Sensory systems:
audition eari o)

~

'v

W

Prof. Pavan Ramdya

Reading: Purves Chapter 13 (pp 281 - 298)
BIO-311

Image source: https://www.soundhearingnow.com/hearing-blog/what-is-high-frequency-hearing-loss



What are the sensory systems?



The different sensory systems enable different kinds of percepts
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The different sensory systems enable different kinds of percepts

Nociception (sense of pain)
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The different sensory systems enable different kinds of percepts

Gustation (sense of taste)

Detecting contact
with chemicals and
molecules

Purves, Figure 15.20
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The different sensory systems enable different kinds of percepts

Olfaction (sense of smell)
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The different sensory systems enable different kinds of percepts

Vision (sense of sight)
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The different sensory systems enable different kinds of percepts

Audition (sense of hearing)

%)

Detecting airborne
pressure waves

Purves, Figure 13.4
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The different sensory systems enable different kinds of percepts

Proximal (near) sensing Distal (far) sensing
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What is sound and what can we hear?



What is sound?

Condensation and Rarefaction of air molecules

. Wave®
ceﬁ"ﬂc S
Tuning co®

fork

A pure tone is a periodic oscillation
of air pressure at a single frequency

Sinusoidal wave

Air

pressure /QVAV/\VA\J Characterized by amplitude (dB) and frequency (Hz)

Normal atmospheric pressure

Distance —
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Complex sounds like speech and music

(A) Speech
6

Frequency
(kHz)

Frequency
(kHz)

« Complex sounds are a superimposition of numerous "pure" sounds
« This superimposition of various sine waves is decomposed by the inner ear

Purves, Figure 13.3
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The intensity and frequency range of hearing in humans
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What is the structure of the ear?



The outer and middle ear transmit sound wave energy to the inner ear
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The inner ear’s cochlea

Cross section of cochlea
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Cochlea: Organ of Corti

Tectorial
membrane

. Stereocilia
Organ of Corti
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Stereocilia of Stereocilia of
inner hair cells outer hair cells

Hair cells are located within
the Organ of Corti,
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How is sound mechanically transmitted to the inner ear?



Sound energy transmitted from the middle ear via the stapes produces
a "travelling wave" in the cochlea

The location of the maxima of the "traveling wave"
depends on the sound frequency

Base of basilar
membrane is “tuned”
for high frequencies.
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Location of maximum activity on the cochlea depends on sound frequency
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How are these sound waves
transformed into electrical potentials?



Basilar membrane movement creates a shearing
force that bends hair cell stereocilia

(B) Sound-induced vibration

(A) Resting position

Pivot points for tectorial
and basilar membranes
are offset.

Purves, Figure 13.7



The structure and function of the hair bundle
In cochlear and vestibular hair cells
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The "primary sensory transduction” process in inner hair cells

Signalling events in the inner hair cell (IHC):
« Stereocilia bend

» Tip links stretch

» Transduction channel opens

Note: the mechanosensitive ion channel;
cation-selective hcMET channel is unknown!

» Depolarization of IHC (Scala media high K*!)
« Ca?* channel opening at the base of the IHC
e Local Ca?* influx,

« Transmitter release at the base

Purves, Figure 13.9
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Proteins and structure of the ribbon synapse in inner hair cells
(compared to regular CNS excitatory synapses)
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Inner hair cells (IHCs) of the cochlea have ribbon-
synapses to release glutamate

"Ribbon-type synapses" are also found in photoreceptor cells
and bipolar cells of the retina to release glutamate

These neurons have another commonality: graded membrane
potential (V,,) signaling, and no action potentials
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Receptor potentials generated by a
single IHC in response to pure tones

Methods:
» Guinea pig, in-vivo intracellular recording of inner hair cells
» Pure sound stimulation 80 dB, at indicated frequency

Note:

(1) "Phase locking" of IHC
membrane potential at up to ~2 kHz

(2) Hair cells do not generate APs

(3) For sounds above 2 kHz,
frequency is only encoded by “tonotopy”

Purves, Figure 13.10
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What do the outer hair cells do?



Outer hair cells function as "cochlear amplifiers”

Normal response
(with cochlear amplifier)

OHC active movements
amplify the deflection of the cochlear partition

A possible cause of “tinnitus® (ringing in the ears)

Response during
furosemide treatment
(without cochlear amplifier)
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Fast changes in length of outer hair cells are caused by prestin,
a voltage-dependent motor protein in the OHC membrane

Short state Long state
(depolarized) (hyperpolarized)
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Summary of inner and outer hair cell function
IHC N OHC N

| mlﬂ”

efferent Fibers
afferent fibers

30



How does information travel from inner hair cells
to the central nervous system?
(the auditory nerve fiber synapse)



Innervation of inner hair cells (and outer hair cells)
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Inner hair cells / IHC:
Innervated by 8 — 10 afferent fibers

(dendrites of spiral ganglion cells)

OHC:

Innervated by efferent fibers from
auditory brainstem

(superior olivary complex)

Spiral ganglion
cells

Also innervated by a few afferent fibers

To cochlear
nucleus (afferent)

From superior
olivary complex
(efferent)
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Summary of inner hair cell to spiral ganglion neuron connectivity

@ Releases glutamate, is contacted by several SGN dendrites

* Has 1 dendrite which contacts a single IHC
 AMPA receptors, and generation of an AP

Spiral Ganglion Neuron (SGN)

 Has 1 axon, or auditory nerve fiber
* Leaves the cochlea & projects to brainstem
* Innervates neurons in cochlear nucleus; transmitter: glutamate

v

Brainstem (Cochlear Nucleus)
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How do auditory nerve fibers along the cochlea
represent sound?



Action potentials in a low-frequency auditory nerve fiber are "phase locked"
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Frequency tuning curves of auditory fibers
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« The firing frequency of six different auditory nerve
fibers was recorded
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"Tuning" of auditory nerve fibers to sound frequencies depends on the
location along the cochlea (“tonotopy®)

Apex Base
Frequency (kHz)

0.1

h ‘t\r« j? W

| N

Apex: Low Base: High
frequencies frequencies
\ Y
7 Cell bodies of
Vi | Y Y_ Y / Spiral ganglion neurons

10.0

<%
<
<%
-
<
<
<%

Cochlea
Basilar . e
membrane \. g
L \ : ‘\ Auditory
\V} nerve 37

Purves, Figure 13.12



Tonotopic representation of sound frequency
in the cochlea, spiral ganglion and cochlear nucleus
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The tonotopic map is carried through to the cochlear nucleus and up to primary auditory cortex A1!

A “Labeled line” coding mechanism

Bear, "Exploring the Brain"



How does the central nervous system (CNS)
process sound?



Auditory nerve fibers project to the brainstem’s cochlear nucleus

Axons of spiral ganglion neurons
(i.e., auditory nerve fibers)

Cochlear nuclei
\ Dorsal
/ Posteroventral

"\ Anteroventral

Rostral
medulla

Audltor
\wrve
Spiral
Cochlea gangh

Excitatory (glutamate) synapse between auditory
nerve fibers and neurons of the cochlear nucleus

Purves, Figure 13.13 40



The major auditory nuclei and ascending auditory pathways

Primary
auditory
cortex

Medial geniculate
complex of the
thalamus

l.e., Auditory thalamus

Note: In midbrain — spatial topography map

« Mutliple parallel pathways
» Bilateral projections

I _Nucleus of
lateral leminiscus

kb C Superior olive In pons - localization
ok Cochlear nuclei Hindbrain
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The human auditory cortex

Corresponds to Corresponds to
apex of cochlea base of cochlea

Primary
auditory

Seconda
cortex y

auditory
cortex

« There is also a "tonotopic map" in the primary auditory cortex ("A1")

» This implies that tonotopic information is correctly
wired from all lower auditory brain nuclei

Purves (older version), Figure 13.16 42



Sound source localization: a demonstration



Sound source localization

Because the location of sounds in the environment are not mapped onto the
surface of the sensory epithelium (instead, sound frequency is mapped there)

Sound location must be computed from several cues:

(1) Interaural Timing Difference of sound arrival ("ITD") — below 3 kHz phase-locked signals
(2) Interaural Intensity Difference (“lID*) — above 3 kHz

These computations occur in a brain area called the "superior olivary complex" (SOC), which
receives input from the ventral cochlear nucleus (VCN)

Two important structures in the SOC:

(1) Medial Superior Olive (MSO) uses ITD cues

(2) Lateral Superior Olive (LSO) uses IID cues



ITD depends on small differences in sound arrival time at each ear

head diameter:a =15cm =150 mm

speed of sound: ¢ =340 m/s (=340 mm/ms)
aX=a * sina =150 mm * sin 10° =26 mm

at =aX/c=26[mm]/ 340 [mm/ms] = 0.077 ms

This is calculated as a function of head width and incoming sound angle.
In practice it is well below 1ms (!) even for a large angle of a = 10°
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The MSO (medial superior olive) nucleus in the superior olive
computes the interaural time differences (ITD)
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Coincidence detection of excitatory inputs: Postsynaptic neuron fires AP only when the two EPSPs arrive within << 1 ms!
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The Lateral Superior Olive (LSO) and MNTB nuclei in the
superior olive compute Interaural intensity difference (lID)

(A) Stronger stimulus pd This stimulus also (B)
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than inhibition from right side, resulting excitation from right side, resulting in net
in net excitation to higher centers. inhibition on right and no signal to higher centers.

Purves, Figure 13.15 a7



Summary of sound source localization

« The MSO calculates Interaural Time Difference (ITD)
« The LSO calcultes Interaural Intensity Difference (11D)

« Many "basic" computations take place at "lower centers"
like the superior olive (hindbrain) and inferior colliculus (midbrain)



Congenital deafness can be treated using a cochlear implant

* Around 1 child in 1000 is born deaf or has severe hearing loss.
« Around 400 known syndromes involve severe hearing loss

« Hair cell function is highly specialized (mechano-electrical transduction) and highly
sensitive to minute displacements

Thus, mutations in a single gene can jeopardize the entire transduction mechanism

see also a review by
Richardson, de Monvel, Petit 2011
Annu. Rev. Physiol. 2011. 73:311 - 334



One treatment: the cochlear implant

Consists of a series of electrodes in parallel (up to 32) that are inserted into the cochlea.

The auditory nerve is stimulated by electrical stimulations at specific sites
depending on the sound frequency components

Cochlear implants can be used as long as the auditory nerve is intact

Advanced cochlear
implant electrode




The cochlear implant uses the tonotopic organization of the cochlea

Cochlea
(B)

Microphone Implantable

cochlear
stimulator

Auditory
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Electrode
array

Cable to speech
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Perception of words in deaf children with cochlear implants:

A few months after implantation: perception of the characteristics of single words
1-2 years after implantation: perception of words and simple sentences
2-6 years: perception of words and sentences without immediate context

6 years: ability to lead a conversion without "lip-reading" for ~ 80% of patients
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Summary: Audition - Important concepts and keywords

Structure of the cochlea: scala vestibule, scala tympani, scala media (with unusually high K¥).
Principle of “tonotopy” (on cochlea) of sound frequency

Inner hair cell: primary transduction mechanism, ions, synapse function

Role and mechanisms of Outer hair cell function

Innervation of Inner hair cells

Principle anatomical pathway from cochlea to auditory brainstem

Tonotopic organization of auditory brainstem nuclei.

Sound source localization is calculated in which brain regions using which cues?

Processing centers of auditory information in the brain

Treating congenital deafness with a cochlear implant



