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Lecture 12

Single-Cell and Spatial
Metabolomics



Single-cell biology

A single cell can be regarded as the
smallest functional biological unit and its
chemical activities can provide unique
Insights into biological processes.

Different biological processes
continuously occur in single cells as
they move, divide, communicate, and
respond to their individual chemical
microenvironments.

Even cells with identical genotypes
display different chemical phenotypes as
a result of cellular dynamics and unique
microenvironments.



Single-cell biology

Regulatory circuits that generate stable phenotypic states have been
selected by evolution to account for multicellularity



Single-cell biology
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ell Atlases

Our current challenge is to understand how the different cells that compose
our tissues emerge and get organised to mediate multicellular life.
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Single-cell biology

-

Single cell Biology aims to reveal

* Cellular heterogeneity (Cell Types)
* Differentiation Trajectories
* Cell states
| » Regulatory networks
* Rare cell States

) © % What can we profile
s in single cells?
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Single-cell biology

DNA Genomics Metabolomics is a field of
study that aims to measure a

Transcriptomics large amount of metabolites

RNA at one time. Metabolites are

. small biomolecules, such as

Broteins Proteomics amino acids, sugars, and
lipids, which constitute

Biochemical, Metabolomics precursors, intermediates,

and products in cellular

Biological Processes

Phenotype

Can can we profile the metabolites
In single cells?



Single-cell biology

Mass spectrometry (MS) is an analytical technique that measures the mass-to-charge
ratio of ions. The results are typically presented as a mass spectrum, a plot of intensity
as a function of the mass-to-charge ratio. Mass spectrometry is used in many different
fields and is applied to pure samples as well as complex mixtures. MS is used to identify
and to quantify metabolites after optional separation. Identification leverages the distinct
patterns in which analytes fragment which can be thought of as a mass spectral
fingerprint. MS is both sensitive and can be very specific.
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With high sensitivity and specificity, wide molecular coverage, relative quantitation, and
structural identification capabilities, MS is becoming an important tool for Single-cell
metabolomics. This, by the way, presents many challenges due to the limited sample
volume, low analyte amounts, and rapid turnover rates of the cellular metabolome. Most
single cell metabolomics studies are, thus performed using MS in a shotgun-like

approach, preferably with high mass resolution.
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https://en.wikipedia.org/wiki/Ion

Single-cell Metabolomics
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Single-cell Metabolomics




Single-cell Metabolomics
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Single-cell Metabolomics

A Fluorescence

N

100 ym

m/z = 754,536 £ 0.005

mi/z = 445,285 £ 0.005

miz = 782.567 £ 0.005

Single Cell Matrix-Assisted Laser
Desorption/lonization Mass Spectrometry
Imaging

Numerous compounds including small metabolites such as
adenine, guanine, and cholesterol as well as different lipid
classes such as phosphatidylcholine, sphingomyelin,
diglycerides, and triglycerides were detected and identified
based on a mass spectrum acquired from an individual spot of 7
um in diameter. These measurements provide molecularly
specific images of larger metabolites (phospholipids) in native
single cells. The developed method can be used for a wide range
of detailed investigations of metabolic changes in single cells.
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Single-cell Metabolomics
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SpaceM reveals metabolic states of smgle cells

We present SpaceM, an open-source method for in situ single-cell metabolomics that detects >100 metabolites from
>1,000 individual cells per hour, together with a fluorescence-based readout and retention of morpho-spatial features. We
validated SpaceM by predicting the cell types of cocultured human epithelial cells and mouse fibroblasts.
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Single-cell Metabolomics

Hela and coculture
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91.3% accuracy
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Single-cell Metabolomics

Mass spectrometry imaging to explore molecular heterogeneity in cell culture
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Here, we present a sensitive approach to single-cell
MS based on high-resolution MALDI-2-MS imaging in
combination with MALDI-compatible staining and use
of optical microscopy. Our approach allowed
analyzing large amounts of unperturbed cells directly
from the growth chamber. Confident coregistration of
both modalities enabled a reliable compilation of
single-cell mass spectra and a straightforward
inclusion of optical as well as mass spectrometric
features in the interpretation of data. The resulting
multimodal datasets permit the use of various
statistical methods like machine learning-driven
classification and multivariate analysis based on
molecular profile and establish a direct connection of
MS data with microscopy information of individual
cells.
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Single-cell Metabolomics

G Vero-B4  Caki-2 Total
Classified Vero-B4 275 2 277
Classified Caki-2 92 74 166
Classified Correctly 7493 %  97.37 % 78.78 %
I J

X
&
O
o

PC1: 13%

~17 -

H Vero-B4  Caki-2 Total
Classified Vero-B4 340 7 347
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Single-cell Metabolomics
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Single-cell Lipidomics

Lipid Species

14

o
1 Dd sbuipeo

PC Coordinate

|
Max

2 - 2.0 rrr

-02 -
0.2 -

- 19 -



Advanced Biology

Single-cell Lipidomics
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Single-cell Lipidomics
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Single-cell Lipidomics
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Single-cell Lipidomics

HexCer Gb3
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Single-cell Lipidomics
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Single-cell Lipidomics
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Single-cell Lipidomics
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Single-cell Lipidomics
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Single-cell Lipidomics

Lineages
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Lipidomics
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Single-cell Lipidomics
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The Lipotype Hypothesis

Lipotypes represent local energetic minima of the lipid compositional landscape.

Lipotypes are both a consequence and a component of differentiation programs
that lead to cell state emergence.

Cells populating different regions in tissues and organs are likely to belong to
different lipotypes and lipotypes to mark different anatomical structures

Lipid composition is a major driver for the establishment of cell identity
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Towards Metabolic Anatomy
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Towards Metabolic Anatomy
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Towards Metabolic Anatomy
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Towards Metabolic Anatomy
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Towards Metabolic Anatomy

notochord Jiver hindbrain

spinal cord
[ spinal cord
® notochord
liver
dorsal hindbrain
yolk swimbladder " brain @ muscie
muscle : brain
® dorsal brain
swimbladder
yolk
clusters ¢ TAG
DAG
yolk ~ PE
yolk layer ® SL
muscle PC
notochord LysoPC
swimbladder No annotation
liver
spinal cord
brain
hindbrain
dorsal brain

- 37 -



Towards Metabolic Anatomy

m/z 864.6322

- 38 -



Towards Metabolic Anatomy
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owards Metabolic Anatomy

Original sections Registered on Allen Atlas




Take Home Messages

* Single cell metabolomics is possible (listed among the 7
technologies to watch in 2023 by Nature).

* Imaging Mass Spectrometry is a suitable way to perform single
cell metabolomics.

» Sigle cell and spatial metabolomics provide informations about

cell-to-cell heterogeneity and tissue patterning from a
biochemical perspective.

_42 -



