final goal of modeling
® or starting point for more advanced calculations

¢ in chemistry and biology: determination of the low-
energy conformation for a given energy function U(r)

¢ but also the search for (1.
maxima associated with geLA P R}
chemical reactions, etc, Fea"a

® In general used to describe
the energy landscape of a
system

“7 Chandler Lab, Berkeley




Energy minimization

® global and local minima of a function f(x)
e stationary points: minima, saddle points, maxima

® landscape for a energy function f(x)=U(r)
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Minimization algorithms

® can make use of derivatives of U(r) or not

® quick answer, less time, less memory
® choice of method is problem-dependent
® most methods go downhill, multi initial starting points

e combination of experimental inputs and models for
generating more Iinitial states

® no method can surely locate
global minimum from an
arbitrary starting position




Derivative minimization methods

® direction of the gradient gives direction B (o
search for the local/global minimum

e magnitude of the gradient gives the —
steepness of the local slope

® 1st and 2nd order methods (also Ot order methods)

® Taylor expansion of real U(x) introduces approximations
U(x) =U(xk) + (x — x1)U' (xx) + (x —xx)" - U7 (xx) - (x —xx)/2+ ...

U'(xx) =gk 9i(x) = 0f(x)/0z; e gradient

U (xx) = H; j(x) = 0° f(x)/0z;0x; ¢ hessian or force
constant matrix



First-order methods

o Steepest descend (SD): move in the direction parallel to
the net force (downhill), i.e.

',IFIJ -

_ | _|l'.. - .I -4 — .'! .
Sk — _gk/|gk| \\\\HA

® how long should be the step along the gradient?



First-order methods

® 1. line search: bracket the minimum; gradient at the
minimum will be orthogonal to the previous direction

| gk 8k-1 =0
e 2. arbitrary step: Xkx+1 = Xk + AxSk
consistently increased or reduced to minimize energy

® SD is good to relieve high-energy features, very robust
far from minima, it has problems when close to them



Convergence criteria

® true minimum is difficult to reach for any method

® consider machine precision: 1+¢,, =1
(double precision ~10-15, single precision 10-7)

® need for a convergence threshold to stop search

® monitor the energy drop and decide a threshold for
energy between successive steps, or monitor change in
coordinates, or the maximum value of the gradient in
every dimension

® depend on the step following minimization, it can be
more or less stringent



Caveats

® use different starting points; perturb your structure or
use different models or experimental structures

e Use different methods, and combination of methods
® use different force fields (e.g. for small molecules)

® check hessian eigenvalues (close to minimum all are
positive, apart 6 zero terms)

® check artefacts from non-bonded cutoff methods

® use Monte-Carlo or heuristic search alternatively



Molecular Dynamics

® the motion of the particles is realistic, MD is able to get
iInformation about the mechanistic aspects of
transformations undergone by the system (e.g., the
mechanism of a chemical binding or the folding kinetic of
a polymer).




Statistical mechanics in a nutshell

® relates microscopic to macroscopic observables

® gives a probability to find a given microstate with energy E;

1
p(E;) = Ee_Ei/kBT

N
7 — E :6—Ei/k’BT
1=1

¢ p(E;) follows the Boltzmann distribution
® / is called partition function (normalization)

® key thermodynamic quantities can be computed

(F) = Z Eip(E;)



Statistical mechanics

® Wwe can express thermodynamic function in term of Z

N
__ 1 —FEi/kT _ 1 0 _ 0
<E>—Z;Eze =352 = 957
e or Gibbs free energy: G = —kgTInZ B3 = |
k'l

® derivation from second law of thermodynamics: dS>0

® maximization of Shannon entropy with the physical
constraint, average E is constant by effect of thermal bath

S5 = — Zpilnpz' — lzpz — 1] —p [Z%Ez — (b))




Molecular Dynamics

® the motion of the particles is realistic, MD is able to get
iInformation about the mechanistic aspects of
transformations undergone by the system (e.g., the
mechanism of a chemical reaction or the folding kinetic
of a polymer).

® MD trajectories can be directly used to obtained
thermodynamically averaged quantities
(ergodic theorem: trajectory followed by a dynamical
system explores the phase space according to its
statistical probabillity):

T
©) = 577 [ OUpkAah)e ™ PHDar = timy e 72 [ O(s(t))a



Newton’s laws of motion

® 1. a body rests or moves at constant velocity unless a
force acts upon it

e 2. force equals the rate of change of momentum (F=ma)
® 3. to every action there Is an equal and opposite reaction

® thus the trajectory of a particle is obtained by solving the
differential equations derived from the Newton's law
(equations of motion):




Integrating the equations of motion

® using realistic potentials the force on each particle x;

(i=1,....N) changes whenever it moves (motion is
coupled to all particles in the systems)

® need for finite difference methods to solve numerically
the equations of motion

® the integration Is broken down into many small steps,
each of them separated by a fixed time, oz (timestep)

¢ flow diagram for MD:.

Give atoms intial positions r choose short Al

® fO rce CaICU IatiOn iS the '-". Get forces F = - \ 'L"'."r Jand a = F/m
mOSt CpU'demandlng Step Move atoms. r’ =ri WAL+ @ A+
® \Va rlOUS |nteg rato rs tO A Move time for.;atd t=t+Al

prO pag ate atOm |C pOSlthnS —“ Repeat as long as you need




Svstem initialization

® positions are derived from an experimental source (X-
ray, NMR, etc.), or from a homology-based model that has

been previously prepared and minimized

® velocities are assigned using a Boltzmann distribution:

( ) T —mfua%
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® (v°) =3kgT/m : equipartition theorem (ksT/2 per DoF)
® from the velocities you have a way to measure the

temperature T of your system



Force calculations

¢ from the potential U(r), you can calculate forces and
acceleration on the N atoms of your system:

Fi - 8U(r1, cees I‘N)

Bri IC{«
e for instance, for the LJ potential part:

I' oo 0' ]- 3 O- 7 H‘x
I'; ] (¥ J T, J J

® once you have the force contribution for each atom you
can calculate its trajectory till the next timestep




Intearation methods

® all use positions, velocities and accelerations of
particles, and approximate them as a laylor series:

r(t 4+ 6t) = r(t) + o6tv(t) + 1/26t%a(t) + 1/65t°b(t) + 6t c(t) + ...
v(t +0t) = v(t) + dta(t) + 1/26t°b(t) + 1/66t°c(t) + ...
a(t + 0t) = a(t) + 6tb(t) + 1/25tc(t) + ...

® Verlet algorithm (1967) is the most widely used method
for MD:

r(t + 0t) = r(t) + dtv(t) + 1/25t%a(t) + ...
r(t — 6t) = r(t) — 6tv(t) + 1/25t%a(t) — ...




Verlet algorithm

r(t 4+ 6t) = 2r(t) — r(t — 5t) + 6t*a(t)

® uses positions at time (¢ - or) and accelerations, but no
velocities, which can be derived from positions:

v(t) = |r(t 4+ 0t) — r(t — 0t)|/20t
® casy implementation, memory needed is modest

e §t°a(t)is a small term, which can lead to loss of
precision (i.e. no conservation of energy)

® velocity calculation Is postponead

® it is not a self-starting algorithm



Velocity Verlet

e |t glve positions, velocities and accelerations at the
same time and does not compromise precision

r(t + 6t) = r(t) + dtv(t) + 1/25t=a(t)
v(t + 6t) = v(t) + 1/28t]a(t) + a(t + 6t)

® 3-stage calculation: first positions at (¢+o0¢), then forces
at (r+0t) and finally velocities at (1+0t)

e Leap-frog is another common algorithm, where position
and velocities are not synchronized though

® poth are time-reversible and symplectic integrators


http://en.wikipedia.org/wiki/Symplectic_integrator

Choosing the integrator

® importance of energy conservation:

E~cost; H=T+U in the microcanonical ensemble
(NVE constant)
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® as timestep increases, energy RMS fluctuations
iIncrease (tolerance: AE/E~10-4)

® for a given timestep, the drift of energy in short or long
trajectory can vary for different algorithms



Choosing the timestep

® timestep (or) Is crucial for MD: need for a compromise

® too short: the trajectory will cover only a limited region
of the phase-space

® too large: integration of the equations of motion will
produce instabilities and failure in energy conservation

® rule of thumb: 0.1%(shortest motion time in the system)

@,

L

P




Choosing the timestep

® in practice for biomolecular systems o¢~1 fs

(shortest motion is bond fluctuations involving H atoms,
for instance C-H bond: ~10 fs)

® multiple time step integration (RESPA), or freezing of
fast fluctuations (all H-X or X-Y bonds with SHAKE,

RATTLE, etc.) will permit a or~2 fs

Internal Motion Timescale
L | seconds]
| Light-atom bond stretch RN WE |
| Double-bond stretch b 2x 1071 I
| Light-atom angle bend | 2x 101 i
| Heavy-atom bond stretch 3 B it NS
| Heavy-atom angle bend : g 1 |
- Global DNA twisting o =0 | i T e |
| Sugar puckering (nucleic acids) i 10 10" |
. Collective subgroup motion (e.g., hinge bending, | f
j allosteric transitions) 10~ H4-10~ 1
| Surface-sidechain rotation (proteins) 1104110710 |
| Global DNA bending || 10~ Y=10"" i
- Site-juxtaposition (superhelical DNA) T i |
\ Interior-sidechain rotation (proteins) | 10~ "1 [
: ljmln:in folding ALl At N til____mlj},,, 3




MD ensembles

® microcanonical (NVE), but thermodynamic variables T
and P are more convenient, they are usually closer to
the experimental setup

® in (NVE) from kinetic energy you can calculate T-:

—_~

7 al m;v; 3NkpT | — 2 ;3
=) =
i=1

2 2~ 3 Nkp
e statistical ensembles connect microscopic to
macroscopic quantities: canonical (NVT, Helmhotz free-

energy); isothermal-isobaric (NPT, Gibbs free-energy)

® use of thermostats or barostats allows to control other
guantities and to produce the appropriate ensemble



NVT: coupling thermostat

¢ rescaling of velocities: Vn+1 = CTVnj CT = Vv To/T

® more gently approach coupling to a thermostat of given
temperature T, using a fictitious frictional coefficient
(Berendsen)

mzvz(t) — —VU(XZ(f)) — %mivf,;(t)

1 T() 0t T()
— 1 —
T 2T ( T) T \/1 T (1 T)
® the t constant controls the strength of the coupling: when
large (>1ps), cr~1 (no scaling, microcanonical) when
small (<0.01ps), the energy exchange between the

system and the thermal bath is very significant (but this
does not rigorously produce a canonical ensemble)




Canonical NVT ensemble

¢ extended system methods to produce rigorously
thermodynamic ensemble

® additional degrees of freedom to the system H
(e.g. Nose -Hoover)

1 ~
HNVT — T—|— U—|— §(mt<t2) —FN]CBT()ZCt

mzvz(t) — —VU(Xz(t)) — Ctmz-vi(t)
miC,(t) = 2m;v2(t) — NkgT,

® x; IS the effective scaling parameter, ; is the friction

coefficient, m; Is a fictitious mass (control the rate of the
thermalization process)



NPT ensemble

® more practical ensemble, closer to experimental setup

® controlling pressure, It Is possible to equilibrated density
of your system to target values (e.g. 1 g/cms3 for water)

® scale the volume or couple a pressure bath:

dP(t 1
d( ) = — (Ppath — P(1))
5 Ty
ot
A= 1 7_, (P(t) — Pbath) , Tin41 — Al/gri,n

p
® scaling can be applied isotropically or anisotropically

® extended methods to produce rigorous version of the
Isothermal-isobaric NPT



MD setup and production

® check and prepare your system (starting from
experiments or predictions)

® define the simulation cell, solvate, add physiological

concentration of salt (e.g. 150 mM of NaCl)

® minimize the energy to relax possible initial frustrations

e gradually heat up the system to desired T

T . 1o Heating ~ Equilibration ~ Production
e equilibrate first the solvent, ©~ = - |
- " E. l ",;::f,,'-s
light atom, then the side _ i
O _ 3
" . o ' o I
chains, finally the o i-
_ x_ e "ET — R G e e S S b - :; 1-
backbone of your protein g e e :
5 Z |
o B . - “‘ Jp ol ~ —
® complete equilibration and %" LSS |
enter in production mode -~ T | [aaed
R 5 PSSR ) B
B 7SN+ BRSOl g
IO s TR TR T2 TR0 AR T 40 45 B0 —l L Sl

Time (ps)




Ewald methods

® used for calculating electrostatic energy of systems in
periodic boundary conditions (unit cell charge = 0)

* minimum-image convention: each atom interacts with
the closest periodic image of the other N-1 atoms

e different unit cell lattice geometry

e use of fast fourier transforms to compute the
electrostatic energy In the real and reciprocal lattice
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Deviation and fluctuation from reference

® Root mean square deviation, RMSD .

1 N
RMSD = \ ~ ;(m — ;)2

RMSD (nm)

® Root mean square fluctuations, RMSF

1 1
RMSF:\TZ _Tz

t=1

RMSF?* = (u?)

r

8 2
B— 73T RMSF?

atomic fluctuation ~0.25-0.60(A) L1 L3 N e TR



Radial distribution function

® radial distribution function g(r): describes the
structure of a system (e.g. liquid water)

V =4/3w(r + dr)’ — 4/3mr>
— A2 dr 4+ 4mrdr® + 4/37757°3 ~ AT

e if the number of particles per unit volume is p,
then the total number in the shell is 47 pr“6r

® g(r) gives the probability to find an atom ata *|
distance r from another atom (normalized to |
the ideal gas distribution)

® can be measured experimentally
with X-ray diffraction

® coordination number: () _ 47Tp/g(r)r2drf'




Time-dependent properties

® correlation function between x and y dataset can be
extracted from MD trajectories

— A szyz — zyz

® if normalized you obtain data in [-1,1] range and w.r.t. mean

50 100 150 200 250 300



Sampling the free enerqgy landscape

® reaction coordinates, barrier crossing: AG or AF

® {0 cross a free-energy barrier: 7 = rgexp(AG/kgT)
with o ~10-12 s: I.e. 1 kcal/mol barrier can be explored in
~ps; 5 kcal/mol in ~ns; 10 kcal/mol us or longer

® rule of thumb: sampling should exceed timescales of
interest by ~10-fold.



X-ray crystallography

{Cﬁi,yi,zi}i:L...,N

(human acyl-protein thioesterase)



solvation

molecular modeling pH

and simulations post-translational modifications

Interactions network

1zi(t), i (t), zi(t) fi=1,....N temperature effects (ks T)

Laboratory for Biomolecular Modeling - LBM, http://lbm.epfl.ch


http://lbm.epfl.ch




State-of-the-art of molecular simulations

e up to 102 millions of atoms (e.g. viruses, ribosome)

ROQ. - T
PRI, capsid

L b v Zhao et al. Nature, 497:643-646, 2013
M o @Jfffffmm http://www.youtube.com/watch”?v=pupVZI34 7HO

feciuron It tute

University of Binoks at Urbana-Chamoa igs k\ \ - 4 A \U ‘(""' - . -J‘
TN R T L T e | )\ W P A
James Gumbart, et al. AL el ” . ¥ )
. e "' V - » X & \ .
e - e .t' L £ - ; . ‘,
. N 4 AN i

Structure, 17:1453-1464, 20009.

drug binding

protein on a kinase

translocation



http://www.youtube.com/watch?v=pupVZl347H0

.’pen Splke RBD “open”

Molecular mechanism of SARS-CoV2

46


https://www.youtube.com/watch?v=gDtTsP9-TrQ

State-of-the-art of molecular simulations

Whole-cell Martini
model of JCVI-syn3A.
The four stages of cell
building are shown on
the side. The final
system contains 60,887
soluble proteins (light
blue), 2,200 membrane
proteins (blue), 503
ribosomes (orange), a
single 500 kbp circular
dsDNA (yellow), 1.3
million lipids (green),
1.7 million metabolites
(dark blue), 14 million
jons (not shown) and
o P 00 B A o o o 447 million water beads
[ Ferssnunensess®™ ; N : ::"_". - b .{f*' ; (n ot show n) for a total
Rl et ey of 561 million beads
representing more than
six billion atoms.

@ Membrane Proteins
@® Cytosolic Proteins

Chromosome
® Ribosomes {7
@ Metabolites Aoteiis
O Lipids  ASESEE

;

https://doi.org/10.3389/fchem.2023.1106495



State-of-the-art of molecular simulations

e up to the millisecond timescale

5315 ns 5384 ns 5458 ns

villin foldin 0  Freddolino, et al.. Biophysical Journal, 94:L75-L77, 2008.

Voelz et al. J. Am. Chem. Soc., 2010, 132, 1526  http://www.youtube.com/watch”?v=gFcp2Xpd29|


http://www.youtube.com/watch?v=gFcp2Xpd29I

High-Performance Computing (HPC) resources

KUMA - EPFL HPC - 12 PetaFLOPS HPC@EPFL BlueGene/P

o200

http://www.top500.org/lists

CSCS ALPS- 435 PetaFlops Anton D.E. Shaw Research


http://www.top500.org/lists/

Current limitations of MD simulation

® approximations and errors inherent to any force field
® systematic errors related with algorithm precision

® calculations of free energy differences are still very
difficult to converge

¢ time scale and sampling problem — statistical error:
conformational transitions that require >10 ys cannot be
easily simulated by conventional molecular dynamics
techniques (this is related to sizescale as well)

® some solution for sampling: enhanced sampling

techniques, MD with implicit solvent (approximate) —
Brownian dynamics — Monte Carlo, coarse-grained
MD (see in the next lectures)




MM FF limitations

¢ transferabillity
® accuracy of parametrization
® functional form (e.g. can add polarizability)
Lind = ol o : polarizability
or many-body terms
® many different force fields (specific vs. generalized)
® gapproximation in treating long-range interactions

® can be expensive for very large systems (e.g. ~106 atoms)



Failure of a force field

® enhanced computer power allows
to run longer MD simulations, and
to discover failures in the models

CH
2’ 3
C3’{(n-1}
Cr’
120
& 100 r
‘E -J__l.rIIIII-F. ..' .
E £2O0 WL il -
= 60 . : b | | . o~ . -”- .: L '_':nummum
m | | B CIN AT
~ 40 . I'I I
= b
E'ﬂ‘ 20
O
© 50 100 150 200
time (ns)
Biophysical Journal Volume 92 June 2007 3817-3829 3817

Refinement of the AMBER Force Field for Nucleic Acids: Improving the
Description of a/y Conformers

Alberto Pérez,*! Ivan Marchan,*" Daniel Svozil,*Y Jiri Sponer,®¥ Thomas E. Cheatham III,!
Charles A. Laughton,** and Modesto Orozco*T-11

TABLE 3 Force field parameters describing the a/y torsion in

parmbscO force field

parm99

parmbsc(

Torsion No. of dihedrals Vn/2 Phase Periodicity
X-CI-OS-X 3 1.15 0 3
X-CI-OH-X 3 0.5 0) 3
X-CI-CT-X 9 14 0 3
CT-OS-CT-CI 1 0.383 0 —3
CT-OS-CT-CI 1 0.1 180 2
H1-CI-CT-OS 1 0.25 0 1
H1-CI-CT-OH 1 0.25 0 1
H1-CT-CI-OS 1 0.25 0 1
H1-CT-CI-OH 1 0.25 0 1
CI-CT-CT-CT 1 0.18 0 —3
CI-CT-CT-CT 1 0.25 180 —2
CI-CT-CT-CT 1 0.2 180 1
OS-P-OS-CI1 1 0.185181 31.79508 —1
OS-P-OS-CI1 1 1.256531 351.9596 —2
OS-P-OS-CI 1 0.354858 357.24748 3
OH-P-0OS-CI 1 0.185181 31.79508 —1
OH-P-0OS-CI 1 1.256531 351.9596 —2
OH-P-0OS-CI 1 0.354858 357.24748 3
CT-CT-CI-OS 1 1.17804 190.97653 —1
CT-CT-CI-OS 1 0.092102 295.63279 —2
CT-CT-CI-OS 1 0.96283  348.09535 3
CT-CT-CI-OH 1 1.17804 190.97653 —1
CT-CT-CI-OH 1 0.092102 295.63279 —2
CT-CT-CI-OH 1 0.96283  348.09535 3




Current common MD engines
¢ CHARMM: Karplus Harvard, http://www.charmm.org/

e AMBER: Kollman UCSF, http://ambermd.org/

¢ GROMOS: van Gunsteren, ETHZ, www.igc.ethz.ch/
GROMOS/Iindex

e DESMOND: Shaw, http://www.deshawresearch.com/

e GROMACS: http://www.gromacs.org
o LAMMPS: http://lammps.sandia.gov

e ACEMD: http://multiscalelab.org/acemd
® NAMD: http://www.ks.uiuc.edu/Research/namd/


http://www.charmm.org
http://www.igc.ethz.ch/GROMOS/index
http://www.igc.ethz.ch/GROMOS/index
http://www.deshawresearch.com
http://www.gromacs.org
http://lammps.sandia.gov
http://multiscalelab.org/acemd

Multiscale resolution in modeling

® clectrons

® atoms

® amino-acids

® domains

® mesoscopic to continuum
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Speeding up timescales of Chemical
Reactions

Pet

® Enzymes enhance the rate of
chemical reactions by several
orders of magnitude (e.g. arginine
decarboxylase, alkaline
phosphatase, staphylococcal
nuclease up to 1014 fold)

o

free energy (kgT)
b

I
(o))

|
oo

reaction coordinate (x)

N R, @
Hg N \ i g
® the transition rate depends on the (Q/ ¢ & @ @//‘ D
activation barrier ROl (Chut O N (OhuuatC)
ENZYME PRESENT
- G b arrier / k B T Figure 3.24b Physical Biology of the Cell (2 Garland Science 2009)

Freactants—>products X €

<— lysozyme turnover rate, =~ 0.5 s’
1

® and enzymes affect this, not the R
and P states

103

enzyme turnover times

<— carbonic anhydrase turnover rate, = 600,000 s
10°°



Hybrid QM/MM molecular dynamics

H=Hgov +Hym +Hoyvvm
w_/
coupling term

QM: First principles Density functional theory MD

Lop = Z ~MR? —I—Z ,u@< ¢i>— (Wo|He|Wo) 4+  constraints
! potential energy Orth()normality

kinetic energy

MM: Classical molecular dynamics (e.g. AMBER, Gromos force fields)

QM/MM: - boundary atom (ad hoc monovalent pseudopotential or H capping)
- hierarchical scheme to compute Coulomb interactions

Car, Parrinello, PRL 1985, Laio, Vandevondele, Rothlisberger JCP 2004, Dal Peraro et al., Curr. Opin. Struct. Biol. 2007



CcrA ML from Bacteroides fragilis

Reactant state

CcrA complexed with cefotaxime

- stable Michaelis complex
OH-B-lactam distance=3.3(2)A
during 5 ns MD and 20ps QM/MM

« /Zn2-bound WAT is the
only water between the
zinc center and CEF in 5A

= (Classical force-field based MD is
used as a tool to sample

conformational space within the

Thermodynamic integration along the reaction coordinate drc

DFT-BLYP, Martins-Troullier PPs, 70 Ry cutofft, nanosecond tlmescale
Nose’ thermostat at 300 K,

2 reactions pathways for a total of ~150 ps trajectory



. from transition state to products

« OH- loses Zn2 coordination

« Zn1, Zn2 flexibility

- WAT protonates [3-lactam N

* N-C [3-lactam bond breaks

« WAT replaces OH- as an hydroxide

« AF = 18(2) kcal/mol is in good
agreement with experiments

e if Asn233 does H-bond 3-lactam:
formation of a high unfavorable
intermediate (Path Il)

—_ S0FT
8 [ ---Pathll INT
210 L
T NP
< 0
_ _ 34323282624222181614
water-mediated single-step Ao / A

Dal Peraro et al., JACS 2007
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Coarse-graining degrees of freedom

® CG is the process of consistently reduce the complexity of
your problem integrating out degrees of freedom which
can be in principle neglected for your system.

VQM — VMM — VCG—MM — vmesoscopz’c

® the CG process implies a simplification of your potential
that Is not always rigorous and includes approximations

e Wwhat you obtain is an effective potentials which is
parametrized to reproduce given properties



Coarse-graining degrees of freedom




Coarse-grained force fields

* CG FF models are not topologically
biased on the native structure

e softer interactions allow for longer
timestep in MD simulations

e sampling on the millisecond timescale

® accuracy can be a problem (e.g. no
explicit electrostatic contribution)

* biases on the secondary structures

top view




* MARTINI CG FF has functional
form similar to MM FF

* 4-to-1 mapping from MM to CG

* very convenient for membranes
and peptide-membrane
Interactions

Monticelli et al, JCTC 2008
Klein and coworkers

. N 4
'

-

(* 3:
"3/‘\7 .co.‘,: .,‘ .

Magalnln H2 in a DPPC bllayer at low concentration (a) and hlgh concentratlon
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COMMENTARY S ARTICLE SERIES: IMAGING

Computational ‘'microscopy’ of cellular membranes

Helgi I. Ingolfsson, Clement Arnarez, Xavier Periole and Siewert J. Marrink*

Quantum

- atoms, electrons and electron
clouds included

- explicit solvent
- quantum mechanics

All-atom
- all or most atoms present

- explicit solvent
- molecular dynamics

Coarse-grained
- beads comprising a few atoms

- explicit or implicit solvent
- molecular dynamics

Supra-coarse-grained

- interaction sites comprising
many atoms, protein parts
or proteins

- implicit solvent
- stochastic dynamics

IM  Matrix

Continuum

- materials as a continuous mass
- implicit solvent

- continuum mechanics

] RN

IMS



New directions

universal and computationally efficient machine-learned CG model for proteins

Diverse All-Atom Physical ssez::r:: S:i‘::g
Protein Simulations Constraints Learned CG Force Field
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CG Mapping Graph Neural Network & Comparison with
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arXiv:2310.18278v1 [g-bio.BM] 27 Oct 2023
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universal and computationally efficient machine-learned CG model for proteins
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