
Welcome to BIO-210
Applied software engineering for life sciences

November 11th 2024 – Lecture 9

Prof. Alexander MATHIS

EPFL

Announcements
Today (Monday at 10am) v4 on testing was due, we will grade it. If you haven’t released it yet, please do
so asap.

Today is the last in person quiz: please come in time, there will be no extra time. Submission closes at
13:35. To start, you’ll need to sign in. Bring your Camipro. No notes are allowed. If you switch to a
different tab from Moodle’s quiz or communicate with somebody, you’ll receive 0 points.

Monday 15:15 - 16: my office hours at SV 2811

Date Topic Software version Software releases Grading / Feedback

0 09/09/2024 Python introduction I

1 16/09/2024 Public holiday

2 23/09/2024 Python introduction II

3 30/09/2024 Git and GitHub (+installation VS Code)

4 07/10/2024 Project introduction v1

5 14/10/2024 Functionify v2 v1

6 21/10/2024 EPFL fall break

7 28/10/2024 Visualization and documentation v3 v2 code review (API)

8 04/11/2024 Unit-tests, functional tests v4 v3

9 11/11/2024 Code refactoring v5 v4 graded (tests)

10 18/11/2024 Profiling and code optimization v6 v5 code review

11 25/11/2024 Object oriented programming v7 v6 graded (speed)

12 02/12/2024 Model analysis and project report v8 v7 code review (OO)

13 09/12/2024 Work on project

14 16/12/2024 Wrap up v8 graded (project)

Practical tips for addressing code reviews

The course assistants opened GitHub issues on your project to give feedback. GitHub Issues allow one to
track ideas, feedback, tasks, or bugs for work on GitHub.

Importantly, Issues also allow traceability:

you can link your pull request (PR) to isssues (opened by the assistants) with the corresponding

"#number". E.g. in a commit message you can write "git commit -m "closes #3", which will literally close

issue #3 when you push it to GitHub (e.g. see this issue)

You can also cross-link by putting hyperlinks: example

These mechanisms support working in teams

A few weeks ago, you got code reviews for version v2 and you will also get feedback for v5 (due next week).

` `

https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://github.com/DeepLabCut/DeepLabCut/issues/1150
https://github.com/DeepLabCut/DeepLabCut/pull/1582

Your README.md file

should be succinct, but detailed

notice that it’s the face of your project

Typical content:

Project title + description

Installation guide/requirements (see below)

Examples (for using the code)

License

A README is a text file that introduces and explains your GitHub project.

https://choosealicense.com/

Examples

Scipy

a somewhat recent machine learning project in my group: DMAP

a recent machine learning project in my group: hBehaveMAE

ML-From-Scratch

Awesome Python

Python The Algorithms

100-days of ML

Awesome DeepVision

Unity ML-Agents Toolkit

but also the class Demo project.

A readme is indeed the face of your project: Demo project without readme

Check out some example projects:

https://github.com/scipy/scipy
https://github.com/amathislab/dmap
https://github.com/amathislab/BehaveMAE
https://github.com/eriklindernoren/ML-From-Scratch
https://github.com/vinta/awesome-python
https://github.com/TheAlgorithms/Python
https://github.com/Avik-Jain/100-Days-Of-ML-Code
https://github.com/kjw0612/awesome-deep-vision#readme
https://github.com/Unity-Technologies/ml-agents
https://github.com/EPFL-BIO-210/demo-project
https://github.com/EPFL-BIO-210/demo-project/tree/NoReadmeDemo

How to format a Readme.md?

it’s simple to learn, just skim this Markup Guide 📝🎨🧑🤹🛠…

Check out this readme generator

Formatting READMEs is based on the Markdown language, which enables you to write nicely formatted and
visually appealing texts!

https://docs.github.com/en/github/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://rahuldkjain.github.io/gh-profile-readme-generator/

Use a .gitignore file

Docs for gitignore

demo-project/.gitignore.

Note: if you already have unwanted files in your repository and create a .gitignore, you need to remove
those, as they are already tracked with git.

Use a .gitignore file to exclude files you don’t want to version control (e.g. notebook checkpoints, pycache,
files from your IDE, …).

https://git-scm.com/docs/gitignore
https://github.com/EPFL-BIO-210/demo-project/blob/main/.gitignore

How to make code reproducible?
make dependencies and requirements explicit (next slide)

use version control and store which version produced what results

use tests / doctests

do not comment/uncomment sections of your code to control the behavior. This approach makes it error

prone, hard to reproduce and difficult to automate. Instead, use if/else statements to control the flow of

your program

You could also consider making different experiment scripts (to reproduce each experiment)

Documenting requirements: Software dependencies
Software often has many dependencies

Code might run differently with different library versions!

Thus, placing dependencies within a contained environment can minimize issues and allow others to run
the code just like it runs on your system

Different programs might also require different libraries, which can be supported by environments

Common python environments include Anaconda (conda) and virtualenv

-> share an enviroment/requirement file (e.g. see demo-project)

-> also see DMAP

` `

https://docs.anaconda.com/navigator/tutorials/manage-environments/
https://pypi.org/project/virtualenv/
https://github.com/EPFL-BIO-210/demo-project#requirements
https://github.com/amathislab/dmap

Discussion: How could your code be organized?

How could your code be organized?

README (see above, also demo code!) + .gitignore file

a main function that is clean and easy to run (additionally experimentX.py , exptY.py , …)

a test function with all our doctests/pytests

scripts containing functions (named reasonably, e.g. TuringModel.py) and a utils.py script

containing plotting etc.

Results:

a folder (e.g. called 'results') containing saved experiments/outcomes (could have traceable names: e.g.

experiment17_parametersXYZ.png are the results for experiment17.py)

Note: you could also add jupyter notebooks that integrate documentation (description + figures)

NOTE: for BIO-210 just follow the problem sets (to get the highest score!); e.g. main.py in v2 should do

whatever you’re asked to have implemented

Code and Basics:

` ` ` `

` ` ` `

` ` ` `

Further reading
Good enough practices in scientific computing - a very short article!

Guide for reproducible research by the Alan Turing Institute

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510
https://the-turing-way.netlify.app/reproducible-research/reproducible-research.html

Questions?

Quiz: How can we make this faster?
1 def generate_patterns(num_patterns, pattern_size):
2
3 patterns = np.zeros([num_patterns, pattern_size])
4 for i in range(num_patterns):
5 for j in range(pattern_size):
6 patterns[i,j]=np.random.choice([-1,1])
7
8 return patterns

Quiz: Are these good doctrings?
1 def generate_pattern(pattern_number,pattern_size):
2 '''
3 Generate_pattern generates an array of (pattern_number) patterns of
4 neuron connections of size (L)
5
6 Parameters
7 -------------------
8 pattern_number : int
9 pattern_size : int
10 Returns an array consisting of "pattern_number" patterns
11 -------------------
12 '''
13 return np.random.choice([-1,1],size=(pattern_number,pattern_size))

Questions?

Selected function topics

Reminder: Function-related statements and
expressions

Statement or expression Examples

Call expression myfunc('Seppl',175,age=22,*rest)

def def printer(message):

  print('Hello'+message)

return def adder(a,b=1,*c):

  return a+b+c[0]

global
x = 'outside'

def changer():

  global x; x= 'new'

lambda func = [lambda x: x**2, lambda x: x**3]

` `

` `

` `

` ` ` `

Arbitrary positional arguments collectors (*args)
When this function is called all arguments are assigned to a tuple args.

1 In [1]: def f(*args): print(args) # Note use of *
2
3 In [2]: f()
4 () # returns a tuple!
5
6 In [3]: f(1)
7 (1,) # returns a tuple!
8
9 In [4]: f(1,2,3,4)
10 (1, 2, 3, 4) # returns a tuple!
11
12 In [5]: f("EPFL","is","great!")
13 ('EPFL', 'is', 'great!') # returns a tuple!

Why is *args useful?
For instance, imagine you need to sum all numbers somebody gives you …

1 In [1]: def summation(a,b,c):
2 ...: return a+b+c
3 ...: summation(1,2,3)
4 Out[1]: 6
5 In [2]: summation(1,2,3,4,5) # That's too many for your function!
6 ---
7 TypeError Traceback (most recent call last)
8 <ipython-input-2-0851c3d51d8a> in <module>
9 ----> 1 summation(1,2,3,4,5)
10 TypeError: summation() takes 3 positional arguments but 5 were given
11 In [3]: def summation(*args):
12 ...: Sigma=0
13 ...: for s in args:
14 ...: Sigma+=s
15 ...: return Sigma
16 ...:
17 In [4]: summation(1,2,3,4,5)
18 Out[4]: 15
19 In [5]: summation(213.1,445560123,111)
20 Out[5]: 445560447.1

Arbitrary keyword arguments collectors (**kargs)
When this function is called all arguments are assigned to a dictionary args.

1 In [1]: def f(**kargs): print(kargs) # Note use of **
2
3 In [2]: f()
4 {} # returns a dict
5
6 In [3]: f(1)
7 ---
8 TypeError Traceback (most recent call last)
9 <ipython-input-3-281ab0a37d7d> in <module>
10 ----> 1 f(1)
11
12 TypeError: f() takes 0 positional arguments but 1 was given
13
14 In [4]: f(x=1,y=2)
15 {'x': 1, 'y': 2} # returns a dict
16

Argument matching in Python function

These methods can also be combined, but note positional arguments come before keyword arguments. Just
like default variables come after positional variables.

Read more in the docs

Now we have seen all four styles: Positionals, Keywords, Defaults, and Varargs collecting

1 def myfun(a,b,*args,**kwargs):
2 pass

https://realpython.com/python-kwargs-and-args/

Anonymous functions: lambda

Functions returned by running lambda expressions are like those created and assigned by def .

Python has an expression lambda to generate function objects (name from lambda calculus).` `

1 lambda arg1, arg2, ... argN: expression using args

` ` ` `

1 In [1]: def f(x,y,z): return x*y*z
2 In [2]: f(1,2,3)
3 Out[2]: 6
4 In [3]: f=lambda x,y,z: x*y*z # explicitly assign
5 In [4]: f(1,2,3)
6 Out[4]: 6
7 In [5]: f=lambda x,y=2,z=2: x*y*z # defaults work similarly
8 In [6]: f(1)
9 Out[6]: 4

https://en.wikipedia.org/wiki/Lambda_calculus#Explanation_and_applications

Differences of lambda and def
lambda is an expression not a statement. Thus, lambda can appear in different places!

lambda ’s body is a single expression not a block of statements.

This is particularly helpful with other tools…

` ` ` `

` ` ` `

` `

Mapping functions over iterables: map
1 In [1]: data=[0,123,1224,412.23]
2 In [2]: map?
3 Init signature: map(self, /, *args, **kwargs)
4 Docstring:
5 map(func, *iterables) --> map object
6
7 Make an iterator that computes the function using arguments from
8 each of the iterables. Stops when the shortest iterable is exhausted.
9 Type: type
10 Subclasses:
11 In [3]: map(lambda x: x**17-13.2,data) # it is an iterator!
12 Out[3]: <map at 0x7fa1515be9a0>
13 In [4]: list(map(lambda x: x**17-13.2,data)) # convert to list for displaying
14 Out[4]:
15 [-13.2, 3.3758791744665375e+35, 3.1065911647383047e+52, 2.866639650957827e+44]
16 # Remember pow(base,exp) = base ** exp
17 In [5]: list(map(pow,[0,1,2,3,4],[2,2,2,3])) # Notice *args in use!
18 Out[5]: [0, 1, 4, 27]

Selecting items in iterables: filter
filter allows the selection of iterable’s items based on a function.` `

1 In [1]: list(range(-10,10))
2 Out[1]: [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
3
4 In [2]: list(filter((lambda x: x>3.4), range(-10,10)))
5 Out[2]: [4, 5, 6, 7, 8, 9]
6

Combining items in iterables: reduce
reduce allows cumulatively applying a function!` `

1 In [1]: from functools import reduce
2
3 In [2]: reduce(lambda x,y: x+y, [1,2,3,4,5])
4 Out[2]: 15
5
6 In [3]: reduce(lambda x,y: x*y, [1,2,3,4,5])
7 Out[3]: 120
8
9 In [4]: reduce?
10 Docstring:
11 reduce(function, sequence[, initial]) -> value
12
13 Apply a function of two arguments cumulatively to the items of a sequence,
14 from left to right, so as to reduce the sequence to a single value.
15 For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
16 ((((1+2)+3)+4)+5). If initial is present, it is placed before the items
17 of the sequence in the calculation, and serves as a default when the
18 sequence is empty.
19 Type: builtin_function_or_method

Imperative vs. functional programming

For some theory, check out: Can programming be liberated from the von Neumann style?: a functional style
and its algebra of programs by John Backus.

1 In [1]: input = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
2 ...: output = 0
3 ...: for i in range(len(input)):
4 ...: if input[i] % 2 == 0:
5 ...: output += input[i]*10
6 ...:
7
8 In [2]: output
9 Out[2]: 300

1 In [3]: reduce(lambda x,y: x+y, map(lambda i: 10*i, \
2 filter(lambda i: i%2 == 0, range(1,11))))
3 Out[3]: 300

1 In [4]: np.sum(np.arange(0,11,2)*10)
2 Out[4]: 300

https://dl.acm.org/doi/10.1145/359576.359579

Quiz: How can we test if the input has too many
dimensions?
1 def dX_dt(X, a=1.0, b=0.1, c=1.5, d=0.75):
2 ''' Docstrings ommitted!'''
3 if np.size(X)>2:
4 raise ValueError("X has only two dimensions!")
5
6 return np.array([a * X[0] - b * X[0] * X[1], -c * X[1] + d * b * X[0] * X[1]])
7

Option 1, doctest:

Option 2, pytest:

1 def dX_dt(X, a=1.0, b=0.1, c=1.5, d=0.75):
2 ''' Docstrings ommitted!
3 >>> dX_dt(np.ones(13))
4 Traceback (most recent call last):
5 ...
6 dX_dt: X has only two dimensions!
7 '''
8 if np.size(X)>2:
9 raise dX_dt("X has only two dimensions!")
10
11 return np.array([a * X[0] - b * X[0] * X[1], -c * X[1] + d * b * X[0] * X[1]])

1 def test_dX_dt_wronginput():
2 """ testing for wrong dimensions (ValueError) """
3 import pytest
4 with pytest.raises(ValueError):
5 LotkaVolterraModel.dX_dt(np.ones(3), 1, 0.1, 1.5, 0.75)

Scipy library: scientific computing

numerical integration scipy.integrate

optimization scipy.optimize

Fourier transforms scipy.fft

For a full list, see the docs and the cookbook.

Important tools in the scipy library:

https://www.scipy.org/
https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
https://docs.scipy.org/doc/scipy/reference/tutorial/fft.html
https://docs.scipy.org/doc/scipy/reference/index.html
https://scipy-cookbook.readthedocs.io/index.html

Pandas: data structures and analysis
High-level data analysis package

1 >>> import pandas as pd
2 >>> import numpy as np
3 # Defining a dataframe (df):
4 >>> df = pd.DataFrame(np.random.randn(1000, 4), columns=["a", "b", "c", "d"])
5 >>> print(df.head()) # prints the first 5 rows
6 a b c d
7 0 -0.182791 -0.768629 -1.381591 0.035229
8 1 1.210803 0.487254 -0.087025 0.253478
9 2 -0.371740 1.092439 -0.829110 0.518891
10 3 -1.364988 -2.046488 0.172973 -2.117577
11 4 1.369287 -0.413473 -2.047923 -1.240338
12 >>> print(df.mean(axis=0))
13 a -0.016737
14 b 0.000806
15 c -0.049374
16 d -0.052093
17 dtype: float64

https://pandas.pydata.org/docs/index.html

Pandas: data structures and analysis

Note: Matplotlib (and thus pandas) allows you to regulate the transparency of a graph plot using the alpha
attribute. By default, alpha=1 (not transparent).

1 >>> from pandas.plotting import scatter_matrix
2 >>> scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal="kde");

https://pandas.pydata.org/docs/index.html

Same code without transparency
1 >>> scatter_matrix(df, alpha=1, figsize=(6, 6), diagonal="kde");

Scikit learn: Machine learning in python

https://scikit-learn.org/stable/

Questions?

Quiz: What is computed here and what is j ?` `

1 X = np.linspace(1,2,1000)
2 Y = np.log10(X)
3 j = np.argmin(Y)

Quiz: Extracting the location of the minimum
1 In [1]: import numpy as np
2 In [2]: X = np.linspace(1,2,1000)
3 In [3]: X
4 Out[3]:
5 array([1. , 1.001001 , 1.002002 , 1.003003 , 1.004004 ,
6 1.00500501, 1.00600601, ...
7
8 In [3]: Y = np.log10(X) # Vectorized logarithm of base 10.
9 ...: j = np.argmin(Y) # Index of the minimum value
10 In [4]: j
11 Out[4]: 0

Quiz: What is the result?
1 In [1]: data = np.array([[2,np.nan],[3, 0],[4,1]])
2 In [2]: np.nanmean(data,axis=0)

Mean along columns, while ommiting nans

Note: (2+3+4)/3 = 3 and (0+1)/2 = 0.5 . Denominator is automatically adjusted to the number of
non-nan items!

Note:

Entries of np.nan is very useful if you have missing data in some table (dataframe/array). The np.nanX
functions then make sure that missing data are handled correctly.

1 In [1]: data = np.array([[2,np.nan],[3, 0],[4,1]]) # Notice: missing data
2 In [2]: np.nanmean(data,axis=0)
3 Out[2]: array([3.0, 0.5])

` ` ` `

1 In [3]: data.mean(axis=0)
2 Out[3]: array([3., nan])

` ` ` `

Today’s summary
.gitignore, readme.md, markup, reproducible environments, project structure

functional tools: lambda , map , reduce , filter

important libraries: scipy, pandas, and scikit-learn

Try out the commands in the python shell/notebooks! Practice is key.

` ` ` ` ` ` ` `

After lunch:
3rd in person quiz!

Monday 13 - 15: exercises working on v5 of your project

Monday 15:15 - 16: my office hours at SV 2811

