
Welcome to BIO-210
Applied software engineering for life sciences

November 4th 2024 – Lecture 8

Prof. Alexander MATHIS

EPFL

Announcements
v3 was due today (no code review, but discuss with your student assistants today!)

Try to submit in time, as we will have to reduce your score (for graded parts, e.g. v4 next week!)

Reminder: Multiple-developer git workflow

Source: git docs

https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project

Example for the demo-project

Pull-request 5 - Feature/functionify: https://github.com/EPFL-BIO-210/demo-project/pull/1

–> then released, see https://github.com/EPFL-BIO-210/demo-project/releases/tag/v2

Let’s check out:

https://github.com/EPFL-BIO-210/demo-project/pull/1
https://github.com/EPFL-BIO-210/demo-project/releases/tag/v2

Another example:
Pull-request 6 - more features (visualization and docstrings): https://github.com/EPFL-BIO-210/demo-

project/pull/2

Let’s check out the graph!

You can access the git graph for a project under /network , i.e., https://github.com/EPFL-BIO-210/demo-
project/network

(or via git log --all --graph --decorate as we learned in Lecture 4)

` `

` `

https://github.com/EPFL-BIO-210/demo-project/pull/2
https://github.com/EPFL-BIO-210/demo-project/network

Displaying the git graph locally
1 (base) alex@mac demo-project % git log --all --graph --oneline
2 * ef492e0 (HEAD -> main, AM/visualization) Merge pull request #2 from EPFL-BIO-210/AM/v
3 |\
4 | * 2ddd561 (origin/AM/visualization) Visualization code added
5 * | f84a4a9 Merge pull request #1 from EPFL-BIO-210/Functionify
6 |\|
7 | * c6bcbc8 (origin/Functionify, Functionify) Adding function module
8 |/
9 * 339040e (origin/main) Hello world

Updating our code, typical workflow I
1 (base) alex@mac demo-project % git checkout -b "doctests"
2 Switched to a new branch 'doctests'
3
4 # NOW write some code ...
5
6 (base) alex@mac demo-project % git status
7 On branch doctests
8 Changes to be committed:
9 (use "git restore --staged <file>..." to unstage)
10 	 modified: LotkaVolterraModel.py
11 	 modified: main.py
12
13 Changes not staged for commit:
14 (use "git add <file>..." to update what will be committed)
15 (use "git restore <file>..." to discard changes in working directory)
16 	 modified: LotkaVolterraModel.py
17 	 modified: README.md
18
19 Untracked files:
20 (use "git add <file>..." to include in what will be committed)
21 	 environment.yml
22 	 test_LVM.py

Updating our code, typical workflow II
1 (base) alex@mac demo-project % git add .
2 (base) alex@mac demo-project % git status
3 On branch doctests
4 Changes to be committed:
5 (use "git restore --staged <file>..." to unstage)
6 	 modified: LotkaVolterraModel.py
7 	 modified: README.md
8 	 new file: environment.yml
9 	 modified: main.py
10 	 new file: test_LVM.py

Workflow III: Committing and sharing the branch

Now visible on GitHub and can be assigned to teammates: LINK PR #3

1 (base) alex@mac demo-project % git commit -m
2 "Included doctests and unittests, updated readme to show how to use them"
3 [doctests 924ea46] Included doctests and unittests, updated readme to show how to use the
4 5 files changed, 248 insertions(+), 3 deletions(-)
5 create mode 100644 environment.yml
6 create mode 100644 test_LVM.py
7 (base) alex@mac demo-project % git push origin HEAD
8 Enumerating objects: 11, done.
9 #OMMITED some details...
10 Writing objects: 100% (7/7), 3.62 KiB | 3.62 MiB/s, done.
11 Total 7 (delta 1), reused 0 (delta 0), pack-reused 0
12 remote: Resolving deltas: 100% (1/1), completed with 1 local object.
13 remote:
14 remote: Create a pull request for 'doctests' on GitHub by visiting:
15 remote: https://github.com/EPFL-BIO-210/demo-project/pull/new/doctests
16 remote:
17 To https://github.com/EPFL-BIO-210/demo-project.git
18 * [new branch] HEAD -> doctests

https://github.com/EPFL-BIO-210/demo-project/pull/3

Materials for GIT
Jennifer Shan developed a video tutorial on how to use git in Visual Studio Code

Viva Berlenghi wrote a Git survival kit

Ansehen auf

EPFL: BIO-210 tutoriEPFL: BIO-210 tutori……

https://www.youtube.com/watch?v=oepxj-e78PA
https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/week_5_git_guide.html
https://www.youtube.com/watch?v=oepxj-e78PA&embeds_referring_euri=http%3A%2F%2Flocalhost%3A12445%2F
https://www.youtube.com/watch?v=oepxj-e78PA

Quiz: How will this plot look?

Source

1 X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
2 C, S = np.cos(X), np.sin(X)
3 plt.plot(X,C)
4 plt.plot(X,S)
5 plt.show()

https://github.com/rougier/matplotlib-tutorial/blob/master/scripts/exercice_1.py

However, don’t trust the defaults (especially if you
want to share your plots!)

Source

just a few more lines of code …

https://github.com/rougier/matplotlib-tutorial/blob/master/scripts/exercice_10.py

Reminder: Check out the Matplotlib gallery
Tons of visual examples with code, e.g. matlab-unchained

https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/animation/unchained.html#sphx-glr-gallery-animation-unchained-py

Quiz: what should be in docstrings?
Short summary (for basic, simple functions)

Extended summary contains among others:

a simple description (clarify functionality, not implementation details those belong to Notes)

parameters

returns

examples

notes

references

Details are here

1 def add(a, b):
 """The sum of two numbers.

 """

https://numpydoc.readthedocs.io/en/latest/format.html

Questions?

Testing

Reminder: demo project

Question: What is a population equilibrium?

Consider a shortened version of LotkaVolterraModel.py (from here)` `

1 import numpy as np
2
3 def dX_dt(X, a=1.0, b=0.1, c=1.5, d=0.75):
4 """
5 DOCSTRINGS OMMITTED!
6 """
7 return np.array([a * X[0] - b * X[0] * X[1], -c * X[1] + d * b * X[0] * X[1]])
8
9 def population_equilibrium(a=1.0, b=0.1, c=1.5, d=0.75):
10 """
11 DOCSTRINGS OMMITTED!
12 """
13 return np.zeros(2), np.array([c / (d * b), a / b])

https://github.com/EPFL-BIO-210/demo-project/blob/main/LotkaVolterraModel.py

Different forms of importing a module

Importing a specific function (from the module)

Importing all functions (and module.func1 is not required)

Importing the module:

1 >>> import LotkaVolterraModel

1 >>> from LotkaVolterraModel import dX_dt # Import a specific function

` `

1 >>> from LotkaVolterraModel import * # Import all functions

Importing the module (best way!)
1 >>> import LotkaVolterraModel
2 # Using functions (output not shown)
3 >>> LotkaVolterraModel.dX_dt(np.array([0,1]))
4 >>> LotkaVolterraModel.population_equilibrium()

Importing a specific function (from the module)

Note: In this case, LotkaVolterraModel. is not required for using fuctions, but only imported functions
are available.

1 >>> from LotkaVolterraModel import dX_dt # Import a specific function
2 >>> dX_dt(np.array([0,1])) # Output not shown
3 >>> population_equilibrium()
4 ---
5 NameError Traceback (most recent call last)
6 <ipython-input-7-9ef8bb27b9eb> in <module>
7 ----> 1 population_equilibrium()
8
9 NameError: name 'population_equilibrium' is not defined

` `

Importing all functions (and module.f1 is not
required)

Note: unexpected namespace collision possible (as you import all functions)

` `

1 >>> from LotkaVolterraModel import * # Import all functions (but namespace collisio
2 >>> dX_dt(np.array([0,1])) # All functions are available
3 >>> population_equilibrium() # No error, all functions availabe...

Questions?

A (first) hand crafted test …

Quiz: What happens here and how can we solve it?

1 import numpy as np
2
3 def dX_dt(X, a=1.0, b=0.1, c=1.5, d=0.75):
4 """
5 DOCSTRINGS OMMITTED!
6 """
7 return np.array([a * X[0] - b * X[0] * X[1], -c * X[1] + d * b * X[0] * X[1]])
8
9 if __name__ == "__main__":
10 if dX_dt(np.ones(2),1,0.1,1.5,.75) == np.array([0.9 , -1.425]):
11 print("works!!")

1 alex@mac demo-project % python3 LotkaVolterraModel.py
2 Traceback (most recent call last):
3 File "/Users/alex/Code/Teaching/demo-project/LotkaVolterraModel.py", line 130, in <modu
4 if dX_dt(np.ones(2),1,0.1,1.5,.75) == np.array([0.9 , -1.425]):
5 ValueError: The truth value of an array with more than one element is ambiguous. Use a.an

Fixing the comparison
1 import numpy as np
2
3 def dX_dt(X, a=1.0, b=0.1, c=1.5, d=0.75):
4 """
5 DOCSTRINGS OMMITTED!
6 """
7 return np.array([a * X[0] - b * X[0] * X[1], -c * X[1] + d * b * X[0] * X[1]])
8
9 if __name__ == "__main__":
10 if (dX_dt(np.ones(2),1,0.1,1.5,.75) == np.array([0.9 , -1.425])).all():
11 print("works!!")

1 alex@mac demo-project % python3 LotkaVolterraModel.py
2 works!!

… but such hand-crafted tests are clunky …

Doctests

The doctest module searches for strings that look like interactive Python sessions, and then executes

those sessions to verify that they work exactly as shown.

This allows:

To check that a module’s docstrings are up-to-date by verifying that all interactive examples still work as

documented.

To perform regression testing by verifying that interactive examples from a test file or a test object work

as expected.

Doctest is part of the Python Standard Library.` `

https://docs.python.org/3/contents.html

Using doctests I: Simply add examples
1 def dX_dt(X, a=1.0, b=0.1, c=1.5, d=0.75):
2 """
3 Computes the growth rate of fox and rabbit populations based on
4 system state (X) and parameters (a,b,c,d)
5
6 Parameters
7 ----------
8 X : array or tuple
9 [prey_count, predator_count]
10 Returns
11 -------
12 numpy array
13 [change of prey_count, change of predator_count]
14
15 Examples
16 -------
17 >>> dX_dt(np.ones(2),1,0.1,1.5,.75)
18 array([0.9 , -1.425])
19 >>> dX_dt(np.zeros(2),1,0.1,1.5,.75)
20 array([0., 0.])
21 """
22 return np.array([a * X[0] - b * X[0] * X[1], -c * X[1] + d * b * X[0] * X[1]])

Using doctests II: running the tests
1 import numpy as np
2
3 def dX_dt(X, a=1.0, b=0.1, c=1.5, d=0.75):
4
5
6 if __name__ == "__main__":
7 import doctest # Importing the library
8 print("Starting doctests") # not required (just for clarity in output)
9 doctest.testmod() # Running the doctests (here for this module)

Using doctests III: output
1 alex@mac demo-project % python3 LotkaVolterraModel.py
2 Starting doctests # No output if they work!
3 # Running with detailed output:
4 alex@mac demo-project % python3 LotkaVolterraModel.py -v
5 Starting doctests
6 Trying:
7 dX_dt(np.ones(2),1,0.1,1.5,.75)
8 Expecting:
9 array([0.9 , -1.425])
10 ok
11 Trying:
12 dX_dt(np.zeros(2),1,0.1,1.5,.75) # zero is a fixpoint
13 Expecting:
14 array([0., 0.])
15 ok
16 1 items had no tests:
17 __main__
18 1 items passed all tests:
19 2 tests in __main__.dX_dt
20 2 tests in 2 items.
21 2 passed and 0 failed.
22 Test passed.

Putting an error (on purpose)…

As dX_dt(0) = 0 …

1 def dX_dt(X, a=1.0, b=0.1, c=1.5, d=0.75):
2 """
3 OMMITTED!
4
5 Examples
6 -------
7 >>> dX_dt(np.zeros(2),1,0.1,1.5,.75)
8 array([0., 1.])
9 """
10 return np.array([a * X[0] - b * X[0] * X[1], -c * X[1] + d * b * X[0] * X[1]])

` `

Running the tests again…
1 alex@mac demo-project % python3 LotkaVolterraModel.py -v
2 Starting doctests
3 Trying:
4 dX_dt(np.zeros(2),1,0.1,1.5,.75)
5 Expecting:
6 array([0., 1.])
7 **
8 File "/Users/alex/Code/Teaching/demo-project/LotkaVolterraModel.py", line 35, in __main__
9 Failed example:
10 dX_dt(np.zeros(2),1,0.1,1.5,.75)
11 Expected:
12 array([0., 1.])
13 Got:
14 array([0., 0.])
15 1 items had no tests:
16 __main__
17 **
18 1 items had failures:
19 1 of 1 in __main__.dX_dt
20 1 tests in 2 items.
21 0 passed and 1 failed.
22 ***Test Failed*** 1 failures.

Questions?

if you have multiple doctests (for multiple functions, it runs for all functions)

make sure to have quick and simple tests

make sure you update them (if necessary), when you change or expand features

Simple doctests for the major functions can be found in the demo-code.

https://github.com/EPFL-BIO-210/demo-project/blob/main/LotkaVolterraModel.py

Quiz: How to implement factorial in Python?
1 def factorial(n):
2 result = 1
3 factor = 2
4 while factor <= n:
5 result *= factor
6 factor += 1
7 return result

Quiz: What doctests should we add?
1 # example_lecture8.py
2 def factorial(n):
3 """
4 Returns factorial of n, for positive integers.
5
6 Examples # NOT necessary (but good for docstrings)
7 --------
8 >>> [factorial(n) for n in range(11)]
9 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
10 >>> factorial(22)
11 1124000727777607680000
12
13 """
14 result = 1
15 factor = 2
16 while factor <= n:
17 result *= factor
18 factor += 1
19 return result
20
21 if __name__ == "__main__":
22 import doctest
23 doctest.testmod()

Running the tests
1 alex@mac % python3 example_lecture8.py -v
2 Trying:
3 [factorial(n) for n in range(11)]
4 Expecting:
5 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
6 ok
7 Trying:
8 factorial(22)
9 Expecting:
10 1124000727777607680000
11 ok
12 1 items had no tests:
13 __main__
14 1 items passed all tests:
15 2 tests in __main__.factorial
16 2 tests in 2 items.
17 2 passed and 0 failed.
18 Test passed.

Quiz: what is going on here?
1 In [1]: import numpy as np
2
3 In [2]: X=np.ones(33)
4
5 In [3]: X.append(3)
6 ---
7 AttributeError Traceback (most recent call last)
8 <ipython-input-3-8be15a984d9d> in <module>
9 ----> 1 X.append(3)
10
11 AttributeError: 'numpy.ndarray' object has no attribute 'append'

What are tracebacks?

Read them from bottom-to-top!

A Python traceback is a report summarizing function calls in your code. When your program runs into an
exception, Python will display the current traceback to help you diagnose the problem. Typical errors are
AttributeError ImportError IndexError KeyError NameError SyntaxError TypeError

ValueError . Examples:
`

`

1 In [1]: a,b=(2,3,4)
2 ---
3 ValueError Traceback (most recent call last)
4 <ipython-input-1-6ac6ff6f93e3> in <module>
5 ----> 1 a,b=(2,3,4)
6
7 ValueError: too many values to unpack (expected 2)
8 In [2]: a=[2,4,5,6,33]
9 In [3]: a[22]
10 ---
11 IndexError Traceback (most recent call last)
12 <ipython-input-3-b29842c8f55d> in <module>
13 ----> 1 a[22]
14
15 IndexError: list index out of range

https://realpython.com/python-traceback/

Checking inputs: Raising exceptions
1 def factorial_withwarnings(n): # Renamed for convenience (in my script)
2 import math
3 if not n >= 0:
4 raise ValueError("n must be >= 0")
5 if math.floor(n) != n:
6 raise ValueError("n must be an integer")
7 if n+1 == n: # catch a value like 1e300;
8 raise OverflowError("n too large")
9
10 result = 1
11 factor = 2
12 while factor <= n:
13 result *= factor
14 factor += 1
15 return result

Doctests against error messages
Adding this function to example_lecture8.py

1 def factorial_withwarnings(n):
2 '''
3 >>> factorial_withwarnings(-1)
4 Traceback (most recent call last):
5 ...
6 ValueError: n must be >= 0
7
8 Factorials of floats are OK, but the float must be an exact integer:
9 >>> factorial_withwarnings(30.1)
10 Traceback (most recent call last):
11 ...
12 ValueError: n must be exact integer
13 >>> factorial_withwarnings(1e100)
14 Traceback (most recent call last):
15 ...
16 OverflowError: n too large
17 '''
18 CODE OMMITTED (see previous page)

Test report
1 alex@mac % python3 example_lecture8.py -v
2 Trying:
3 [factorial(n) for n in range(11)]
4 Expecting:
5 [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
6 ok
7 OMMITTED ...
8 Trying:
9 factorial_withwarnings(-1)
10 Expecting:
11 Traceback (most recent call last):
12 ...
13 ValueError: n must be >= 0
14 ok
15 OMMITTED ...
16 1 items had no tests:
17 __main__
18 2 items passed all tests:
19 2 tests in __main__.factorial
20 3 tests in __main__.factorial_withwarnings
21 5 tests in 3 items.
22 5 passed and 0 failed.
23 Test passed.
24

Summary of doctests
Doctest allows you to write simple test routines, with practically zero overhead

Doctests motivates the addition of examples, which improves your documentation

Doctests make sure the documentation is up-to-date

Not ideal to support complex function testing (as docs get cluttered, etc.)

For more info, see doctest docs

https://docs.python.org/3/library/doctest.html#module-doctest

Pytest: a poweful testing framework

makes it easy to write small tests,

yet also scales to support complex functional testing for applications and libraries.

Note: you can also test sizes/dimensions, return types, etc.

Pytest is not in the standard library. Check out the installation guide – you can install it (in the terminal) by
typing:

Let’s look at some examples!

The library Pytest

1 alex@mac % pip install -U pytest

https://docs.pytest.org/en/7.1.x/getting-started.html#install-pytest
https://docs.pytest.org/en/6.2.x/index.html

A simple example

If you run pytest in the terminal … (all test_XYZ.py and XYZ_test.py are excecuted)

Writing tests (store this file below as test_example.py)` `

1 def myfun(x):
2 return 3*x
3
4 def test_myfun():
5 assert myfun(6) == 18 # The assert statement is the core of pytest
6 assert myfun('EPFL') == 'EPFLEPFLEPFL'
7 assert myfun(3.0) == 9.0

` ` ` ` ` `

1 alex@mac % pytest
2 =================================== test session starts =================================
3 platform darwin -- Python 3.8.8, pytest-6.2.3, py-1.10.0, pluggy-0.13.1
4 rootdir: /Users/alex/Code/Teaching/demo-project/abc
5 plugins: anyio-2.2.0
6 collected 1 item
7
8 test_example.py . [100%]
9
10 ==================================== 1 passed in 0.01s ==================================

Putting an error … assert myfun(3.0) == 9.1` `

1 alex@mac % pytest
2 =================================== test session starts =================================
3 platform darwin -- Python 3.8.8, pytest-6.2.3, py-1.10.0, pluggy-0.13.1
4 rootdir: /Users/alex/Code/Teaching/demo-project/abc
5 plugins: anyio-2.2.0
6 collected 1 item
7
8 test_example.py F [100%]
9
10 === FAILURES ======================================
11 __ test_myfun _____________________________________
12
13 def test_myfun():
14 assert myfun(6) == 18
15 assert myfun('EPFL') == 'EPFLEPFLEPFL'
16 > assert myfun(3.0) == 9.1
17 E assert 9.0 == 9.1
18 E + where 9.0 = myfun(3.0)
19
20 test_example.py:7: AssertionError
21 ================================= short test summary info ===============================
22 FAILED test_example.py::test_myfun - assert 9.0 == 9.1
23 ==================================== 1 failed in 0.07s ==================================
24

Running the tests for the demo-project

All passed …

Check out how we added tests in the demo-project!

1 alex@mac % pytest
2 =================================== test session starts =================================
3 platform darwin -- Python 3.8.8, pytest-6.2.3, py-1.10.0, pluggy-0.13.1
4 rootdir: /Users/alex/Code/Teaching/demo-project
5 plugins: anyio-2.2.0
6 collected 9 items
7
8 test_LVM.py [100%]
9
10 ===================================== warnings summary ==================================
11 test_LVM.py::test_main
12 /Users/alex/Code/Teaching/demo-project/test_LVM.py:84: DeprecationWarning: the imp modu
13 import imp
14
15 -- Docs: https://docs.pytest.org/en/stable/warnings.html
16 =============================== 9 passed, 1 warning in 0.34s ============================

https://github.com/EPFL-BIO-210/demo-project

Quiz: How are arguments matched to functions in
python?

Positionals: matched left to right

Keywords: matched by argument name; name = value syntax

Defaults: specify values for optional arguments (that do not need to be passed)

(Varargs collecting: pass arbitrarily many positional or keyword arguments)

Python functions allow highly flexible calling patterns (Argument-matching modes).

` `

Reminders:
1 >>> def f(x,y=2,z=3): print(x,y,z) # x required, y and z optional!
2 >>> f(1) # using defaults
3 (1,2,3)
4
5 >>> f(1,4) # overwriting defaults by positional variable
6 (1,4,3)
7 >>> f(1,4,5)
8 (1,4,5)
9 # Mixed keyword and default example:
10 >>> f(1,z=55) # a gets 1 by position, others by keyword
11 (1,2,55)

Coverage

Coverage.py is a tool for measuring code coverage of Python programs.

Coverage.py monitors your program, counting which parts of the code have been executed, then analyzes

the source code to identify code that could have been executed, but was not. It reports the fraction of

code that is tested (i.e. the code coverage)

For testing, code coverage measures, how well your tests are covering your source code. Note, it does not

measure the quality of your tests – this needs to be ensured by the programmer, i.e. you!

Installation:

How do you know if your testing is comprehensive?

1 alex@mac % pip install coverage

https://github.com/nedbat/coveragepy

Measuring and reporting test coverage
1 alex@mac % coverage run -m pytest
2 =================================== test session starts =================================
3 platform darwin -- Python 3.9.7, pytest-6.2.5, py-1.11.0, pluggy-1.0.0
4 rootdir: /Users/alex/Code/Teaching/demo-project
5 collected 9 items
6
7 test_LVM.py [100%]
8
9 ===================================== warnings summary ==================================
10 test_LVM.py::test_main
11 /Users/alex/Code/Teaching/demo-project/test_LVM.py:82: DeprecationWarning: the imp modu
12 import imp
13
14 -- Docs: https://docs.pytest.org/en/stable/warnings.html
15 =============================== 9 passed, 1 warning in 0.20s ============================
16 alex@mac % coverage report
17 Name Stmts Miss Cover
18 ---
19 LotkaVolterraModel.py 17 0 100%
20 test_LVM.py 48 0 100%
21 ---
22 TOTAL 65 0 100%

Software development
With a powerful set of tests incl. functional tests, one can automatically test the code base

Tests can be run cross-platform, and with different dependencies

Performance regressions can be avoided during further development

E.g. for DeepLabCut, we use GitHub actions to install and run our test-suite

Example test-run for a PR: https://github.com/DeepLabCut/DeepLabCut/pull/2374

https://github.com/features/actions
https://github.com/DeepLabCut/DeepLabCut/blob/master/.github/workflows/python-package.yml
https://github.com/DeepLabCut/DeepLabCut/pull/2374

Discussion: How do you assure high quality for your
tests?

write simple, readable tests

write deterministic tests (or fix seeds)

test one aspect per test (give them clear names!)

Further reading
Pytest examples

Effective python testing with Pytest

Testing for numpy

Integrating tests into the developing cycle is a popular appraoch in software development called: test-

driven development

Software testing is an important aspect of software engineering, here we only scratched the surface by
introducing doctests, unit tests (with pytest) and coverage. For further reading start with the Wikipedia
article on software testing

https://docs.pytest.org/en/6.2.x/example/index.html
https://realpython.com/pytest-python-testing/
https://numpy.org/doc/stable/reference/testing.html
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Software_testing

Date Topic Software version Software releases Grading / Feedback

0 09/09/2024 Python introduction I

1 16/09/2024 Public holiday

2 23/09/2024 Python introduction II

3 30/09/2024 Git and GitHub (+installation VS Code)

4 07/10/2024 Project introduction v1

5 14/10/2024 Functionify v2 v1

6 21/10/2024 EPFL fall break

7 28/10/2024 Visualization and documentation v3 v2 code review (API)

8 04/11/2024 Unit-tests, functional tests v4 v3

9 11/11/2024 Code refactoring v5 v4 graded (tests)

10 18/11/2024 Profiling and code optimization v6 v5 code review

11 25/11/2024 Object oriented programming v7 v6 graded (speed)

12 02/12/2024 Model analysis and project report v8 v7 code review (OO)

13 09/12/2024 Work on project

14 16/12/2024 Wrap up v8 graded (project)

Best test-suite prize!
we will grade coverage, and quality of randomly selected tests

announced in week 11 (as part of v4 grading).

Today’s summary
testing (doctests, pytest, coverage, CI)

Do you want an additional, open-source coding task? -> add a unit-test to DeepLabCut

Concepts Definitions

Imports Difference of module.function(), function() , etc.

Traceback Report summarizing function calls, common for raising errors

Doctests Allows automatic testing of examples in docstrings

Pytests Allows creation of flexible and comprehensive unit-testing

Coverage Assesses how much of your code is tested

Try out the commands in the python shell/notebooks! Practice is key.

` `

https://github.com/DeepLabCut/DeepLabCut

After lunch:
Monday 13 - 15: exercises working on v4 of your project

Monday 15:15 - 16: my office hours at SV 2811

Next week: final in person quiz and release of v4 at 10am on Monday

