Action potentials and
electrical excitability
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The action potential, an active membrane potential response
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Insights drawn from the squid’s ‘giant axon
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Insights drawn from the squid’s ‘giant axons’
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Insights drawn from the squid’s ‘giant axons’
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How do we uncover the currents giving rise to the “action potential®?

One internal electrode measures
membrane potential (V;,,) and is
connected to the voltage clamp
amplifier.

Voltage clamp amplifier
compares membrane
potential with the desired
(command) potential.
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When V,,, is different from the
command potential, the clamp
amplifier injects current into the axon
through a second electrode. This
feedback arrangement causes the
membrane potential to become the
same as the command potential.
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The current flowing
back into the axon,
and thus across its
current membrane, can be
measured here.

Voltage clamp technique for studying membrane
currents of a squid axon.

« Measurement of membrane potential , V,, with an intracellular electrode

A second electrode “injects” current by a feedback amplifier to keep V,, constant
Voltage clamp offers control over a key variable (V,,) that determines channel gating
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Currents measured with voltage-clamp in the squid giant axon
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Recall that current drawn downward is called "inward" current and would depolarize the cell
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The early current requires extracellular Na*

Note: 460 mM Na* is because the squid is a seawater organism.
There is higher [Na*] in the extracellular fluids of these animals.

The early current must be a movement of Na* ions from outside to inside
(i.e., inward current)
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One can independently block either the early or the late current
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» Hodgkin-Huxley proposed that separate conductances for Na* ions and K* ions are activated during depolarization
(there is also a leak conductance)
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Action potential Na* and K* conductances
depend on voltage and time
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Three important concepts for voltage-dependent ion channel gating

Holding potential J

2. Inactivation
There is a decrease in conductance

Na+ . / (channels close), despite ongoing depolarization
1. Activation

There is an increase ONLY in Na* channels
in conductance (channels open),

usually upon depolarization
/ 3. Deactivation
S Channels close when the voltage step

K+ \
ends (not visible in this schema)
0 2 4 6 8
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Activation — The time-dependent opening of ion channels in response to a stimulus, typically
membrane depolarization (or agonist pulse in ligand-gated ion channels)

Inactivation - The time-dependent closing of ion channels despite maintained depolarization
(Vi step for voltage-gated channels)

Deactivation - channel closes upon repolarization (not visible for Iy, because most channels
are already inactivated)
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Aside - 1952, a remarkable year for Hodgkin & Huxley

Experimental

Measurement of current-voltage relations in the membrane of the giant axon of Loligo. the N0b§l’PriZC
HODGKIN AL, HUXLEY AF, KATZ B. J Physiol. 1952 Apr;116(4): pp- 424-448. | = 4/5{%—1 Je.
st ot 1903 g i

Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.
HODGKIN AL, HUXLEY AF. J Physiol. 1952 Apr;116(4): pp- 449-472.

The components of membrane conductance in the giant axon of Loligo.
HODGKIN AL, HUXLEY AF. J Physiol. 1952 Apr;116(4): pp- 473-496.

The dual effect of membrane potential on sodium conductance in the giant axon of Loligo.
HODGKIN AL, HUXLEY AF. J Physiol. 1952 Apr;116(4): pp- 497-506.

Mathematical modeling study

A quantitative description of membrane current and its application to conduction and excitation in nerve.

, Hodgkin & Huxley
HODGKIN AL, HUXLEY AF. J Physiol. 1952 Aug;117(4): pp. 500-544.

"This article concludes a series of papers concerned with the flow of electric current through the surface membrane
of a giant nerve fibre. Its general object is to discuss the results of the preceding papers (Part 1), to put them into
mathematical form (Part Il) and to show that they will account for conduction and excitation in quantitative terms (Part III)."

Hodgkin’s Nobel Prize lecture: https://www.nobelprize.org/prizes/medicine/1963/hodgkin/lecture/ .,



Mathematical reconstruction of the action potential
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In 1952, H&H did not know yet about "ion channels" or
other transmembrane proteins. They concluded that
there are separate membrane conductances for Na*
and K* and predicted these might be ion channels
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Membrane potential
(mV)

Conductance
(mSiemens/cm?)

The action potential includes positive and negative feedback loops
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Action potentials are generated at the axon initial segment (near the soma)
when the threshold V,, is reached

Na* channels locally open in ' Some depolarizing current
response to stimulus, generating ?passively flows down axon.
an action potential here. /
\ Membrane Na* channel K* channel
/

Axon

\ )
|

Cell soma Axon initial segment

"Stimulate” refers to a strong EPSP / membrane depolarization at the soma/dendrites,
reaching the threshold V,, of ~-50 mV
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Action potentials propagate by passive flow and asymmetric Na* inactivation

Na™ channels to open and generates an
action potential here.

?Local depolarization causes neighboring ]

K* channels open. Membrane potential

repolarizes and axon is refractory here.

?Upstream Na* channels inactivate, while
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Saltatory (“jJumping”) conduction of action potentials in myelinated axons
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Saltatory (“jumping”) conduction of action potentials in myelinated axons
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Action potential conduction is faster in myelinated axons
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Action potential conduction is faster in myelinated axons
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We now know that Na* and K* currents are mediated by separate ion
channels.

Goal: How can we learn more about the properties of these ion channels?

One approach: Single-channel “patch-clamp” recordings (early 1980's)




Cell-attached recording
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of patch-clamp recordings

« Cell-attached recordings: high resistance contact

*  Whole-cell recordings: break-in to cell interior with patch pipette
filled with “intracellular solution®

* Inside-out recordings: channel interior becomes accessible

» Outside-out recordings: channel exterior becomes accessible to
e.g., test channel ligands

Whole—cell

From Hille

Purves, Box 4A

Micropipette Electrode with Resistance R,

Membrane Resistance

MEASURING
CIRCUIT

\AAAS

Bath Electrode

23




From single-channe

Single voltage-gated
Na*-channels in a
membrane "patch”
give early inward
depolarizing currents
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From single-channels to macroscopic currents: voltage-gated K* channels
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Schema of voltage gated ion channels
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Crystallography structures of voltage-gated K+ ion channels

K+ channel

NH,

Purves, Figure 4.6

COOH

Kandel, Figure 7-14

N-terminal and C-terminals intracellular
6 membrane-spanning domains (S1-S6)

S4 contains positively-charged residues (arginines,
lysines) acting as a voltage-sensor for gating

K*-channels are tetramers (4 subunits form a channel)

Accessory 3-subunits



Crystallography structures of voltage-gated Na+ ion channels
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A large number of genes code for voltage-gated and related ion channels
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Summary: Important concepts and keywords

Action potential

Measurement techniques:
2-electrode voltage clamp
patch-clamp techniques

Definition of current clamp and voltage clamp measurements

Voltage-gated membrane currents, early & late currents, and
their ionic basis (Na* and K*)

Measurements and consequences of single Na* and single K*
channel conductances (different proteins)

Sequence of events during the action potential

Voltage-gated ion channels:
Principal topology of Na* and K* channels



