Welcome to BIO-210

Applied software engineering for life sciences
November 4th 2024 — Lecture 8

Prof. Alexander MATHIS

EPFL

Announcements

= v3was due today (no code review, but discuss with your student assistants today!)

= Try to submit in time, as we will have to reduce your score (for graded parts, e.g. v4 next week!)

Reminder: Multiple-developer git workflow

git clone
)git commit
< git clone
git commit (:::
git push
git fetch
D git merge
< git push
< git fetch
git merge C
git push
git fetch

Jessica Server John

Source: git docs

https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project

Example for the demo-project

Let’s check out:

Pull-request 5 - Feature/functionify: https://github.com/EPFL-BIO-210/demo-project/pull/1

https://github.com/EPFL-BIO-210/demo-project/pull/1
https://github.com/EPFL-BIO-210/demo-project/releases/tag/v2

Another example:

= Pull-request 6 - more features (visualization and docstrings): https://github.com/EPFL-BIO-210/demo-

project/pull/2

Let’s check out the graph!

You can access the git graph for a project under ' /network ', i.e., https://github.com/EPFL-BIO-210/demo-
project/network

(orvia ‘git log --all --graph --decorate’ as we learned in Lecture 4)

https://github.com/EPFL-BIO-210/demo-project/pull/2
https://github.com/EPFL-BIO-210/demo-project/network

Displaying the git graph locally

(base) alex@mac demo-project % git log --all --graph --oneline

w ef492e0 (HEAD -> main, AM/visualization) Merge pull request #.2 from EPFL-BIO-216/AM/v
\
* 2ddd561 (origin/AM/visualization) Visualization code added
* | £84a4a9 Merge pull request #1 from EPFL-BIO-210/Functionify
\/

* cébbcbc8 (origin/Functionify, Functionify) Adding function module

/
* 339040e (origin/main) Hello world

O oOoONOTULT DN WDN -

Updating our code, typical worktlow I

1 (base) alex@mac demo-project % git checkout -b "doctests"”

2 Switched to a new branch 'doctests'

3

4 # NOW write some code

5

6 (base) alex@mac demo-project % git status

/ On branch doctests

g Changes to be committed:

9 (use "git restore --staged <file>..." to unstage)

10 modified: LotkaVolterraModel .py

11 modified: main.py

12

15 Changes not staged for commit:

14 (use "git add <file>..." to update what will be committed)
15 (use '"git restore <file>..." to discard changes in working directory)
16 modified: LotkaVolterraModel .py

17 modified: README . md

18

19 Untracked files:

20 (use '"git add <file>..." to include in what will be committed)
21 environment.yml

22 test LVM.py

Updating our code, typical worktlow II

(base) alex@mac demo-project % git add .
(base) alex@mac demo-project % git status
On branch doctests
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: LotkaVolterraModel .py
modified: README . md
new file: environment.yml
modified: main.py
new file: test LVM.py

© VOO NOUINWNRE

=

Workilow III: Committing and sharing the branch

(base) alex@mac demo-project % git commit -m
"Included doctests and unittests, updated readme to show how to use them"
| doctests 924ea46]| Included doctests and unittests, updated readme to show how to use the
5 files changed, 248 insertions(+), 3 deletions(-)
create mode 100644 environment.yml
create mode 100644 test LVM.py
(base) alex@mac demo-project % git push origin HEAD
Enumerating objects: 11, done.
#OMMITED some details...
10 Writing objects: 100% (/7/7), 3.62 KiB | 3.62 MiB/s, done.
11 Total 7/ (delta 1), reused 0 (delta 0), pack-reused ©
12 remote: Resolving deltas: 100% (1/1), completed with 1 local object.
15 remote:
14 remote: Create a pull request for 'doctests' on GitHub by visiting:
15 remote: https://github.com/EPFL-BI0-210/demo-project/pull /new/doctests
16 remote:
17 To https://github.com/EPFL-BIO-210/demo-project.git
18 * [new branch] HEAD -> doctests

O oOoONOTULT DN WDN -

Now visible on GitHub and can be assigned to teammates: LINK PR #3

https://github.com/EPFL-BIO-210/demo-project/pull/3

Materials for GIT

= Jennifer Shan developed a video tutorial on how to use git in Visual Studio Code

-~ EPFL: BIO-210 tutori...

>

Ansehen auf {3 YouTube

= Viva Berlenghi wrote a Git survival kit

https://www.youtube.com/watch?v=oepxj-e78PA
https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/week_5_git_guide.html
https://www.youtube.com/watch?v=oepxj-e78PA&embeds_referring_euri=http%3A%2F%2Flocalhost%3A12445%2F
https://www.youtube.com/watch?v=oepxj-e78PA

Quiz: How will this plot look?

X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)

plt.plot(X,C)

plt.plot(X,S)

plt.show()

un PP WD -

1.00 A

0.75 A

0.50 A

0.25 A

0.00 A

—0.25 A

—0.50 A

—0.75 A

—1.00 A

https://github.com/rougier/matplotlib-tutorial/blob/master/scripts/exercice_1.py

However, don’t trust the defaults (especially if you
want to share your plots!)

just a few more lines of code ...

cos(Z) = —

I"-...III—l

Source

https://github.com/rougier/matplotlib-tutorial/blob/master/scripts/exercice_10.py

Reminder: Check out the Matplotlib gallery

MATPLOTLIB UNCHAINED

https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/animation/unchained.html#sphx-glr-gallery-animation-unchained-py

Quiz: what should be in docstrings?

= Short summary (for basic, simple functions)

1 def add(a, b):
"""The sum of two numbers.

= Extended summary contains among others:
= 3 simple description (clarify functionality, not implementation details those belong to Notes)
= parameters
= returns
= examples
= notes

m references

Details are here

https://numpydoc.readthedocs.io/en/latest/format.html

Questions?

Testing

Reminder: demo project

Consider a shortened version of "LotkaVolterraModel .py (from here)

1 import numpy as np

% def dX_dt(X, a=1.0, b=0.1, c=1.5, d=0.75):

g DOCSTRINGS OMMITTED!

? return np.array([a ¥ X[0Q] - b * X[0] * X[1], -c¢c * X[1] + d * b ¥ X[0] * X[1]])
g def population_equilibrium(a=1.0, b=0.1, c=1.5, d=0.75):

1? DOCSTRINGS OMMITTED!

1% return np.zeros(2), np.array([c / (d * b), a / b])

Question: What is a population equilibrium?

https://github.com/EPFL-BIO-210/demo-project/blob/main/LotkaVolterraModel.py

Different forms of importing a module

Importing the module:

1 >>> import LotkaVolterraModel

Importing a specific function (from the module)

1 >>> from LotkaVolterraModel import dX _dt # Import a specific function

Importing all functions (and ‘module. funcl ' is not required)

1 >>> from LotkaVolterraModel import * # Import all functions

Importing the module (best way!)

>>> import LotkaVolterraModel

Using functions (output not shown)

>>> LotkaVolterraModel .dX dt(np.array([0,1]))
>>> LotkaVolterraModel .population_equilibrium()

A WWNDNBE

Importing a specific function (from the module)

>>> from LotkaVolterraModel import dX dt # Import a specific function
>>> dX _dt(np.array([0,1])) # Output not shown

>>> population _equilibrium()

NameError Traceback (most recent call last)
<ipython-input-7/-9ef8bb”2/b%eb> in <modul e>

----> 1 population_equilibrium()

O oOoONOTULT DN WDN -

NameError: name 'population equilibrium' is not defined

Note: In this case, 'LotkaVolterraModel. ' is not required for using fuctions, but only imported functions
are available.

Importing all functions (and ‘module.f1" is not
required)

1 >>> from LotkaVolterraModel import * # Import all functions (but namespace collisio
2 >>> dX dt(np.array([0,17])) # ALl functions are available
5 >>> population_equilibrium() # No error, all functions availabe...

Note: unexpected namespace collision possible (as you import all functions)

Questions?

A (first) hand crafted test ...

1 import numpy as np

2

5 def dX dt(X, a=1.0, b=0.1, c=1.5, d=0.75):

4 I

5 DOCSTRINGS OMMITTED!

6 I

/ return np.array([a * X[0] - b * X[@] * X[1], -c * X[1] +d * b * X[0] *¥ X[1]])
3

9 1f mname_ == " main__":

10 if dX _dt(np.ones(2),1,0.1,1.5,.75) == np.array([0.9 , -1.425]):
11 print("works!!")

Quiz: What happens here and how can we solve it?

alex@mac demo-project % python3 LotkaVolterraModel .py
Traceback (most recent call last):
File "/Users/alex/Code/Teaching/demo-project/LotkaVolterraModel .py", line 130, in <modu
if dX dt(np.ones(2),1,0.1,1.5,.75) == np.array([0.9 , -1.425]):
ValueError: The truth value of an array with more than one element is ambiguous. Use a.an

o p NN -

Fixing the comparison

1 import numpy as np

2

5 def dX dt(X, a=1.0, b=0.1, c=1.5, d=0.75):

4 I

5 DOCSTRINGS OMMITTED!

6 I

/ return np.array([a * X[0] - b * X[@] * X[1], -c * X[1] +d * b * X[0] *¥ X[1]])
3

9 1f mname_ == " main__":

10 if (dX_dt(np.ones(2),1,0.1,1.5,.75) == np.array([0.9 , -1.425])).all():
11 print("works!!")

1 alex@mac demo-project % python3 LotkaVolterraModel .py
works! !

... but such hand-crafted tests are clunky ...

Doctests

Doctest " is part of the Python Standard Library.

= The doctest module searches for strings that look like interactive Python sessions, and then executes

those sessions to verify that they work exactly as shown.

This allows:

= To check that a module’s docstrings are up-to-date by verifying that all interactive examples still work as

documented.

= To perform regression testing by verifying that interactive examples from a test file or a test object work

as expected.

https://docs.python.org/3/contents.html

Using doctests I: Simply add examples

1 def dX dt(X, a=1.0, b=0.1, c=1.5, d=0.75):

2 I

3 Computes the growth rate of fox and rabbit populations based on
4 system state (X) and parameters (a,b,c,d)

5

6 Parameters

] 0 mm—mm————-

3 X . array or tuple

9 [prey _count, predator_ count]

10 Returns

11 -------

12 numpy array

13 [change of prey count, change of predator count]
14

15 Examples

le =======

17 >>> dX_dt(np.ones(2),1,0.1,1.5,.75)

18 array([6.9 , -1.4257])

19 >>> dX_dt(np.zeros(2),1,0.1,1.5,.75)

20 array([0., 0.])

21 S

22 return np.array([a * X[@] - b * X[@] * X[1], -c¢c ¥ X[1] +d * b * X[0] * X[1]])

Using doctests II: running the tests

print("Starting doctests") # not required (just for clarity in output)
doctest.testmod() # Running the doctests (here for this module)

1 import numpy as np

2

3 def dX dt(X, a=1.0, b=0.1, c=1.5, d=0.75):

4

5

6 1f mname_ =="_ main__":

/ import doctest # Importing the library
3

9

Using doctests III: output

1 alex@mac demo-project % python3 LotkaVolterraModel .py
/2 Starting doctests # No output if they work!
5 # Running with detailed output:

4 alex@mac demo-project % python3 LotkaVolterraModel .py -v
5 Starting doctests

6 Trying:

7/ dX dt(np.ones(2),1,0.1,1.5,.75)

8 Expecting:

9 array([0.9 , -1.4257])

10 ok

11 Trying:

12 dX _dt(np.zeros(2),1,0.1,1.5,.75) # zero is a fixpoint
15 Expecting:

14 array([0., 0.])

15 ok

16 1 items had no tests:

17 __main__

18 1 items passed all tests:

19 2 tests in _ _main__.dX dt

20 2 tests in 2 items.

21 2 passed and 0 failed.

22 Test passed.

Putting an error (on purpose)...

1 def dX dt(X, a=1.0, b=0.1, c=1.5, d=0.75):

2 I

3 OMMITTED!

4

5 Examples

6 00 -

7/ >>> dX _dt(np.zeros(2),1,0.1,1.5,.75)

3 array([60., 1.7)

9 I

10 return np.array([a * X[0] - b *¥ X[0] * X[1], -c * X[1] +d * b *¥ X[0] * X[1]])

As "dX_dt(@) = 0 ...

Running the tests again...

1 alex@mac demo-project % python3 LotkaVolterraModel .py -v

/2 Starting doctests

5 Trying:

4 dX dt(np.zeros(2),1,0.1,1.5,.75)

5 Expecting:

6 array([0., 1.7)

7 KA KA KA KX XKLL XX LA XA L XXX XA LA XL X LA XX L LX XA XXX LX XXX ALXXAXXXXLXXXAXXXXXXXX
8 File "/Users/alex/Code/Teaching/demo-project/LotkaVolterraModel .py", line 35, in _ main_
9 Failled example:

10 dX dt(np.zeros(2),1,0.1,1.5,.75)

11 Expected:

12 array([0., 1.7)

15 Got:

14 array([0., 0.1])

15 1 items had no tests:

16 __main__

17 AKX KA KX AKX AKX XKLL X AL XX L X XA XXX L XE AL XX L LX XA XXX LXXALXXXLXXAXXXXLXXXAXXXXXXXX
18 1 items had failures:

19 1 of 1 in _ _main__ .dX _dt

20 1 tests in 2 items.

21 0 passed and 1 failed.

22 ***Test Failed*** 1 failures.

Questions?

Simple doctests for the major functions can be found in the demo-code.

= if you have multiple doctests (for multiple functions, it runs for all functions)
= make sure to have quick and simple tests

= make sure you update them (if necessary), when you change or expand features

https://github.com/EPFL-BIO-210/demo-project/blob/main/LotkaVolterraModel.py

Quiz: How to implement factorial in Python?

def factorial(n):
result = 1
factor = 2
while factor <= n:
result *= factor
factor += 1
return result

NONULT T AW DN -

Quiz: What doctests should we add?

1 # example lecture8.py

2 def factorial(n):

3 i

4 Returns factorial of n, for positive integers.
5

6 Examples # NOT necessary (but good for docstrings)
] 0 ——————-

3 >>> [factorial(n) for n in range(11)]

9 (1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
10 >>> factorial(22)

11 11240007/27777607680000

12

13 S

14 result = 1

15 factor = 2

16 while factor <= n:

17 result *= factor

18 factor += 1

19 return result

20

21 1if name__ == " main__":

22 import doctest

23 doctest.testmod()

Running the tests

1 alex@mac % python3 example lecture8.py -v
2 Trying:

3 [factorial(n) for n in range(1l1l)]

4 Expecting:

5 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628300
6 ok

/ Trying:

3 factorial(22)

9 Expecting:

10 1124000727777607680000

11 ok

12 1 items had no tests:

13 __main__

14 1 items passed all tests:

15 2 tests in _ _main__ .factorial

16 2 tests in 2 items.

1/ 2 passed and 0 failed.

18 Test passed.

Quiz: what is going on here?

1 In [1]: import numpy as np

2

5 In [2]: X=np.ones(33)

4

5 In [3]: X.append(3)

6 ___
/ AttributeError Traceback (most recent call last)
8 <ipython-input-3-8bel5a984d9d> in <module>

9 ---->1 X.append(3)

10

11 AttributeError: 'numpy.ndarray' object has no attribute 'append'

What are tracebacks?

A Python traceback is a report summarizing function calls in your code. When your program runs into an

exception, Python will display the current traceback to help you diagnose the problem. Typical errors are
AttributeError ImportError IndexError KeyError NameError SyntaxError TypeError

ValueError . Examples:

OO NOTULITPM NN -

10
11
12
13
14
15

In [1]: a,b=(2,3,4)

ValueError Traceback (most recent call last)
<ipython-input-1-6ac6ff6r93e3> in <module>

---->1 a,b=(2,3,4)

ValueError: too many values to unpack (expected 2)

In [2]: a=[2,4,5,6,33]

In [3]: a[22]

IndexError Traceback (most recent call last)
<ipython-input-3-b29842c8£f55d> in <module>

----> 1 a[22]

IndexError: list index out of range

Read them from bottom-to-top!

https://realpython.com/python-traceback/

Checking inputs: Raising exceptions

1 def factorial_ withwarnings(n): # Renamed for convenience (i1n my script)
2 import math

3 if not n >= 0O:

4 raise ValueError('"n must be >= 0")

5 if math.floor(n) != n:

6 raise ValueError("n must be an integer")
7/ if ntl == n: # catch a value like 1e300;

3 raise OverflowError("n too large")

9

10 result = 1

11 factor = 2

12 while factor <= n:

13 result *= factor

14 factor += 1

15 return result

Doctests against error messages

Adding this function to example lecture8.py

1 def factorial withwarnings(n):

2 | |

3 >>> factorial withwarnings(-1)

4 Traceback (most recent call last):
5 .

6 ValueError: n must be >= 0

/

3 Factorials of floats are OK, but the float must be an exact integer:
9 >>> factorial withwarnings(30.1)

10 Traceback (most recent call last):
11 .

12 ValueError: n must be exact integer
13 >>> factorial withwarnings(1lel00)
14 Traceback (most recent call last):
15 .

16 OverflowError: n too large

17 I 11

18 CODE OMMITTED (see previous page)

Test report

1 alex@mac % python3 example lecture8.py -v
2 Trying:

3 [factorial(n) for n in range(1l1l)]

4 Expecting:

5 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628300
6 ok

/ OMMITTED ...

g Trying:

9 factorial withwarnings(-1)

10 Expecting:

11 Traceback (most recent call last):

12 .

13 ValueError: n must be >= 0

14 ok

15 . OMMITTED ...

16 1 items had no tests:

17 __main__

18 2 items passed all tests:

19 2 tests in _ _main__ .factorial

20 5 tests in _ _main__ .factorial withwarnings
21 5 tests in 3 items.

22 5 passed and 0 failed.

25 Test passed.

NJ
N

Summary of doctests

= Doctest allows you to write simple test routines, with practically zero overhead
= Doctests motivates the addition of examples, which improves your documentation
= Doctests make sure the documentation is up-to-date

= Not ideal to support complex function testing (as docs get cluttered, etc.)

For more info, see doctest docs

https://docs.python.org/3/library/doctest.html#module-doctest

Pytest: a poweful testing framework

The library Pytest

= makes it easy to write small tests,

= vyet also scales to support complex functional testing for applications and libraries.
Note: you can also test sizes/dimensions, return types, etc.

Pytest is not in the standard library. Check out the installation guide — you can install it (in the terminal) by
typing:

1 alex@gmac % pip install -U pytest

Let’s look at some examples!

https://docs.pytest.org/en/7.1.x/getting-started.html#install-pytest
https://docs.pytest.org/en/6.2.x/index.html

A simple example

Writing tests (store this file below as "test_example.py)

def myfun(x):
return 3*x

def test myfun():
assert myfun(6) == 1
assert myfun('EPFL")
assert myfun(3.0) ==

3 # The assert statement is the core of pytest
== 'EPFLEPFLEPFL'
9.0

NOYOULT A WWNWDN -

If yourun pytest’ inthe terminal ... (all ‘test XYZ.py and 'XYZ test.py are excecuted)

1 alex@mac % pytest

5 platform darwin -- Python 3.8.8, pytest-6.2.3, py-1.10.0, pluggy-0.15.1

4 rootdir: /Users/alex/Code/Teaching/demo-project/abc

5 plugins: anyio-2.2.0

6 collected 1 item

7

g test _example.py . [100% |
9

Putting an error ... ‘assert myfun(3.0) == 9.1

1 alex@gmac % pytest

2 =================================== test session starts =================================
5 platform darwin -- Python 3.8.8, pytest-6.2.3, py-1.10.0, pluggy-0.13.1

4 rootdir: /Users/alex/Code/Teaching/demo-project/abc

5 plugins: anyio-2.2.0

6 collected 1 item

/

8 test_example.py F [100% |
9

10 === FAILURES ======================================
1 test myfup
12

13 def test _myfun():

14 assert myfun(6) == 18

15 assert myfun('EPFL') == 'EPFLEPFLEPFL'

16 > assert myfun(3.0) == 9.1

17 E assert 9.0 == 9.1

18 E + where 9.0 = myfun(3.0)

19

20 test example.py:/7:. AssertionError

21 ================================= ghort test summary info ===============================
22 FAILED test _example.py::test myfun - assert 9.0 == 9.1

25 ====================================] fajled in 0.0/s ==================================

24

Running the tests for the demo-project

Check out how we added tests in the demo-project!

1 alex@mac % pytest

J =================================== test Session starts =================================
5 platform darwin -- Python 3.8.8, pytest-6.2.3, py-1.10.0, pluggy-0.15.1

4 rootdir: /Users/alex/Code/Teaching/demo-project

5 plugins: anyio-2.2.0

6 collected 9 items

7

g test LVM.py [100% |
9

10 ===================================== Warnings summary ==================================
11 test LVM.py::test _main

12 /Users/alex/Code/Teaching/demo-project/test LVM.py:84: DeprecationWarning: the imp modu
13 import imp

14

15 -- Docs: https://docs.pytest.org/en/stable/warnings.html

16 =============================== 9 passed, 1 warning in 0. 34s ============================

All passed ...

https://github.com/EPFL-BIO-210/demo-project

Quiz: How are arguments matched to functions in
python?

Python functions allow highly flexible calling patterns (Argument-matching modes).

» Positionals: matched left to right

= Keywords: matched by argument name; name = value syntax
= Defaults: specify values for optional arguments (that do not need to be passed)

= (Varargs collecting: pass arbitrarily many positional or keyword arguments)

Reminders:

1 >>> def f(x,y=2,z=3): print(x,y,z) # x required, y and z optional!
2 >>> f(1) # using defaults

5 (1,2,3)

4

5 >>> f(1.,4) # overwriting defaults by positional variable
6 (1,4,3)

7 >>> £(1,4,5)

3 (1,4,5)

9 # Mixed keyword and default example:

10 >>> f£(1,z=55) # a gets 1 by position, others by keyword

11 (1,2,55)

Coverage

How do you know if your testing is comprehensive?

= Coverage.py is a tool for measuring code coverage of Python programs.

= Coverage.py monitors your program, counting which parts of the code have been executed, then analyzes
the source code to identify code that could have been executed, but was not. It reports the fraction of
code that is tested (i.e. the code coverage)

= For testing, code coverage measures, how well your tests are covering your source code. Note, it does not

measure the quality of your tests — this needs to be ensured by the programmer, i.e. you!

Installation:

1 alex@mac % pip install coverage

https://github.com/nedbat/coveragepy

Measuring and reporting test coverage

1 alex@mac % coverage run -m pytest

2 =================================== test session starts =================================
5 platform darwin -- Python 3.9.7, pytest-6.2.5, py-1.11.0, pluggy-1.0.0

4 rootdir: /Users/alex/Code/Teaching/demo-project

5 collected 9 items

6

/ test LVM.py [100% |
3

9 ===================================== Warnings summary ==================================
10 test LVM.py::test main

11 /Users/alex/Code/Teaching/demo-project/test LVM.py:82: DeprecationWarning: the imp modu
12 import imp

13

14 -- Docs: https://docs.pytest.org/en/stable/warnings.html

15 =============================== 9 passed, 1 warning in 0.20s ============================
16 alex@mac % coverage report

1/ Name Stmts Miss Cover

18 @ e e -

19 LotkaVolterraModel .py 17 0 100%

20 test LVM.py 48 %) 100%

21 e -

22 TOTAL 65 0 100%

Software development

= With a powerful set of tests incl. functional tests, one can automatically test the code base
= Tests can be run cross-platform, and with different dependencies

= Performance regressions can be avoided during further development

E.g. for DeepLabCut, we use GitHub actions to install and run our test-suite

https://github.com/features/actions
https://github.com/DeepLabCut/DeepLabCut/blob/master/.github/workflows/python-package.yml
https://github.com/DeepLabCut/DeepLabCut/pull/2374

Discussion: How do you assure high quality for your
tests?

= write simple, readable tests
= write deterministic tests (or fix seeds)

= test one aspect per test (give them clear names!)

Further reading

= Pytest examples

Software testingis an important aspect of software engineering, here we only scratched the surface by

introducing doctests, unit tests (with pytest) and coverage. For further reading start with the Wikipedia
article on software testing

https://docs.pytest.org/en/6.2.x/example/index.html
https://realpython.com/pytest-python-testing/
https://numpy.org/doc/stable/reference/testing.html
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Software_testing

10
11
12
13
14

Date

09/09/2024
16/09/2024
23/09/2024
30/09/2024
07/10/2024
14/10/2024
21/10/2024
28/10/2024
04/11/2024
11/11/2024
18/11/2024
25/11/2024
02/12/2024
09/12/2024
16/12/2024

Topic

Python introduction I

Public holiday

Python introduction II

Git and GitHub (+installation VS Code)
Project introduction

Functionify

EPFL fall break

Visualization and documentation
Unit-tests, functional tests

Code refactoring

Profiling and code optimization
Object oriented programming
Model analysis and project report
Work on project

Wrap up

Software version Software releases Grading / Feedback

vl

\ vl

V3 v2 code review (API)
v4 V3

v5 v4 graded (tests)

V6 v5 code review

v7 V6 graded (speed)
v8 V7 code review (0O0)

v8 graded (project)

Best test-suite prize!

= we will grade coverage, and quality of randomly selected tests

= announced in week 11 (as part of v4 grading).

Today’s summary

= testing (doctests, pytest, coverage, CI)

= Do you want an additional, open-source coding task? -> add a unit-test to DeepLabCut

Concepts Definitions

Imports Difference of ‘module. function(), function()', etc.
Traceback Report summarizing function calls, common for raising errors
Doctests Allows automatic testing of examples in docstrings

Pytests Allows creation of flexible and comprehensive unit-testing
Coverage Assesses how much of your code is tested

Try out the commands in the python shell/notebooks! Practice is key.

https://github.com/DeepLabCut/DeepLabCut

After lunch:

= Monday 13 - 15: exercises working on v4 of your project
= Monday 15:15 - 16: my office hours at SV 2811

= Next week: final in person quiz and release of v4 at 10am on Monday

