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The Molecules of Life 
Nucleic Acids Proteins Lipids Glycans  
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Rhetorical Question:  

Why do we care about structure ? 
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Structure largely determines function and the activities that 
different macromolecules have in cells.  

Paradigm in biochemistry 

structure functionsequence



folded native  
structure

primary  
sequence

folding pathway

 Dill@UCSF

Levinthal paradox (1969)
100 residue-long peptide
3198~1094 torsional degrees of freedom

Anfinsen dogma (1954):
protein structure is determined by its sequence 

Proteins: Sequence Determines Structure

? why is this a paradox ?
because all these conformations are not samples, and the native states is quickly 
found within milliseconds thanks to thermodynamics 
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Sequence Determines Structure
- Proteins fold into defined 3D structures 

- the folding process is energetically driven and proteins tend to fold to what we 
call an energy global minima  (spontaneously or aided by molecular chaperones)  

thermodynamic 
hypothesis 



Protein folding 

https://www.youtube.com/watch?v=YANAso8Jxrk


Protein folding 
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The Anfinsen experiment (1954)
- A Nobel prize (1972) experiment that by measuring enzymatic activity figured out the 
principles of protein folding  

-Ribonuclease refolded 
and oxidized recovers 
100% activity  

-Ribonuclease oxidized 
and refolded in presence 
of urea recovers  1% 
activity  

Sequence Determines Structure

194 CHAPTER 5:  Evolutionary Variation in Proteins

Th e disulfi de bonds in ribonuclease-A are readily broken by the addition of reduc-
ing agents such as mercaptoethanol, a molecule that contains a reduced thiol 
group. Reduced ribonuclease-A is then easily unfolded by denaturing agents such 
as urea (Figure 5.4). Th e addition of two to fi ve molecules of urea or guanidinium 
ion per 50 molecules of water can result in the unfolding (denaturation) of protein 
molecules. Th ese denaturing agents are very polar, and they perturb the hydro-
gen-bonded structure of water. Th is alters the balance of forces that underlies the 
hydrophobic eff ect, and the stability of the folded protein structure is lost.

Anfi nsen found that ribonuclease-A denatured in this way has no catalytic activ-
ity. Th e enzyme can be refolded by removing the urea in the presence of oxygen, 
which causes the disulfi de bonds to form again (see Figure 5.3). When this is 
done, the native enzyme is recovered almost completely, with essentially no loss 
of catalytic activity. Th is process is reversible, and the protein can be unfolded and 
folded repeatedly in a test tube, demonstrating that all the information required 
for adopting the particular three-dimensional structure that is necessary for the 
function of ribonuclease-A is encoded entirely in its amino acid sequence. 

5.3 By counting the number of possible rearrangements of 
disulfi de bonds, we can confi rm that ribonuclease-A is 
completely unfolded by urea and reducing agents

Th e interpretation of the Anfi nsen experiment in terms of the thermodynamic 
principle of protein folding hinges on the assumption that the reduced and 
denatured protein corresponds to an essentially random conformation of the 
polypeptide chain, with no memory of the folded structure. How can we be sure 
that the addition of mercaptoethanol and urea completely unfolded the protein 
molecule? One way to do this is to consider how many diff erent ways the eight 
cysteine residues in ribonuclease can form four disulfi de linkages. When the pro-
tein molecule is folded into the native structure, one specifi c set of disulfi de pair-
ings occurs. Th ere are, however, 105 diff erent ways in which to form four sets of 
linkages between eight cysteine residues, 104 of which correspond to incorrect 
linkages (Box 5.1). 

We shall make the simplifying assumption that each of the cysteines can pair with 
any other cysteine with equal probability when ribonuclease-A folds. In reality, 
cysteines that are closer together in sequence will be more likely to form disulfi de 
bonds because of the entropy of the protein chain (a property that is explained in 
Chapter 10). Nevertheless, a simple calculation illustrates how Anfi nsen arrived 
at his conclusions. If ribonuclease-A adopts random conformations when it is 
transferred to urea, and if the cysteine residues in the protein are oxidized to form 
disulfi de linkages when the protein is unfolded, then the correct set of disulfi de 
linkages would be expected to occur only about 1% of the time (1 in 105, as 
explained in Box 5.1). 

Anfi nsen showed that when the disulfi de bonds in ribonuclease-A are allowed to 
form in the presence of urea (when the protein is denatured), only about 1% of 
maximal enzymatic activity is recovered when this oxidized protein is eventually 
renatured by the removal of urea (Figure 5.5). Th is suggests that the addition of 
urea randomizes the conformation of the polypeptide chain suffi  ciently so that 
the pairing between cysteine residues when disulfi de bonds are formed is essen-
tially random. If the urea is removed, the protein begins to fold and, if the disulfi de 
bonds form at this stage, they do so correctly and the protein regains full activity.

H2N

O

NH2
urea

Figure 5.4 The chemical structures 
of urea and the guanidinium ion, 
which are potent denaturants of 
proteins. 

H2N

NH2
+

NH2

guanidinium ion
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Remember that: 
- Cysteine – a special amino acid  

- Cysteines can from disulfide bonds  

-Disulfide bonds are covalent (reversible) bonds which can play major roles in protein  
stabilization  
- in vivo: mostly present in secreted proteins - rarely found inside the cell.  
- in vitro: reducing agent to break them tris (2-carboxyethyl) phosphine hydrochloride 
(TCEP), beta-mercaptoethanol (BME), and dithiothreitol (DTT).
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Protein folding is driven by the 
formation of a hydrophobic core 
-Packing of secondary structural elements bring together the hydrophobic side 
chains that form the hydrophobic core.  

-The stability of the folded structure results primarily from the hydrophobic side 
chains clustering together away from the water (the hydrophobic effect) 
- folding is a subtle free energy optimization exercise, G = H -TS 
  

lots of ordered waters (<S) 

few residues interactions (>H)

ordered core (<S) 

less ordered waters (>S) 

lots residues interactions (<H)
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Protein folding is driven by the 
formation of a hydrophobic core 
-Packing of secondary structural elements bring together the hydrophobic side 
chains that form  the hydrophobic core.  

-The stability of the folded structure results primarily from the hydrophobic side 
chains clustering together away from the water (the hydrophobic effect) 
- folding is a subtle free energy optimization exercise, G = H -TS 
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Proteins have hydrophobic cores and 
hydrophilic surfaces  

Hydrophobic core  Hydrophilic surface  
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Proteins have hydrophobic cores and 
hydrophilic surfaces  

blue is positive 
red is negative 
white is hydrophobic 

Topoisomerase

membrane protein  
domain 

electrostatic potential 
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A brief note on membrane proteins 

Given that these proteins are embedded in the membrane their surfaces are 
hydrophobic. 

single  
spanning helix transmembrane proteins

peripheral  
membrane proteins lipidated proteins
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176 CHAPTER 4:  Protein Structure

and the hydrophobic solvent octanol. Th e value assigned to each amino acid in 
the scale is known as the transfer free energy, and refl ects the ease with which 
the amino acid partitions into octanol from water. Th e more hydrophobic amino 
acids have lower values on this scale. Note that tryptophan is the most hydropho-
bic amino acid according to the scale shown in Figure 4.74. We had classifi ed tryp-
tophan as having a polar group in Figure 1.29, but you should recognize that the 
two fused aromatic rings also make it very hydrophobic.

Hydrophobicity scales, such as the one shown in Figure 4.74, are used to iden-
tify those segments of the amino acid sequence of a protein that have hydropho-
bic properties consistent with a transmembrane helix. For each position in the 
sequence, a mean value of the hydrophobicity is calculated. Th e hydrophobic 
index is the mean value of the hydrophobicity of the amino acids within a “win-
dow,” usually 19 residues long, around each position. Th e size of the window cor-
responds to the expected length of a transmembrane helix, and so a residue in the 
middle of such a helix is expected to have a high hydrophobic index. When the 
hydrophobic indices are plotted against residue numbers, the resulting curves, 
called hydrophobicity plots, identify possible transmembrane helices as broad 
peaks with highly negative values for the hydrophobicity index, corresponding to 
a favorable predicted free energy of transfer into membranes.

Th e application of the hydrophobicity index to the identifi cation of transmem-
brane helices is illustrated in Figure 4.75, which shows the structure of an inte-
gral membrane protein known as a photosynthetic reaction center. Th e protein 
contains two membrane-spanning subunits, one of which is shown in color in 
Figure 4.75A. Th is subunit consists of fi ve transmembrane helices, labeled A–E. 
Th e hydrophobicity index as a function of residue number is calculated from the 
sequence of the protein and is graphed as a function of residue number in Figure 
4.75B. 

Th e hydrophobicity index is calculated from the amino acid sequence alone, with-
out knowledge of the three-dimensional structure. Comparison with the known 
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Figure 4.75 Transmembrane helices and the hydrophobicity index. (A) The structure of the photosynthetic 
reaction center from Rhodobacter sphaeroides. The backbone of one of the subunits of the reaction center 
is shown in color, with the transmembrane segments in yellow and the rest of the protein in blue. There are 
fi ve transmembrane helices, labeled A–E. The protein contains several cofactors involved in the conversion of 
light energy to chemical energy, and these are shown in stick representation. (B) The hydrophobicity index as 
a function of residue number for the subunit of the reaction center shown in color in (A). The hydrophobicity 
index at any position along the sequence is the aggregate value of the water/octanol transfer free energies for 
19 contiguous residues in the sequence, centered on the residue in question. Clustered regions of negative 
hydrophobicity index indicate the presence of transmembrane α helices. Note that all fi ve transmembrane helices 
are identifi ed by this criterion. (Adapted from S.H. White and W.C. Wimley, Annu. Rev. Biophys. Biomol. Struct. 28: 
319–365, 1999; PDB code: 4RCR.)

Hydrophobic Hydrophilic 

The hydrophobicity index at any position along the sequence is the aggregate value of the water/octanol 
transfer free energies for 19 contiguous residues in the sequence, centered on the residue in question. 

https://dtu.biolib.com/app/DeepTMHMM/run
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https://www.uniprot.org

https://www.uniprot.org
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GPCRs are involved in sight, taste, smell, behavior, mood, and immune 
system regulation. Even though the signaling molecules, types of GPCR, 
and mechanisms of action may differ for all these roles, they all involve 
certain extracellular signals that are converted into a cellular response.

As such they are key targets for drug developments - it is estimated that 
~700 approved drugs target GPCRs, implying that approximately 35% of 
approved drugs target GPCRs.

https://doi.org/10.1038/s41586-018-0236-6



Where to find protein structures?
http://www.rcsb.org

http://www.rcsb.org
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In more complicated organisms, the increase in the size of the genome does not 
result in a proportional increase in the number of families or folds. For example, 
the genome of the yeast S. cerevisiae has 6,530 proteins, 13.6 times as many as 
M. genitalium. However, the upper estimate for the number of families in yeast 
is only eight times larger than the estimate for M. genitalium. Th e growth in the 
number of folds is even smaller, with yeast expected to contain only twice as many 
diff erent folds as M. genitalium, using the upper estimate. An analysis of several 
completely sequenced genomes has led to an estimate of only a few thousand dif-
ferent kinds of folds that may be found in nature.

Why is the number of protein folds so limited? Given the essentially infi nite degree 
to which amino acids sequences can vary, we might have expected that the total 
number of protein folds would be extremely large. We do not understand the rea-
sons for this limitation, but natural selection will favor protein sequences that can 
fold into stable structures. One remarkable feature of commonly found folds is 
their resistance to the potentially deleterious eff ects of mutation, a point that we 
discuss in the next section.

Among the possible folds, some are more likely to be populated than others due 
to their particularly optimal folding and stability properties. Figure 5.36 shows the 
relative sizes of the topology and homologous superfamily groupings in the CATH 
organization of protein domains. Certain homologous superfamilies have more 
representatives in the protein databank than others. Th e most highly populated 
family is known as the Rossmann fold, an α/β structure that is common to many 
proteins that bind to nucleotides and is named after its discoverer, Michael Ross-
mann. We discuss the Rossmann fold in more detail in Section 5.26.

5.24 Protein domains are remarkably tolerant of changes in 
amino acid sequence, even in the hydrophobic core

Protein structures retain the essential character of their chain fold, even though 
genetic variation and natural selection lead to changes in amino acid sequence. 
Residues in the hydrophobic cores of proteins are very closely packed, and 
substitutions in the core can be expected to disturb the stability of the protein. 
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Table 5.1 Number of genes, families, and folds in different microorganisms.

Species Number of proteins in 
the genome

Total number of 
families

Number of structurally 
characterized families

Predicted number 
of folds

Aggregate 4000–7000 1000 900–1300

M. genitalium 480 400–600 70 250–350

R. prowazekii 834 750–950 122 350–500

A. aeolicus 1522 950–1100 154 400–550

M. jannaschii 1715 850–950 74 300–400

A. pernix 1760 950–1000 62 300–450

Synechocystis sp. 3169 1700–2200 220 450–650

M. tuberculosis 3900 1500–2000 200 450–700

B. subtilis 4100 1800–2100 260 450–700

E. coli 4289 2000–2600 353 550–800

S. cerevisiae 6530 2400–4500 234 500–720

(Adapted from Y.I. Wolf, N.V. Grishin, and E.V. Koonin, J. Mol. Biol. 299: 897–905, 2000. With permission from Elsevier.)

Rossmann fold 

A very commonly occurring protein 
fold, found in nucleotide-binding 
domains. The Rossmann fold was 
the fi rst modular protein domain to 
be identifi ed.

the number of folds seems to be limited across species 



Protein folding motifs are limited
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• It seems that all possible folds of proteins have been discovered 
already  

• sequence space is much larger than folding space



▪ potential sequence space for protein of 150 a.a. ~20150 = ~10195 

▪ atoms in the observed universe ~1080 

▪ the sequences explored by evolution are much less (~1010-20), 
structures lesser  

▪ structure space is much more limited

The sequence space is enormous 

structure  
space

sequence 
space



Nature Biotechnology doi: 10.1038/s41587-023-01773-0

Foldseek enables fast and sensitive comparisons of large structure sets



Proteins - Discussion
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Statement: can two proteins with different sequence  
have the same fold?

-Yes or No ?  

- Why ?  

They can have the same fold. the why is in the following slides …
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erythrocruorin clam hemoglobin worm hemoglobin

myoglobin hemoglobin ! chain hemoglobin "�chain

leghemoglobin Glycera hemoglobin
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Figure 5.8 Various examples of 
proteins with globin folds. The top 
row shows myoglobin (PDB code: 
1MBC) and the two subunits of 
human hemoglobin (PDB code: 1A00). 
The other structures are of oxygen-
binding proteins from an insect 
(erythrocruorin; PDB code: 1ECA), 
a clam (PDB code: 1HBI), a worm 
(PDB code: 1BIN), a plant 
(leghemoglobin; PDB code: 2LHB), and 
a marine worm (Glycera dibranchiata; 
PDB code: 1HGB).

a pair-wise manner, we fi nd that while 45% of the residues are identical between 
the α and β subunits of hemoglobin, the level of sequence identity between these 
subunits and myoglobin is only 30% and 26%, respectively. Th is is a rather striking 
observation: the close correlations in the fold of the polypeptide chains of hemo-
globin and myoglobin are maintained despite very signifi cant diff erences in the 
sequence.

5.5 The globin fold is preserved in proteins that share very 
little sequence similarity

Th e tendency of natural selection to preserve the general shape of the protein 
fold while allowing sequences to drift is illustrated by comparing the structures of 
human myoglobin and hemoglobin to those of very distantly related members of 
the globin family. Th ese include hemoglobins from invertebrates, such as clams, 
insects, and earthworms, as well as hemoglobin-like oxygen-binding proteins 
found in the root nodules of certain plants. Th e three-dimensional structures of 
these globins are shown in Figure 5.8. Th e polypeptide chains of each of these 

globin fold
from different organisms
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 SEQUENCE COMPARISONS AND THE BLOSUM MATRIX 199

proteins adopts the globin fold, within which a heme group is bound just as in 
myoglobin and hemoglobin. Th e general features of the chain fold are strikingly 
similar to those we have seen before in human myoglobin and hemoglobin, and 
include the formation of seven or eight α helices.

An alignment of the sequences of several globins is given in Figure 5.9. Th is align-
ment is colored according to the degree of similarity across diff erent proteins of 
each of the positions in the polypeptide chain, with highly variable positions left 
uncolored, and positions where similar amino acids are found being colored from 
yellow to green as the degree of similarity increases. Just how the degree of simi-
larity is calculated is discussed a little later in this chapter. 

Despite the structural conservation, comparison of the sequences of these glob-
ins yields a remarkable result. Of the ~150 amino acid residues in each of these 
proteins, only two residues are preserved without substitution at equivalent posi-
tions in the polypeptide chains (see Figure 5.9). Th ese two residues are a histidine 
in helix F and a phenylalanine located just after helix C. Th e histidine sidechain 
forms a covalent bond with the iron atom of the heme group and is therefore nec-
essary for the attachment of the heme group to the protein. Th e phenylalanine 

Figure 5.9 Alignment of globin 
sequences. (A) Sequence similarity in 
the globins. The sequences of several 
globin proteins are shown, with the 
level of sequence similiarity indicated 
by color (green = most similiar; yellow 
to white = decreasing similarity). Two 
residues that are invariant across 
these sequences are indicated by 
stars. The histidine is invariant in 
all globins. The phenylalanine is 
sometimes replaced by another 
residue in globins that are not shown 
here. (B) The structure of myoglobin, 
showing the locations of the invariant 
phenylalanine and histidine residues. 
The degree of similarity between 
residues at equivalent positions in 
different proteins is determined by 
the BLOSUM matrix, as explained in 
Section 5.7. Hb, hemoglobin. (PDB 
code: 1MBC.)

(A)
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(highly conserved)
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(B)

multiple sequence alignment (MSA) 
(read chapter 5.6-5.11 BLOSUM-62 matrix in preparation of practical of week 6-7)

if you do a MSA of global sequences you can see that their identity can be quite low 

notice the green sites that are highly conserved - these are the ones involved in 
holding the heme group, they are conserved to preserve the function
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where you can perform a MSA analysis on the web
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sidechain packs against the fl at surface of the heme group and presumably helps 
stabilize the orientation of the heme within the protein. Th e sequence require-
ments for a functional globin protein are apparently so broad that only two amino 
acids are absolutely required to be invariant across the sequences that are shown 
in Figure 5.9.

Th e similarity in the overall chain fold of each of the members of the globin family 
is apparent to the eye from the structures in Figure 5.8. In contrast, the amino acid 
sequences of the more distantly related pairs of globins cannot be aligned reliably 
without referring to either the three-dimensional structures or the sequences of 
other members of the globin family. For example, the sequence identity between 
human hemoglobin and a plant globin known as leghemoglobin is only 14% 
(Figure 5.10). 

Th e extensive variation in sequence among the globins illustrates a deep asym-
metry in the relationship between protein sequence and three-dimensional 
structure. Th e sequence of amino acids in a protein dictates the specifi c three-
dimensional structure that the protein will fold into. Nevertheless, apparently 
unrelated sequences of amino acids can generate similar three-dimensional 
structures, as shown in Figure 5.10. Such relationships, in which one property is 
not uniquely defi ned by another, are described as degenerate. Th e relationship 
between three-dimensional structure and protein sequence is degenerate in that 
many diff erent protein sequences correspond to the same protein fold.

10–20% sequence identity

invertebrate globins

mammalian globins

30–50% sequence identity

plant globins

10–20% sequence identity

Figure 5.10 Conservation of the 
globin fold. Proteins with globin folds 
are found in all eukaryotes. Shown 
here are schematic representations 
of globin proteins from mammals 
(center) as well as from invertebrates 
(top) and plants (bottom). The 
mammalian proteins are closely 
related in sequence to each other, but 
share very little sequence identity with 
invertebrate or plant globins.

different organisms have 
very sequence identity. 
This can be high within 
more similar organisms 
but can be as low as 
10% if you compare 
plants and mammals  

with only 10% sequence 
identity you can still 
preserve the same 
overall fold 

This is telling you that 
the structural space is 
more confined that the 
sequence space and will 
give you a practical way 
to model structure from 
sequence  
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establish structural similarity reliably. Th at is, very short segments of proteins that 
are similar in sequence can sometimes adopt quite diff erent structures when they 
are in diff erent proteins. Th is occurs because the three-dimensional structure of 
the polypeptide chain in the vicinity of a particular residue depends not just on 
the internal properties of that residue, but also on the nature of the residues that 
surround it. In other words, non-local eff ects have a strong infl uence on the con-
formation of a peptide chain.

Sequence comparisons become more informative when the lengths of the seg-
ments being compared are ~50 residues or greater. Polypeptide segments of this 
length encompass secondary structural elements that are folded against each 
other in proteins. Figure 5.23 shows that structural similarity is virtually assured 
when the sequence identity between longer segments is greater than ~25%. Figure 
5.23 also shows that proteins that are related by less than ~25% sequence identity 
can have signifi cantly diff erent three-dimensional structures. 

Th ere are several advanced methods for detecting structural relationships between 
distantly related proteins that go beyond simply matching sequences. One class of 
methods relies on sophisticated statistical procedures and the availability of very 
large numbers of potentially related sequences to establish evolutionary relation-
ships, without necessarily using information about the three-dimensional struc-
ture. We shall not discuss these methods here, but they are readily accessible on 
websites that provide access to genomic databases (for example, the alignment 
procedure known as PSI-BLAST on the National Library of Medicine genome 
database). Another class of methods works only when the structure of at least 
one member of a family of related proteins has been determined experimentally. 
One such method is described in detail in the following sections because it helps 
us better understand the relationship between sequence and three-dimensional 
structure.

5.16 The amino acids have preferences for different 
environments in folded proteins

As we move from position to position along the polypeptide chain of a folded 
protein, the chemical environment surrounding the residues in the chain varies 
considerably. A key parameter in describing the environment of an atom is the 
solvent accessibility of the atom (Figure 5.24). Atoms in diff erent positions within 
a protein structure have diff erent degrees of accessibility to water molecules. An 
atom located at the surface of a protein would have most of its surface area acces-
sible to water molecules. In contrast, atoms within the hydrophobic core may be 
completely inaccessible to water. Atoms in more polar groups prefer water-acces-
sible positions, whereas atoms in hydrophobic groups prefer positions that are 
inaccessible to water. 

A residue at the amino terminal end of the polypeptide chain is often in an exposed 
environment, where it can form hydrogen bonds with water. Polar sidechains 
are likely to be favored at such exposed positions. As the polypeptide backbone 
moves into the interior of the protein, the environment becomes more hydropho-
bic, and sidechains at these positions are likely to pack against the sidechains of 
nonpolar residues such as leucine, isoleucine and phenylalanine. Charged and 
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Figure 5.23 Threshold levels in sequence identity for the 
reliable assignment of structural similarity. The solid line 
separating the blue and red regions is the threshold value of 
sequence identity (the vertical axis), above which the structures 
of the two proteins being compared are highly likely to be similar. 
Below this value, the structures may be similar or different. (Adapted 
from C. Sander and R. Schneider, Proteins 9: 56–68, 1991.)

practical guidelines to assess if you can structurally model a sequence based 
on the structure of a known protein that has a certain % of homology (~identity) 



- Proteins fold spontaneously minimising their free energy  

- Anfinsen experiment demonstrated the direct relationship between sequence, 
structure and function 

- Proteins fold thanks to the hydrophobic effect creating an hydrophobic core and 
hydrophilic surface  

- The hydrophobic effect is the principal driving force underlying protein folding 

- Membrane proteins do not follow the same rule as they have to partition to the 
hydrophobic membrane environment 

29

Proteins – Take Home Messages 



Thermodynamics - the system 
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Revisitation of some thermodynamic concepts with particular relevance to 
biochemistry and biological systems (aka bioenergetics) 
- In order to be able to study a system, one has to define what that system is: 

- In (A) we have an example of a closed system in a test tube where we can keep track of 
the flow of energy in a meaningful way. This is the most common situation when we work in 
the lab (in vitro), but cells can be also sometime considered open systems. 
- In such system one can measure the heat released or taken up as a process proceeds. This 
can be measured by calorimeters.    
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- Energy can be exchanged between a closed system and the surroundings by 
doing work (w) or by heating (q).  
- Work and heat are two modes of transfer of energy - not energy forms per se 
- Eg an exothermic reaction occurring in the system – energy is released  

Combustion of glucose 

This reaction is called exothermic because the energy of the product state is lower. 
On the opposite when the energy of the products is higher, the reaction is called 
endothermic.

A

B which reaction is the most favorable?

Work and heat

where U is the internal energy of the system 
(U = K+P, kinetic + potential energy)



Work and heat
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But what are heat and work? how do we interpret this energy transfer at the molecular 
level?  

- Energy transferred to the surroundings as heat stimulates the random motion of 
molecules in the surroundings (i.e. increases their velocity and temperature) 

- When the system does mechanical work on the surroundings, it causes the order 
movement of some part of the surroundings - this energy can be better stored   



Work and heat
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But what are heat and work? how do we interpret this E transfer at the molecular 
level?  

Combustion of glucose Kinesin walks

- Energy transferred to the surroundings as heat stimulates the random motion of 
molecules in the surroundings (i.e. increases their velocity and temperature) 

- When the system does mechanical work on the surroundings, it causes the order 
movement of some part of the surroundings - this energy can be better stored   
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https://www.youtube.com/watch?v=y-uuk4Pr2i8
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1st Law of Thermodynamics or 
Conservation Law 

- In all physical and chemical processes the total energy of the system and the 
surroundings stays constant  (or of the system only if it is isolated)

- consider an example system where you 
can control/measure both temperature 
and pressure (work)

- In principle, to keep track of the changes of internal energy in the system we need 
to account for both changes in heat and work that are transferred   
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transferred to the surroundings as heat, this stimulates increased random motion 
of molecules in the surroundings (Figure 6.4). In contrast, when the system does 
mechanical work on the surroundings, it causes the ordered movement of some 
part of the surroundings. A simple example of mechanical work done by a chemi-
cal reaction is when one of the products of the reaction is a gas that causes the 
volume of the system to expand (Figure 6.5). 

Th e essential diff erence between heat and work is that energy transferred as heat 
cannot easily be brought back into the system. Energy that is transferred out of the 
system as work, in contrast, can be “stored” and then may be readily available for 
coupling to another process. Energy transfer as work is not restricted to mechani-
cal work, and can also be done in the form of chemical, electrical, or other kinds 
of work (see Chapter 9, Part C).

6.3 The fi rst law of thermodynamics states that energy is 
conserved

In all physical and chemical processes, the total energy of the system and the sur-
roundings stays constant. Th is statement is known as the fi rst law of thermody-
namics, which is written mathematically (in the language of calculus—that is, 
diff erentials) as follows: 

dUtotal = dUsystem + dUsurroundings = 0                                     (6.1)

surroundings

system

energy transfer

(A) random motion

surroundings

system

energy transfer

energy transferred
as heat

energy transferred
as work

(B) ordered motion

Heat and work 

Energy transfer to and from the 
system occurs in the form of heat 
and work. Heat transfer results 
in increased random motion 
of molecules. When energy is 
transferred as work, it results in 
the ordered movement of some 
component of the system or 
the surroundings, such as the 
movement of a piston.

Figure 6.4 Energy exchange 
between the system and the 
surroundings can take place as 
heat (A) or work (B).

PEXT

dV

+dq

dw = –PEXTdV = work done by system

dUsystem = dq + dw = dq – PEXTdV

Figure 6.5 Convention for the signs 
of work and heat. A very small 
change in the volume of the system 
upon expansion is illustrated here 
(exaggerated for clarity). We follow 
the convention that the work done 
or heat transferred have positive (+) 
signs when the energy of the system 
increases. In the example shown 
here, the system expands against an 
external pressure, and loses energy 
as it expands. Hence, a negative 
sign is associated with the work 
done (–PEXTdV). If the system were 
compressed, the sign of the work 
done would be positive. An amount of 
heat, dq, delivered to the system by 
the surroundings has a positive sign, 
because it increases the energy 
of the system.

The fi rst law of 
thermodynamics 

Also referred to as the law of 
conservation of energy, the fi rst 
law states that energy is neither 
created nor destroyed in a physical 
or chemical process.



How do we measure work and heat?  
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decreases (w is negative) if energy leaves it as work and its energy increases (w is 
positive) if energy enters it as work (Fig. 1.8).

(b) Expansion work

To see how energy fl ow as work can be determined experimentally, we deal fi rst 
with expansion work, the work done when a system expands against an opposing 
pressure. In bioenergetics we are not generally concerned with expansion work, 
which can occur as a result of gas-producing or gas-consuming chemical reac-
tions, but rather with the work of making and moving molecules in the cell, mus-
cle contraction, or cell division. However, even though we might not be explicitly 
interested in it, expansion work is done in any chemical reaction that involves 
gases, such as the oxidation of fuels and photosynthesis, and for a proper analysis 
of energy resources it must be taken into account. We shall see that that can be 
done automatically in the following section, which will build on the material 
developed here.

Consider the combustion of urea illustrated in Fig. 1.4 as an example of a 
reaction in which expansion work is done in the process of making room for 
the gaseous products, carbon dioxide and nitrogen in this case. We show in the 
following Justifi cation that when a system expands through a volume DV against a 
constant external pressure pex, the work done is

w = −pexDV Work of expansion against 
a constant pressure  (1.3)

Justification 1.1 Expansion work

To calculate the work done when a system expands from an initial volume Vi to 
a fi nal volume Vf, a change DV = Vf − Vi , we consider a piston of area A moving 
out through a distance h (Fig. 1.9). Th ere need not be an actual piston: we can 
think of the piston as representing the boundary between the expanding gas 
and the surrounding atmosphere. However, there may be an actual piston, such 
as when the expansion takes place inside an internal combustion engine.

Th e force opposing the expansion is the constant external pressure pex 
multiplied by the area of the piston (because force is pressure times area; 
Fundamentals F.2). Th e work done is therefore

work done by the system = distance (h) × opposing force (pexA)
 = h × pexA = pex × (hA) = pex × DV

Th e last equality follows from the fact that hA is the volume of the cylinder 
swept out by the piston as the gas expands, so we can write hA = DV. Th at is, for 
expansion work,

work done by the system = pexDV

Now consider the sign. A system does work and thereby loses energy (that is, 
w is negative) when it expands (when DV is positive). Th erefore, we need a 
negative sign in the equation to ensure that w is negative when DV is positive, 
so we obtain eqn 1.3.
 

According to eqn 1.3, the external pressure determines how much work a 
system does when it expands through a given volume: the greater the external 
pressure, the greater the opposing force and the greater the work that a system does. 

Fig. 1.8 Th e sign convention in 
thermodynamics: w and q are 
positive if energy enters the 
system (as work and heat, 
respectively) but negative if 
energy leaves the system.

Fig. 1.9 When a piston of area A 
moves out through a distance h, 
it sweeps out a volume DV = Ah. 
Th e external pressure pex opposes 
the expansion with a force pexA.

sign convention in thermodynamics: 
- w and q are positive if E enters the system 
- w and q are negative when E leaves the system 

(for example glucose combustion, or any 
exothermic reaction)

How do we measure work? 
Experimentally we can measure the work done by expansion of the system against 
an external pressure pext (for instance reactions producing gases at const pressure): 

w = -pext ΔV   

where the minus sign is because the system  
does work, thus loses energy when it expands. 
This is not a common case in bioenergetics,  
as volume remains usually constant.
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How do we measure heat? 

Remember the isothermal expansion of an ideal gas (isolated system), in this case 
w = -q, and this will give you a way to measure q from the work done. 
When a system is heated, its temperature T rises, and the ΔT depends on the 
internal properties of the substance - this is called heat capacity C, defined as: 

C = q / ΔT  , or  q= C ΔT 

Heat capacity is defined as the amount of heat required to increase the temperature 
of the system by 1 degree kelvin. 

C is an extensive property (depends on the size of substance, units kJ/K), thus you 
can also work with the molar heat capacity that C per mole (kJ/K*mol). 

You might recall from Physics II that C changes if considered at constant volume V 
(CV) or constant pressure p (Cp), in bioenergetics the most relevant one is Cp as 
in the lab or in the cell processes happen at constant pressure. 

Note: 1 cal = 4.184 J is defined by the heat capacity of water, and 1 cal is the 
amount of heat required to raise the T of 1 g of water by 1 K at 287.5 K and 1 atm. 

How do we measure work and heat?  



Internal energy (U)   
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The internal energy U is the sum of the kinetic and potential energy of your system, 
and while it might be difficult to calculate this in absolute terms, it is possible to 
calculate change in U given by transfer of work and heat: 

dU = dw + dq  

for instance in the case of ideal gas isothermal expansion ΔU = 0. Also remember 
that you can work with U per mole (measured in kJ/mol). U is a state function  ! 

This definition of ΔU provides a way to measure the  
internal energy of a system when a process/reaction  
takes place. In fact if we work at constant volume  
the work = 0 and thus ΔU = qV (this for instance  
could be the case of a biological cell).  

if ΔU = qV  then CV = ΔU /ΔT or  

CV = dU /dT  in differential form, or  

CV = [∂U/∂T]V 

36   1 THE FIRST LAW

work and provided it can do no other kind of work (so-called non-expansion 
work, such as electrical work), we can set w = 0. Th en eqn 1.6 simplifi es to

 
DU = qV Constant volume, no 

non-expansion work  
(1.8)

Th e subscript V signifi es that the volume of the system is constant. An example of 
a system that can be approximated as a constant-volume container is an individual 
biological cell.

Example 1.1 Calculating the change in internal energy

Nutritionists are interested in the use of energy by the human body, and we can 
consider our own body as a thermodynamic ‘system’. Suppose in the course of 
an experiment you do 622 kJ of work on an exercise bicycle and lose 82 kJ 
of energy as heat. What is the change in your internal energy? Disregard any 
matter loss by perspiration.

Strategy Th is example is an exercise in keeping track of signs correctly. When 
energy is lost from the system, w or q is negative. When energy is gained by the 
system, w or q is positive.

Solution To take note of the signs, we write w = −622 kJ (622 kJ is lost by doing 
work) and q = −82 kJ (82 kJ is lost by heating the surroundings). Th en eqn 1.6 
gives us

DU = w + q = (−622 kJ) + (−82 kJ) = −704 kJ

We see that your internal energy falls by 704 kJ. Later, that energy will be 
restored by eating.

We can use eqn 1.8 to obtain more insight into the heat capacity of a substance. 
Th e defi nition of heat capacity is given in eqn 1.5 (C = q/DT). At constant volume, 
q may be replaced by the change in internal energy of the substance, so

CV = DU
DT

 Definition of the constant-
volume heat capacity  

(1.9a)

Th e expression on the right is the slope of the graph of internal energy plotted 
against temperature, with the volume of the system held constant, so CV tells us 
how the internal energy of a constant-volume system varies with temperature. If, 
as is generally the case, the graph of internal energy against temperature is not a 
straight line, we interpret CV as the slope of the tangent to the curve at the tem-
perature of interest (Fig. 1.11). Th at is, the constant-volume heat capacity is the 
derivative of the function U with respect to the variable T at a specifi ed volume 
(see Mathematical toolkit 1.1):

Fig. 1.11 Th e constant-volume 
heat capacity is the slope of a 
curve showing how the internal 
energy varies with temperature. 
Th e slope, and therefore the heat 
capacity, may be diff erent at 
diff erent temperatures.

Self-test 1.2 An electric battery is charged by supplying 250 kJ of energy to 
it as electrical work (by driving an electric current through it), but in the pro-
cess it loses 25 kJ of energy as heat to the surroundings. What is the change in 
internal energy of the battery?

Answer: +225 kJ

A note on good practice 
Always attach the correct 
signs: use a positive sign when 
there is a fl ow of energy into 
the system and a negative sign 
when there is a fl ow of energy 
out of the system. Also, the 
quantity DU always carries 
a sign explicitly, even if it 
is positive: we never write 
DU = 20 kJ, for instance, but 
always +20 kJ.
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(c) The First Law of thermodynamics

Suppose we now consider an isolated system. Because an isolated system can nei-
ther do work nor heat the surroundings, it follows that its internal energy cannot 
change. Th at is,

Th e internal energy of an isolated system is constant. The First Law

Th is statement is the First Law of thermodynamics. It is closely related to the law 
of conservation of energy but allows for transaction of energy by heating as well 
as by doing work. Unlike thermodynamics, mechanics does not deal with the 
concept of heat.

Th e experimental evidence for the First Law is the impossibility of making a 
‘perpetual motion machine’, a device for producing work without consuming fuel. 
As we have already remarked, try as people might, they have never succeeded. 
No device has ever been made that creates internal energy to replace the energy 
drawn off  as work. We cannot extract energy as work, leave the system isolated for 
some time, and hope that when we return the internal energy will have become 
restored to its original value. Th e same is true of organisms: energy required for 
the sustenance of life must be supplied continually in the form of food as work of 
motion, metabolism, and catabolism is done by the organism.

1.6 The enthalpy
Most biological processes take place in vessels that are open to the atmosphere and 
subjected to constant pressure and not maintained at constant volume, so we need 
to learn how to treat quantitatively the energy exchanges that take place at constant 
pressure.

In general, when a change takes place in a system open to the atmosphere, the 
volume of the system changes. For example, the thermal decomposition of 
1.0 mol CaCO3(s) at 1 bar results in an increase in volume of 89 dm3 at 800°C on 
account of the carbon dioxide gas produced. To create this large volume for the 
carbon dioxide to occupy, the surrounding atmosphere must be pushed back. 
Th at is, the system must perform expansion work. Th erefore, although a certain 
quantity of heat may be supplied to bring about the endothermic decomposition, 
the increase in internal energy of the system is not equal to the energy supplied as 
heat because some energy has been used to do work of expansion (Fig. 1.14). In 
other words, because the volume has increased, some of the heat supplied to the 
system has leaked back into the surroundings as work.

Another example is the oxidation of a fat, such as tristearin, to carbon dioxide 
in the body. Th e overall reaction is

2 C57H110O6(s) + 163 O2(g) → 114 CO2(g) + 110 H2O(l)

In this exothermic reaction there is a net decrease in volume equivalent to the 
elimination of (163 − 114) mol = 49 mol of gas molecules for every 2 mol of 
tristearin molecules that reacts. Th e decrease in volume at 25°C is about 600 cm3 
for the consumption of 1 g of fat. Because the volume of the system decreases, the 
atmosphere does work on the system as the reaction proceeds. Th at is, energy is 
transferred to the system as it contracts.4 For this reaction, the decrease in the 
internal energy of the system is less than the energy released as heat because some 
energy has been restored by doing work.

Fig. 1.12 Th e internal energy of a 
system varies with volume and 
temperature, perhaps as shown 
here by the surface. Th e variation 
of the internal energy with 
temperature at one particular 
constant volume is illustrated by 
the curve drawn parallel to T. Th e 
slope of this curve at any point is 
the partial derivative (∂U/∂T)V.

Fig. 1.13 Th e curved sheet shows 
how a property (for example, 
the altitude) changes as two 
variables (for example, latitude 
and longitude) are changed. 
Th e altitude is a state property 
because it depends only on the 
current state of the system. Th e 
change in the value of a state 
property is independent of the 
path between the two states. 
For example, the diff erence in 
altitude between the initial and 
fi nal states shown in the diagram 
is the same whatever path (as 
depicted by the red and white 
lines) is used to travel between 
them.

4 In eff ect, a weight has been lowered in the surroundings, so the surroundings can do less work 
aft er the reaction has occurred. Some of their energy has been transferred into the system.
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If we work at constant pressure, then you can have the case in which there is no 
change in volume (w=0) where the heat transferred is q = ΔU  

or the system is free to change volume and the heat is q = ΔU + p ΔV 

Enthalpy 
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expansion work being done by the system against the atmosphere, which would 
change the amount of heat transferred from the surroundings. 

To see how expansion work aff ects the amount of heat transferred, consider a 
test tube in which a chemical reaction is taking place. Th e test tube is capped 
by a frictionless piston, which can move up and down, thereby maintaining 

dq (heat
transferred)

energy = U1 energy = U2

dq (heat
transferred)

State 1 State 2

State 1 State 2

constant-volume process

constant external 
pressure process

heat transferred: q = U2 – U1 = ¨U

heat transferred: q = H2 – H1 = ¨H = ¨U + PEXT¨V

enthalpy = H1 enthalpy = H2

expan-
sion
work

PEXT PEXT
PEXT

(B)

(C)

chemical
reaction

external pressure = PEXT

A (solid)
B (gas)

expansion work
done by gas:
change in volume
= ¨V

amount of work done = PEXT¨V

¨V

PEXT

(A)

PEXT

Figure 6.6 Energy and Enthalpy. 
(A) Under conditions of constant 
external pressure, reactions or 
processes that change the volume 
of the system (∆V) cause the system 
to do mechanical work. In this 
case, converting solid A to gaseous 
B increases the volume. (B) For a 
process occurring under conditions of 
constant volume, the heat transferred 
to the system is given by the change 
in energy, U, of the system. (C) For 
a process occurring under constant 
pressure conditions, the heat 
transferred is given by the change in 
enthalpy, H, of the system.

 THERMODYNAMICS OF HEAT TRANSFER 247

expansion work being done by the system against the atmosphere, which would 
change the amount of heat transferred from the surroundings. 

To see how expansion work aff ects the amount of heat transferred, consider a 
test tube in which a chemical reaction is taking place. Th e test tube is capped 
by a frictionless piston, which can move up and down, thereby maintaining 

dq (heat
transferred)

energy = U1 energy = U2

dq (heat
transferred)

State 1 State 2

State 1 State 2

constant-volume process

constant external 
pressure process

heat transferred: q = U2 – U1 = ¨U

heat transferred: q = H2 – H1 = ¨H = ¨U + PEXT¨V

enthalpy = H1 enthalpy = H2

expan-
sion
work

PEXT PEXT
PEXT

(B)

(C)

chemical
reaction

external pressure = PEXT

A (solid)
B (gas)

expansion work
done by gas:
change in volume
= ¨V

amount of work done = PEXT¨V

¨V

PEXT

(A)

PEXT

Figure 6.6 Energy and Enthalpy. 
(A) Under conditions of constant 
external pressure, reactions or 
processes that change the volume 
of the system (∆V) cause the system 
to do mechanical work. In this 
case, converting solid A to gaseous 
B increases the volume. (B) For a 
process occurring under conditions of 
constant volume, the heat transferred 
to the system is given by the change 
in energy, U, of the system. (C) For 
a process occurring under constant 
pressure conditions, the heat 
transferred is given by the change in 
enthalpy, H, of the system.
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Therefore to characterize these types of systems we introduce another variable of 
the system – Enthalpy (H) as the sum of the internal energy U and pressure times 
volume (pV) that takes into account the the potential work done by the system 

H = U + pV 

thus the change of H in case the pressure remains constant is : 

ΔH = ΔU + pΔV 

however, the change in H boils down to the heat transferred at constant pressure 

ΔH = qp  or in differential notation dH = dq 

this is because ΔU + pΔV = (w + q) + pΔV = (-pΔV + q) + pΔV = q 

Thus now we have identified a state function H, enthalpy that allows us to 
characterise processes at constant pressure. Thus exothermic reaction are now 
characterised by ΔH < 0 and vice versa endothermic reactions have ΔH > 0

Enthalpy 



Heat Capacity at constant pressure 
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Even more important is that enthalpy can be measured experimentally (calorimetry) 
through the heat-capacity (Cp). In fact if ΔH = qp and C=q/ΔT, you obtain that             
C = ΔH/ΔT at constant pressure or  

Cp = ΔH /ΔT or ΔH = Cp ΔT or in differential notation dH = Cp dT or Cp = [∂H/∂T]p 

Heat capacity is defined as the amount of heat required to 
increase the temperature of the system by 1 kelvin. 

Moreover, C at constant pressure is always higher than at 
constant volume, as remember from ideal gases that Cp - 
CV = R 

This is because if a system is free to expand at constant 
pressure, some energy supplied as heat can be 
transferred to the surrounding as work. This also implies 
that H is always greater than U.
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free to expand, some of the energy supplied as heat is free to escape back into the 
surroundings as work. Th erefore, the rise in temperature at constant pressure is 
not as great as at constant volume (when no expansion work can be done), and 
the heat capacity is correspondingly greater.

Fig. 1.16 Th e heat capacity at 
constant pressure is the slope 
of the curve showing how the 
enthalpy varies with temperature; 
the heat capacity at constant 
volume is the corresponding 
slope of the internal energy 
curve. Note that the heat capacity 
varies with temperature (in 
general) and that Cp is greater 
than CV.

A brief comment
Electrical charge is measured 
in coulombs, C. Th e motion of 
charge gives rise to an electric 
current, I, measured in 
coulombs per second, or 
amperes, A, where 1 A = 1 C s−1. 
If a constant current I fl ows 
through a potential diff erence 
V (measured in volts, V), the 
total energy supplied in an 
interval t is IV t. Because 
1 A V s = 1 (C s−1) V s = 
1 C V = 1 J, the energy is 
obtained in joules with the 
current in amperes, the 
potential diff erence in volts, 
and the time in seconds.

A brief illustration

If we pass a current of 10.0 A from a 12 V supply for 300 s, then from eqn 1.17 
the energy supplied as heat is

q = (10.0 A) × (12 V) × (300 s) = 3.6 × 104 A V s = 36 kJ

because 1 A V s = 1 J. If the observed rise in temperature is 5.5 K, then the 
calorimeter constant is C = (36 kJ)/(5.5 K) = 6.5 kJ K−1.

Alternatively, C may be determined by using a reaction of known heat output, 
such as the combustion of benzoic acid (C6H5COOH), for which the heat out-
put is 3227 kJ per mole of C6H5COOH consumed. With C known, it is simple 
to interpret an observed temperature rise as a release of energy as heat.

(a) Bomb calorimeters

Th e most common device for measuring DU is an adiabatic bomb calorimeter 
(Fig. 1.17). Th e process under study is initiated inside a constant-volume con-
tainer, the ‘bomb’. Th e bomb is immersed in a stirred water bath, and the whole 
device is the calorimeter. Th e calorimeter is also immersed in an outer water 
bath. Th e water in the calorimeter and of the outer bath are both monitored 
and adjusted to the same temperature. Th is arrangement ensures that there is 
no net loss of heat from the calorimeter to the surroundings (the bath) and 
hence that the calorimeter is adiabatic.

Th e change in temperature, DT, of the calorimeter is proportional to the 
energy that the process releases or absorbs as heat. Th erefore, by measuring 
DT we can determine qV and hence fi nd DU. Th e conversion of DT to qV is best 
achieved by calibrating the calorimeter using a process of known energy output 
and determining the calorimeter constant, the constant C in the relation

q = CDT Calorimeter constant  (1.16)

Th e calorimeter constant may be measured electrically by passing a constant 
current, I, from a source of known potential diff erence, V, through a heater for a 
known period of time, t, for then

q = IV t (1.17)

6 Th e word calorimeter comes from ‘calor’, the Latin word for heat.

In the laboratory 1.1 Calorimetry

Calorimetry is the study of heat transfer during physical and chemical pro-
cesses. A calorimeter6 is a device for measuring energy transferred as heat. 
Here we explore three common types of calorimeters used in investigations of 
nutrients, fuels, and biological processes.

~ 8.314 J⋅K−1⋅mol−1



Heat Capacity at constant pressure 
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Practical example in biochemistry: unfolding of a protein by temperature. 
This is a usual results from a calorimetric experiment 

Differential 
Scanning 
Calorimeter  



Let’s Discuss !!!!!
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A. Pick one of the letters located in a region of the curve where: 
	 1) Protein is fully folded 
	 2) Protein is fully unfolded 
	 3) Half of the protein molecules are unfolded 

B.   If I want to determine the enthalpy of the unfolding process – how can I    
      obtain such a value: 
	 1) Highest Cp value 
	 2)  Area under the curve 
	 3) Delta between starting and finishing Cp   

Tm= melting T  



What to know ...
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• Energy released by chemical reactions is converted into heat and 
work. 

• The total energy of the system and the surroundings is conserved 
- this is the first law of thermodynamics. 

• The heat transferred to a system under conditions of constant 
pressure is equal to the change in enthalpy of the system. 

• The heat capacity of a macromolecular solution increases and 
then decreases with temperature as the macromolecule unfolds 
because it can take up energy by passing to conformations at 
higher energy 
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sharply, reaches a maximum value, and then falls sharply to a new plateau value 
(see Figure 6.11). A sample of pure water does not exhibit this behavior, which is 
characteristic of protein or DNA molecules present in the solution. As discussed 
in Chapter 10, what happens when heat is added to the system is that the pro-
tein molecules, which are folded to begin with, begin to unfold. Th e heat capacity 
reaches a maximum value when half of the protein molecules are unfolded. Th e 
temperature corresponding to this situation is known as the melting tempera-
ture of the protein.

Why does the heat capacity increase and then decrease as the protein molecules 
unfold? To understand why this happens we need to consider how the energy of 
a molecule changes with temperature. For any kind of molecule more complex 
than an ideal monatomic gas, delivery of heat into the system changes the energy 
of the system in two ways (Figure 6.12). Some of the heat goes into increasing 
the kinetic energy of the molecules, which manifests itself as an increase in the 
temperature of the system. In addition, some of the heat goes into exciting mole-
cules from lower energy states into higher ones, thereby increasing their potential 
energy. In the example shown in Figure 6.12B, one of the molecules has under-
gone a conformational change from a trans conformation to a cis conformation. 
Th e conformational change takes up energy, and so the increase in kinetic energy, 
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Figure 6.11 Heat capacity 
of a protein as a function of 
temperature. The graph shows the 
heat capacity at constant pressure 
(CP) as a function of temperature. The 
heat capacity rises gradually at fi rst, 
and then increases sharply before 
decreasing. The temperature at the 
peak value of the heat capacity is 
known as the melting temperature 
of the protein and is indicated by a 
red line. See Chapter 10 for a detailed 
analysis of this graph. 

(B)

heat

(A)

heat
Figure 6.12 More complex 
molecules take up more energy 
for the same increment in 
temperature. (A) A schematic 
representation of an ideal monatomic 
gas. The lengths of the small arrows 
indicate the velocities of the atoms. 
As heat is delivered to the system, the 
atoms move faster, and the kinetic 
energy increases (see Box 6.3). 
(B) A more complicated molecule, 
with four atoms, is shown here. At 
low temperature, all the molecules 
are in one conformation. As heat is 
delivered, the molecules start to move 
faster, but they can also undergo a 
conformational change to a higher-
energy conformation, indicated by the 
red circle.
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Energy Levels    
- We need to think about molecules as entities that despite their homogenous 
composition populate multiple energetic levels, this is due to the quantum mechanical 
nature of matter - biological matter included 

- An example for some simple molecules:  

- Imagine how the energy levels would look for molecules with thousands of atoms 

- The Boltzmann distribution provides the theoretical framework  to quantify the 
populations at different energetic levels
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Boltzmann Distribution
If you have eg an isolate system with N - number of atoms or molecules, and 
total energy U, when N is large (~NA), it is difficult to know how the energy is 
distributed through N atoms. Thus we can only describe in statistical terms the  
population of a state, i.e. the Ni – number of molecules that will be found in an 
energy level with energy Ei. 

If you have M energy levels you can have different state distributions of this kind 
{N0, N1, … , NM}, eg if N = 100 , {98,0,2, …} or {96,1,1,1,1, …}. The most 
probable state is the one with more potential configurations (this is called the 
multiplicity W=M!/(N!(M-N)!), check the book for more details) and it is described 
by the Boltzmann distribution:

where Q is the partition function

and kB is the Boltzmann constant (kB = 1.381 x 10-23 J/K)

From this, temperature T is a parameter that characterises the distribution 
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- definition of the Boltzmann distribution:

- the partition function Q is constant at a given temperature (we assume  
that the energies of Ui don’t change with T), therefore we can say that 

Boltzmann Distribution and Energetic Levels    

and thus you can estimate the ratios of between different populations at 
different energy levels using the following relation:   

Remember that the gas constant R is the “molar” form of kB, in fact: 
R = NA kB = 8.3145 J/K*mol, thus if you work with KJ/mol you have to use RT in 
the Boltzmann distribution 
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-With the formula below we can access the ratios between  
populations of different energy levels using the following relation:  

Boltzmann Distribution and Energetic Levels    

At 300 K, the value of kBT is 4.2 × 10−21 J. Th is is an awkwardly small number, and 
it is more convenient to switch the units of energy to kJ•mol–1. Since 1 mol = 6.022 
× 1023 molecules,

(6.33)

Th us,

at 300 K, where ∆U is the diff erence in energy between the fi rst and second levels 
in units of kJ•mol–1. 

Table 6.1 expresses the Boltzmann factor e
U

k TB( )−∆
 as a function of energy in 

multiples of the value of kBT. Based on these values, we can see that when the dif-
ference in energy between two levels is much greater than kBT, the higher energy 
level is not populated to a signifi cant extent (see Figure 6.15). For example, if the 
energy diff erence between two levels is 2kBT, then the population of the upper 
level is ~13% that of the lower level. If the energy diff erence is 10kBT, then the 
population of the upper level decreases to 0.0045%.

Th e Boltzmann factor explains why we ignored electronic excitations when con-
sidering the contributions to the heat capacity of an ideal gas. Because we are 
concerned primarily with biological systems, we consider energy changes that 
occur near room temperature—that is, T ≈ 300 K and kBT ≈ 2.5 kJ•mol–1. Th e 
energy diff erence between the lowest electronic energy level and the next highest 
one is typically ~1000 kJ•mol–1—that is, ∆U >> kBT for electronic energy levels at 
room temperature. Th e much smaller thermal energy at room temperature (~2.5 
kJ•mol–1) is very unlikely to excite molecules to higher electronic energy levels. 
We can recognize that this is the case by considering that ultraviolet radiation can 
excite electrons into higher energy levels. Th e wavelength of ultraviolet radiation 
is ~100 nm, corresponding to an energy of ~1,200 kJ•mol–1.

When the Boltzmann constant (kB = 1.4 × 10−23 J•K−1) is expressed in units of 
J•mol–1, it is equivalent to the gas constant, R. Th at is, the gas constant is simply 
Boltzmann’s constant multiplied by Avogadro’s number (NA):

(6.34)

What this means is that if we use units of J•mol–1 for the energy, then instead of 
kBT we simply use RT to calculate the Boltzmann factor.
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multiples of the value of kBT. Based on these values, we can see that when the dif-
ference in energy between two levels is much greater than kBT, the higher energy 
level is not populated to a signifi cant extent (see Figure 6.15). For example, if the 
energy diff erence between two levels is 2kBT, then the population of the upper 
level is ~13% that of the lower level. If the energy diff erence is 10kBT, then the 
population of the upper level decreases to 0.0045%.

Th e Boltzmann factor explains why we ignored electronic excitations when con-
sidering the contributions to the heat capacity of an ideal gas. Because we are 
concerned primarily with biological systems, we consider energy changes that 
occur near room temperature—that is, T ≈ 300 K and kBT ≈ 2.5 kJ•mol–1. Th e 
energy diff erence between the lowest electronic energy level and the next highest 
one is typically ~1000 kJ•mol–1—that is, ∆U >> kBT for electronic energy levels at 
room temperature. Th e much smaller thermal energy at room temperature (~2.5 
kJ•mol–1) is very unlikely to excite molecules to higher electronic energy levels. 
We can recognize that this is the case by considering that ultraviolet radiation can 
excite electrons into higher energy levels. Th e wavelength of ultraviolet radiation 
is ~100 nm, corresponding to an energy of ~1,200 kJ•mol–1.

When the Boltzmann constant (kB = 1.4 × 10−23 J•K−1) is expressed in units of 
J•mol–1, it is equivalent to the gas constant, R. Th at is, the gas constant is simply 
Boltzmann’s constant multiplied by Avogadro’s number (NA):

(6.34)
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-With the formula below we can access the ratios between  
populations of different energy levels using the following relation:  

3 molecules with different accessible energy levels - levels that are less spaced 
(< kT) are more accessible 

Boltzmann Distribution and Energetic Levels    

At 300 K, the value of kBT is 4.2 × 10−21 J. Th is is an awkwardly small number, and 
it is more convenient to switch the units of energy to kJ•mol–1. Since 1 mol = 6.022 
× 1023 molecules,

(6.33)

Th us,

at 300 K, where ∆U is the diff erence in energy between the fi rst and second levels 
in units of kJ•mol–1. 

Table 6.1 expresses the Boltzmann factor e
U

k TB( )−∆
 as a function of energy in 

multiples of the value of kBT. Based on these values, we can see that when the dif-
ference in energy between two levels is much greater than kBT, the higher energy 
level is not populated to a signifi cant extent (see Figure 6.15). For example, if the 
energy diff erence between two levels is 2kBT, then the population of the upper 
level is ~13% that of the lower level. If the energy diff erence is 10kBT, then the 
population of the upper level decreases to 0.0045%.

Th e Boltzmann factor explains why we ignored electronic excitations when con-
sidering the contributions to the heat capacity of an ideal gas. Because we are 
concerned primarily with biological systems, we consider energy changes that 
occur near room temperature—that is, T ≈ 300 K and kBT ≈ 2.5 kJ•mol–1. Th e 
energy diff erence between the lowest electronic energy level and the next highest 
one is typically ~1000 kJ•mol–1—that is, ∆U >> kBT for electronic energy levels at 
room temperature. Th e much smaller thermal energy at room temperature (~2.5 
kJ•mol–1) is very unlikely to excite molecules to higher electronic energy levels. 
We can recognize that this is the case by considering that ultraviolet radiation can 
excite electrons into higher energy levels. Th e wavelength of ultraviolet radiation 
is ~100 nm, corresponding to an energy of ~1,200 kJ•mol–1.

When the Boltzmann constant (kB = 1.4 × 10−23 J•K−1) is expressed in units of 
J•mol–1, it is equivalent to the gas constant, R. Th at is, the gas constant is simply 
Boltzmann’s constant multiplied by Avogadro’s number (NA):

(6.34)

What this means is that if we use units of J•mol–1 for the energy, then instead of 
kBT we simply use RT to calculate the Boltzmann factor.
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Th e partition function, Q, is a normalization factor that ensures that the probabil-
ity of fi nding a molecule in any one of the energy levels is 1.0, as will be explained 
in Chapter 8. Th e value of Q is a constant at a given temperature (that is, we assume 
that the energies, Ui , of the diff erent levels do not change with temperature), and 
so we can write a simpler form of the Boltzmann distribution as follows: 

(6.31)

Th e exponential term on the right-hand side of Equation 6.31 is known as the 
Boltzmann factor, and it determines the relative population of an energy level, as 
explained below. Note that the term kBT has units of energy, and that it is the ratio 
of the energy to the value of kBT that enters into the Boltzmann factor.

Th e Boltzmann distribution helps us understand which energy levels will be pop-
ulated to a signifi cant extent at a certain temperature at equilibrium (Figure 6.16). 
For example, consider any two energy levels for a molecule. Call the lower energy 
level 1, and call the higher energy level 2. Th e ratio of the number of molecules in 
level 2, N2 , to the number of molecules in level 1, N1, is given by the Boltzmann 
distribution as follows: 

(6.32)

where ∆U = U2 – U1.
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Figure 6.16 Population of energy levels as a function of the energy gap and temperature, as given by the Boltzmann 
distribution. (A) The energy spacings for three different kinds of molecules are shown, all at the same temperature. The energy of 
each level is shown in multiples of kBT. Molecule A has a large energy gap (∆U > kBT). The population of the upper levels is small. 
Molecule B has an intermediate energy gap (∆U ≈ kBT). The population of the upper levels increases. Molecule C has a small energy 
gap (∆U < kBT), and the population of the upper levels becomes much larger. The relative population, p, of each level is indicated 
on the right of each diagram. (B) Population of energy levels for the same molecule are shown at different temperatures. The 
population of the upper levels increases with temperature. Note that real molecules do not have equally spaced energy levels, and 
the examples shown here are merely illustrative.
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-With the formula below we can access the ratios between  
populations of different energy levels using the following relation:  

same molecule at different T, the occupancy of energy levels increases with T

Boltzmann Distribution and Energetic Levels    

At 300 K, the value of kBT is 4.2 × 10−21 J. Th is is an awkwardly small number, and 
it is more convenient to switch the units of energy to kJ•mol–1. Since 1 mol = 6.022 
× 1023 molecules,

(6.33)

Th us,

at 300 K, where ∆U is the diff erence in energy between the fi rst and second levels 
in units of kJ•mol–1. 

Table 6.1 expresses the Boltzmann factor e
U

k TB( )−∆
 as a function of energy in 

multiples of the value of kBT. Based on these values, we can see that when the dif-
ference in energy between two levels is much greater than kBT, the higher energy 
level is not populated to a signifi cant extent (see Figure 6.15). For example, if the 
energy diff erence between two levels is 2kBT, then the population of the upper 
level is ~13% that of the lower level. If the energy diff erence is 10kBT, then the 
population of the upper level decreases to 0.0045%.

Th e Boltzmann factor explains why we ignored electronic excitations when con-
sidering the contributions to the heat capacity of an ideal gas. Because we are 
concerned primarily with biological systems, we consider energy changes that 
occur near room temperature—that is, T ≈ 300 K and kBT ≈ 2.5 kJ•mol–1. Th e 
energy diff erence between the lowest electronic energy level and the next highest 
one is typically ~1000 kJ•mol–1—that is, ∆U >> kBT for electronic energy levels at 
room temperature. Th e much smaller thermal energy at room temperature (~2.5 
kJ•mol–1) is very unlikely to excite molecules to higher electronic energy levels. 
We can recognize that this is the case by considering that ultraviolet radiation can 
excite electrons into higher energy levels. Th e wavelength of ultraviolet radiation 
is ~100 nm, corresponding to an energy of ~1,200 kJ•mol–1.

When the Boltzmann constant (kB = 1.4 × 10−23 J•K−1) is expressed in units of 
J•mol–1, it is equivalent to the gas constant, R. Th at is, the gas constant is simply 
Boltzmann’s constant multiplied by Avogadro’s number (NA):

(6.34)

What this means is that if we use units of J•mol–1 for the energy, then instead of 
kBT we simply use RT to calculate the Boltzmann factor.
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Th e partition function, Q, is a normalization factor that ensures that the probabil-
ity of fi nding a molecule in any one of the energy levels is 1.0, as will be explained 
in Chapter 8. Th e value of Q is a constant at a given temperature (that is, we assume 
that the energies, Ui , of the diff erent levels do not change with temperature), and 
so we can write a simpler form of the Boltzmann distribution as follows: 

(6.31)

Th e exponential term on the right-hand side of Equation 6.31 is known as the 
Boltzmann factor, and it determines the relative population of an energy level, as 
explained below. Note that the term kBT has units of energy, and that it is the ratio 
of the energy to the value of kBT that enters into the Boltzmann factor.

Th e Boltzmann distribution helps us understand which energy levels will be pop-
ulated to a signifi cant extent at a certain temperature at equilibrium (Figure 6.16). 
For example, consider any two energy levels for a molecule. Call the lower energy 
level 1, and call the higher energy level 2. Th e ratio of the number of molecules in 
level 2, N2 , to the number of molecules in level 1, N1, is given by the Boltzmann 
distribution as follows: 

(6.32)

where ∆U = U2 – U1.
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Figure 6.16 Population of energy levels as a function of the energy gap and temperature, as given by the Boltzmann 
distribution. (A) The energy spacings for three different kinds of molecules are shown, all at the same temperature. The energy of 
each level is shown in multiples of kBT. Molecule A has a large energy gap (∆U > kBT). The population of the upper levels is small. 
Molecule B has an intermediate energy gap (∆U ≈ kBT). The population of the upper levels increases. Molecule C has a small energy 
gap (∆U < kBT), and the population of the upper levels becomes much larger. The relative population, p, of each level is indicated 
on the right of each diagram. (B) Population of energy levels for the same molecule are shown at different temperatures. The 
population of the upper levels increases with temperature. Note that real molecules do not have equally spaced energy levels, and 
the examples shown here are merely illustrative.
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Boltzmann Distribution in macromolecules

Protein molecules take up 
energy as they unfold 

One can see how the formalism of the Boltzmann distribution helps us 
to describe what occurs in proteins and other biomolecules.

Shifting the distribution of populations 
with temperature 



Engineering different protein states
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Ground State (xtal-3dmv) 
Excited State 
Benzene 
Excited State Stabilizing Mutations 

Lysozyme

G113A  

R119P  

- Proteins can co-exist in multiple conformational states (e.g. ground and excited)

Protein Mutants 



What to know...
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- The Boltzmann distribution describes the populations of 
molecules in different energy levels.  

- Energy levels corresponding to energies much greater 
than kBT above the lowest energy level are not highly 
populated. 

- The energy required to break molecular interactions in 
folded macromolecules gives rise to the peak in heat 
capacity when the temperature is increased.


