Welcome to BIO-210

Applied software engineering for life sciences
November 11th 2024 - Lecture 9

Prof. Alexander MATHIS

EPFL

Announcements

= Today (Monday at 10am) v4 on testing was due, we will grade it. If you haven’t released it yet, please do
SO asap.

= Today is the last in person quiz: please come in time, there will be no extra time. Submission closes at

13:35. To start, you’ll need to sign in. Bring your Camipro. No notes are allowed. If you switch to a
different tab from Moodle’s quiz or communicate with somebody, you’ll receive 0 points.

= Monday 15:15 - 16: my office hours at SV 2811

10
11
12
13
14

Date

09/09/2024
16/09/2024
23/09/2024
30/09/2024
07/10/2024
14/10/2024
21/10/2024
28/10/2024
04/11/2024
11/11/2024
18/11/2024
25/11/2024
02/12/2024
09/12/2024
16/12/2024

Topic

Python introduction I

Public holiday

Python introduction II

Git and GitHub (+installation VS Code)
Project introduction

Functionify

EPFL fall break

Visualization and documentation
Unit-tests, functional tests

Code refactoring

Profiling and code optimization
Object oriented programming
Model analysis and project report
Work on project

Wrap up

Software version Software releases Grading / Feedback

vl

\ vl

V3 v2 code review (API)
v4 V3

v5 v4 graded (tests)

V6 v5 code review

v7 V6 graded (speed)
v8 V7 code review (0O0)

v8 graded (project)

Practical tips for addressing code reviews

A few weeks ago, you got code reviews for version v2 and you will also get feedback for v5 (due next week).

The course assistants opened GitHub issues on your project to give feedback. GitHub Issues allow one to
track ideas, feedback, tasks, or bugs for work on GitHub.

Importantly, Issues also allow traceability:

= you can link your pull request (PR) to isssues (opened by the assistants) with the corresponding
"#number”. E.g. in a commit message you can write "git commit -m "closes #3", which will literally close

issue #3 when you push it to GitHub (e.g. see this issue)

= These mechanisms support working in teams

https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://github.com/DeepLabCut/DeepLabCut/issues/1150
https://github.com/DeepLabCut/DeepLabCut/pull/1582

Your README.md file

A README is a text file that introduces and explains your GitHub project.

= should be succinct, but detailed

= notice that it’s the face of your project
Typical content:

= Project title + description
= [nstallation guide/requirements (see below)
= Examples (for using the code)

"= [icense

https://choosealicense.com/

Examples

Check out some example projects:

= Scipy

= asomewhat recent machine learning project in my group: DMAP

https://github.com/scipy/scipy
https://github.com/amathislab/dmap
https://github.com/amathislab/BehaveMAE
https://github.com/eriklindernoren/ML-From-Scratch
https://github.com/vinta/awesome-python
https://github.com/TheAlgorithms/Python
https://github.com/Avik-Jain/100-Days-Of-ML-Code
https://github.com/kjw0612/awesome-deep-vision#readme
https://github.com/Unity-Technologies/ml-agents
https://github.com/EPFL-BIO-210/demo-project
https://github.com/EPFL-BIO-210/demo-project/tree/NoReadmeDemo

How to format a Readme.md?

Formatting READMESs is based on the Markdown language, which enables you to write nicely formatted and
visually appealing texts!

= it’s simple to learn, just skim this Markup Guide &3 £.X...

= Check out this readme generator

https://docs.github.com/en/github/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://rahuldkjain.github.io/gh-profile-readme-generator/

Use a .gitignore file

Use a .gitignore file to exclude files you don’t want to version control (e.g. notebook checkpoints, pycache,
files from your IDE, ...).

= Docs for gitignore

= demo-project/.gitignore.

Note: if you already have unwanted files in your repository and create a .gitignore, you need to remove
those, as they are already tracked with git.

https://git-scm.com/docs/gitignore
https://github.com/EPFL-BIO-210/demo-project/blob/main/.gitignore

How to make code reproducible?

make dependencies and requirements explicit (next slide)

use version control and store which version produced what results

use tests / doctests

do not comment/uncomment sections of your code to control the behavior. This approach makes it error
prone, hard to reproduce and difficult to automate. Instead, use if/else statements to control the flow of
your program

You could also consider making different experiment scripts (to reproduce each experiment)

Documenting requirements: Software dependencies

= Software often has many dependencies
= Code might run differently with different library versions!

= Thus, placing dependencies within a contained environment can minimize issues and allow others to run
the code just like it runs on your system

= Different programs might also require different libraries, which can be supported by "environments"

= Common python environments include Anaconda (conda) and virtualenv

https://docs.anaconda.com/navigator/tutorials/manage-environments/
https://pypi.org/project/virtualenv/
https://github.com/EPFL-BIO-210/demo-project#requirements
https://github.com/amathislab/dmap

Discussion: How could your code be organized?

How could your code be organized?

Code and Basics:

= README (see above, also demo code!) + .gitignore file

= a3 main function that is clean and easy to run (additionally "experimentX.py ', ‘exptY.py’, ...

= 3 test function with all our doctests/pytests

= scripts containing functions (named reasonably, e.g. "TuringModel .py ')and a ‘utils.py script

containing plotting etc.

Results:

= g folder (e.g. called results') containing saved experiments/outcomes (could have traceable names: e.g.

‘experimentl7 parametersXYZ.png are the results for 'experiment17.py’)
= Note: you could also add jupyter notebooks that integrate documentation (description + figures)

= NOTE: for BIO-210 just follow the problem sets (to get the highest score!); e.g. main.py in v2 should do

whatever you’re asked to have implemented

Further reading

= Good enough practices in scientific computing - a very short article!

= Guide for reproducible research by the Alan Turing Institute

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510
https://the-turing-way.netlify.app/reproducible-research/reproducible-research.html

Questions?

Quiz: How can we make this faster?

def generate patterns(num_patterns, pattern_size):

patterns = np.zeros([num _patterns, pattern size])
for i in range(num_patterns):
for j in range(pattern_size):
patterns|[i,j|=np.random.choice([-1,11])

coONONUVT P~ WWNWDN P

return patterns

Quiz: Are these good doctrings?

1 def generate pattern(pattern_number,pattern_size):

2 [|

3 Generate pattern generates an array of (pattern number) patterns of
4 neuron connections of size (L)

5

6 Parameters

722 S iy Sy Uy S by S g g g

3 pattern number : int

9 pattern size : int

10 Returns an array consisting of "pattern number" patterns

11 m-mmmmmmmmeeee e -

12 [|

13 return np.random.choice([-1,1],size=(pattern number,pattern_size))

Questions?

Selected function topics

Reminder: Function-related statements and
expressions

Statement or expression Examples
Call expression myfunc('Seppl’,175,age=22,*rest)
‘def" def printer(message):

print('Hello'tmessage)

def adder(a,b=1,%c):

return return a+b+c[0]
X = 'outside'
‘global’ def changer():

global x; x= new'

‘Lambda ‘func = [lambda x: x**2, lambda x: x**37]

J,

Arbitrary positional arguments collectors (*args)

When this function is called all arguments are assigned to a tuple args.

1 In [1]: def f(*args): print(args) # Note use of *

2

5 In [2]: £O)

4 () # returns a tuple!
5

6 In [3]: £(1)

/7 (1,) # returns a tuple!
3

9 In [4]: £(1,2,3,4)

10 (1, 2, 3, 4) # returns a tuple!
11

12 In [5]: £C"EPFL","is","great!")
15 ('EPFL', '"is', 'great!') # returns a tuple!

.

Why is *args useful?

For instance, imagine you need to sum all numbers somebody gives you ...

1 In [1]: def summation(a,b,c):

2 : return a+b+c

3 ...: summation(1l,2,3)

4 OQut[1l]: 6

5 In [2]: summation(1,2,3,4,5) # That's too many for your function!

S T T T T T T T T L T T L T
/ TypeError Traceback (most recent call last)
8 <ipvython-input-2-68851c3d51d8a> in <module>

9 ----> 1 summation(1,2,3,4,5)

10 TypeError: summation() takes 3 positional arguments but 5 were given

11 In [3]: def summation(*args):

12 Sigma=0

13 for s in args:

14 Sigma+=s

15 return Sigma

16 C

17 In [4]: summation(1l,2,3,4,5)

18 Out[4]: 15

19 In [5]: summation(213.1,445560123,111)

20 Qut[5]: 445560447.1

s .

Arbitrary keyword arguments collectors (**kargs)

When this function is called all arguments are assigned to a dictionary args.

1 In [1]: def f(**kargs): print(kargs) # Note use of **

2

5 In [2]: £O)

4 {3} # returns a dict

5

6 In [3]: £(1)

7 A e
8 TypeError Traceback (most recent call last)
9 <ipvython-input-3-281abba3/d/d> in <module>

10 ---->1 f(1D)

11

12 TypeError: f£() takes 0 positional arguments but 1 was given

13

14 In [4]: f£(x=1,y=2)

15 {'x': 1, 'y': 2} # returns a dict

16

Argument matching in Python function

Now we have seen all four styles: Positionals, Keywords, Defaults, and Varargs collecting

These methods can also be combined, but note positional arguments come before keyword arguments. Just
like default variables come after positional variables.

1 def myfun(a,b,*args,**kwargs):
2 pass

Read more in the docs

https://realpython.com/python-kwargs-and-args/

Anonymous functions: lambda

Python has an expression 'lambda to generate function objects (name from lambda calculus).

1 Llambda argl, arg2, ... argN: expression using args

Functions returned by running "lambda ' expressions are like those created and assigned by "def .

1 In [1]: def f(x,y,z): return x*y*z

2 In [2]: £(1,2,3)

5 Out[2]: 6

4 In [3]: f=lambda x,y,z: x*y*z # explicitly assign

5 In [4]: £(1,2,3)

6 Out[4]: 6

/ In [5]: f=lambda x,y=2,z=2: x¥y*z # defaults work similarly
8 In [6]: £(1)

9 Out[6]: 4

https://en.wikipedia.org/wiki/Lambda_calculus#Explanation_and_applications

Differences of 'Lambda' and def

= ‘lambda’ is an expression not a statement. Thus, lambda' can appear in different places!

= ‘lambda ’s body is a single expression not a block of statements.

This is particularly helpful with other tools...

Mapping functions over iterables: map

O oOoONOTULT DN WDN -

PP PR R, R R R R
CONOUTNWNREO®

In [1]: data=[0,123,1224,412.23]]

In [2]: map?

Init signature: map(self, /, *args, **kwargs)
Docstring:

map(func, *iterables) --> map object

Make an iterator that computes the function using arguments from
each of the iterables. Stops when the shortest iterable is exhausted.

Type: type
Subclasses:
In [3]: map(lambda x: x**1/-13.2,data) # 1t 1is an 1iterator!

Out[3]: <map at Ox/7fal515be9%9ab>

In [4]: list(map(lambda x: x**17-13.2,data)) # convert to list for displaying
Out[4]:
[-13.2, 3.3758791744665375e+35, 3.106591164738304/e+52, 2.866639650957/82/7/e+44]
Remember pow(base,exp) = base ** exp

In [5]: list(map(pow,[0,1,2,3,4],[2,2,2,3])) # Notice *args in use!

Out[5]: [0, 1, 4, 27]

Selecting items in iterables: filter

filter allows the selection of iterable’s items based on a function.

N1 A WNDN -

In [1]:
Out[1]:

In [2]:
Out|[2]:

List(range(-10,10))
([-19, -9, -8, -7, -6, -5, -4, -3, -2, -1, 60, 1, 2, 3, 4, 5, 6, 7, 8, 9

list(filter((lambda x: x>3.4), range(-10,10)))
(4, 5, 6, 7, 8, 9]

Combining items in iterables: reduce

reduce allows cumulatively applying a function!

1 In [1]: from functools import reduce

2

3 In [2]: reduce(lambda x,y: x+y, [1,2,3,4,5])

4 Qut[2]: 15

5

6 In [3]: reduce(lambda x,y: x*y, [1,2,3,4,5])

/ Qut[3]: 120

3

9 In [4]: reduce?

10 Docstring:

11 reduce(function, sequence|[, initial]|) -> value

12

15 Apply a function of two arguments cumulatively to the items of a sequence,
14 from left to right, so as to reduce the sequence to a single value.

15 For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates

16 ((((1+2)+3)+4)+5). If initial is present, it is placed before the items
1/ of the sequence in the calculation, and serves as a default when the

18 sequence 1s empty.

19 Type: builtin_ function_or method

Imperative vs. functional programming

1 In [1]: input = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

2 . output = 0

3 : for 1 in range(len(input)):

4 if input[i] % 2 ==

5 output += input[i]*10

6

/

g In [2]: output

9 Out[2]: 300

1 In [3]: reduce(lambda x,y: x+y, map(lambda i: 10*1i, \
2 filter(lambda 1i: i%2 == @, range(1l,11))))
5 Out[3]: 300

1 In [4]: np.sum(np.arange(0,11,2)*10)

2 Out[4]: 300

For some theory, check out: Can programming be liberated from the von Neumann style?: a functional style

https://dl.acm.org/doi/10.1145/359576.359579

Quiz: How can we test if the input has too many
dimensions?

def dX dt(X, a=1.0, b=0.1, c=1.5, d=0.75):
""" Docstrings ommitted! "'
if np.size(X)>2:
raise ValueError("X has only two dimensions!")

return np.array([a * X[0] - b * X[0Q] * X[1], -c * X[1] + d * b * X[0] * X[1]])

NONULT T AW DN -

Option 1, doctest:

1 def dX dt(X, a=1.0, b=0.1, c=1.5, d=0.75):

2 """ Docstrings ommitted!

3 >>> dX_dt(np.ones(13))

4 Traceback (most recent call last):

5 .

6 dX dt: X has only two dimensions!

7 [I |

3 if np.size(X)>2:

9 raise dX _dt("X has only two dimensions!")

10
11 return np.array([a * X[0] - b * X[@] * X[1], -c¢c ¥ X[1] + d * b * X[0] * X[1]])

Option 2, pytest:

1 def test dX dt wronginput():

2 """ testing for wrong dimensions (ValueError) """

3 import pytest

2 with pytest.raises(ValueError):

5 LotkaVolterraModel .dX dt(np.ones(3), 1, 0.1, 1.5, 0.75)

Scipy library: scientific computing

Important tools in the scipy library:

= numerical integration scipy.integrate

= optimization scipy.optimize

= Fourier transforms scipy.fit

https://www.scipy.org/
https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
https://docs.scipy.org/doc/scipy/reference/tutorial/fft.html
https://docs.scipy.org/doc/scipy/reference/index.html
https://scipy-cookbook.readthedocs.io/index.html

Pandas: data structures and analysis

High-level data analysis package

1 >>> import pandas as pd

2 >>> import numpy as np

5 # Defining a dataframe (df):

4 >>> df = pd.DataFrame(np.random.randn(1000, 4), columns=["a", "b", "c", "d"])
5 >>> print(df.head()) # prints the first 5 rows
6 a b C d

/ 0 -0.182791 -0.768629 -1.381591 0.035229

g 1 1.210803 0.487254 -0.087/025 0.253478

9 2 -0.371740 1.092439 -0.829110 0.518891

10 3 -1.364988 -2.046488 0.172973 -2.117577

11 4 1.369287 -0.413473 -2.047923 -1.240338

12 >>> print(df.mean(axis=0))

15 a -0.016737

14 b 0.000806

15 ¢ -0.049374

16 d -0.052093

1/ dtype: float64

https://pandas.pydata.org/docs/index.html

Pandas: data structures and analysis

1 >>> from pandas.plotting import scatter matrix
2 >>> scatter matrix(df, alpha=@0.2, figsize=(6, 6), diagonal="kde"),

Note: Matplotlib (and thus pandas) allows you to regulate the transparency of a graph plot using the alpha
attribute. By default, alpha=1 (not transparent).

https://pandas.pydata.org/docs/index.html

Same code without transparency

1 >>> scatter _matrix(df, alpha=1, figsize=(6, 6), diagonal="kde");

| |
I] (] i [(]
i I I I I

Scikit learn: Machine learning in python
@ learn s vsercuice ap1- Examples More~ “

- - ~ « Simple and efficient tools for predictive data
SClklt_.l.ea I'Nn g analysis

' e Accessible to everybody, and reusable in various
contexts

- ¢ Built on NumPy, SciPy, and matplotlib

* Open source, commercially usable - BSD license

Machine Learning in Python '

Classification Regression Clustering

Identifying which category an object Predicting a continuous-valued Automatic grouping of similar objects

belongs to. attribute associated with an object. into sets.

Applications: Spam detection, image Applications: Drug response, Stock Applications: Customer segmentation,

recognition. prices. Grouping experiment outcomes

Algorithms: SVM, nearest neighbors, Algorithms: SVR, nearest neighbors, Algorithms: k-Means, spectral

random forest, and more... random forest, and more... clustering, mean-shift, and more...
K-means clustering on the digits dataset (PCA-reduced data)

Boosted Decdien Tree Regression Centroids are marked with white onss
r

I. — _gsimAlOrs=§
. — r_estimators=300
& Iraining samples

Dimensionality reduction Model selection Preprocessing

Reducing the number of random Comparing, validating and choosing Feature extraction and normalization.
variables to consider. parameters and models.

https://scikit-learn.org/stable/

Questions?

Quiz: What is computed here and whatis "j ' ?

X = np.linspace(1,2,1000)
2 Y = np.logla(X)
j = np.argmin(Y)

Quiz: Extracting the location of the minimum

1 In [1]: import numpy as np

2 In [2]: X = np.linspace(l,2,1000)

5 In [3]: X

4 Qut[3]:

5 —array([1. , 1.001001 , 1.002002 , 1.003003 , 1.004004
6 1.00500501, 1.00600601,

/

g In [3]: Y = np.loglo(X) # Vectorized logarithm of base 109.
9 ... J = np.argmin(Y) # Index of the minimum value

10 In [4]:]

11 Out[4]: ©

Quiz: What is the result?

1 In [1]: data = np.array([[2.,np.nan],[3, @0],[4,1]])
2 In [2]: np.nanmean(data,axis=0)

Mean along columns, while ommiting nans

1 In [1]: data = np.array([[2.,np.nan],[3, @0],[4,1]]) # Notice: missing data
2 In [2]: np.nanmean(data,axis=0)
5 Out[2]: array([3.0, 9.5 1)

Note: "(2+34+4)/3 = 3" and (0+1)/2 = 0.5 . Denominator is automatically adjusted to the number of
non-nan items!

Note:

1 In [3]: data.mean(axis=0)
2 Qut[3]: array([3., nan|)

Entries of ‘np.nan’ is very useful if you have missing data in some table (dataframe/array). The np.nanX"
functions then make sure that missing data are handled correctly.

Today’s summary

= gitignore, readme.md, markup, reproducible environments, project structure

= functional tools: ‘lambda’, map', reduce’, filter’

= important libraries: scipy, pandas, and scikit-learn

Try out the commands in the python shell/notebooks! Practice is key.

After lunch:

= 3rdin person quiz!
= Monday 13 - 15: exercises working on v5 of your project
= Monday 15:15 - 16: my office hours at SV 2811

