Welcome to BIO-210

Applied software engineering for life sciences
October 28th 2024 — Lecture 6

Prof. Alexander MATHIS

EPFL

Announcements I

= Congrats on your excellent quiz results: Quiz 1: class average 9.7/10;

= For Quiz 2 we have: 8.6/12. Let’s keep studying Python!

Announcements II

= Today is the second in person quiz: please come in time, there will be no extra time. Submission closes at

13:35. To start, you’ll need to sign in. Bring your Camipro. No notes are allowed. If you switch to a
different tab from Moodle’s quiz or communicate with somebody, you’ll receive 0 points.

= Monday 15:15 - 16: my office hours at SV 2811

Announcements II1

= Final room assigment here. NOTE: you need your EPFL login to see it!

prepare better)

= what if you get stuck? -> discuss with your teammates, ask on ED, ... and release your best version on
Monday at 10am

= make sure you get feedback about your latest version on Monday from the SA/TAs! You can release a

bugfix/patch/update, e.g. "'v2.1", see details on releases

= We will provide code review for your v2!

https://docs.google.com/spreadsheets/d/1jH0JLXPbivfm_COMBw22dFm8wnCp88_8f0Mo3sfMLDM
https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/release_notes.html
https://github.com/EPFL-BIO-210/BIO-210-CourseMaterials/tree/main/problem_sets
https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/release_notes.html

Quiz

You have a dataset representing the expression levels of 5 genes across 4 tissue samples. Each row
corresponds to a gene, and each column corresponds to a tissue sample.

import numpy as np
expression_levels = np.array(|[

(5.1, 2.3, 3.4, 6.5], # Gene 1
(1.5, 3.5, 2.4, 4.6], # Gene 2
(3.2, 5.1, 1.6, 3.8], # Gene 3
(4.1, 3.2, 4.5, 2.2], # Gene 4
(2.8, 1.5, 3.1, 5.0], # Gene 5

D

O oOoONOTULT DN WDN -

Write a program to calculate the standard deviation of the expression levels of each gene.

In [1]: np.std(expression_levels,axis=1)
Out[1l]: array([1.6037/0664, 1.1640446/7, 1.25772612, 0.88600226, 1.2509996 1)

In [2]: np.sqrt(np.var(expression_levels,axis=1)) #if you don't know the std command
Out[2]: array([1.60370664, 1.16404467, 1.25772612, ©0.88600226, 1.2509996])

o p NN -

Useful conventions for developing a project

New feature development:

= for new features make branches. Give the branch a good name, e.g. your name/novel featurename

= once you’re ready you make a pull request and assign your collaborators for review (e.g., see this example

https://github.com/DeepLabCut/DeepLabCut/pull/2767
https://github.com/EPFL-BIO-210/demo-project/pull/1

Recommended project workflow:

1. Develop a feature (on a branch)
2. Merge main/master into it [when you’re done]
3. Test it, again after you merge: ‘git push’

4. create a pull request and assign your teammates as reviewers

Alternative workflow: sometimes 2) and 3) are done by the reviewer. i.e. they merge!

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://docs.github.com/en/issues/tracking-your-work-with-issues/assigning-issues-and-pull-requests-to-other-github-users

Comments in Python code

We already learned that "#" allows to put comments in code.

1 # Hello world <--- this will not be interpreted!
2 # "#" also allows multi-line comments

3

4 # we have also seen inline comments...

5 a=35 # you can also make inline comments!

6 b=4 # assigning b to 4.

/

3 """ single quotes

9 You can also make lLong comments ... everything is "ignored" by python!
10 a=f2d123eel505

11 b=123

12 | |

15 c=a+tb

14

15 """ guotation marks

16 Alternative,

17/ multiline comment
18 I

Some guidelines (not rules)

From pep 8 = Style Guide for Python Code

= Comments should be complete sentences. The first word should be capitalized, unless it is an identifier
that begins with a lower case letter (never alter the case of identifiers, aka keywords, module names, etc.).

= Ensure that your comments are clear and easily understandable to other speakers of the language you are
writing in.

= You can look for typos by using the pip-package codespell.

= Comments that contradict the code are worse than no comments. Always make a priority of keeping the

comments up-to-date when the code changes!

P.S.: PEP stands for Python Enhancement Proposal. A PEP is a design document providing information to
the Python community, or describing a new feature for Python or its processes or environment. The PEP
should provide a concise technical specification of the feature and a rationale for the feature — from PEP 1.

https://github.com/codespell-project/codespell
https://www.python.org/dev/peps/pep-0001/#what-is-a-pep
https://www.python.org/dev/peps/pep-0008/#comments

Quiz: How do you create a np.array ...

... starting at 12, ending at 176 containing every third number?

In [1]: import numpy as np

In [2]: np.arange(12,177,3)

Out[2]:

array([12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 5/, 66, 63, 66, 69, 72, 75, 78, 81, 84, 87/,
99, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126,
129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165,
168, 171, 1747])

coONONCULIPAWWNWDN B

But what if you forgot how to use np.arange " ?

1 help(np.arange)
2 np.arange?

The displayed help is actually the "docstring

1 In [3]: help(np.arange)

2

5 Help on built-in function arange in module numpy:

4

5 arange(...)

6 arange([start,] stop[, step,]|, dtype=None, *, Like=None)

/

3 Return evenly spaced values within a given interval.

9

10 Values are generated within the half-open interval ° [start, stop)
11 (in other words, the interval including start but excluding 'stop).
12 For integer arguments the function is equivalent to the Python built-in
13 ‘range = function, but returns an ndarray rather than a list.

14

15 When using a non-integer step, such as 0.1, the results will often not
16 be consistent. It is better to use numpy.linspace for these cases.
17

13 Parameters

1o eess======

20 start : integer or real, optional

21 Start of interval. The interval includes this value. The default
22 start value 1is 0©.

23 stop : integer or real

24 End of interval. The interval does not include this value., except

Essential documentation: Docstrings

A docstring is a string literal that occurs as the first statement in a module, function, class, or method
definition. Such a docstring becomes the *_ doc special attribute of that object.

= Docstrings provide help for your code (so you (and others) can re-use it in the future!)

1 In [4]: def myfun(x):

2 Ce "'t identity function "'’ # Docstrings are defined like comments!
3 return x

4 ;

5 : print(myfun. doc_) # Docstrings are assinged to the attribute '~ doc _
6 C

/ identity function

3

9 In [5]: help(myfun) # They become accessible via help!

10 Help on function myfun in module _ main__:

11

12 myfun(x)
13 identity function

Python’s recommendations for docstrings

= Write docstrings for all public modules, functions, classes, and methods.
= Docstrings are not necessary for non-public methods, but you should have a comment that describes
what the method does. This comment should appear after the def line.

= PEP 257 immortalizes Python’s docstring conventions

https://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html

What should be contained in a docstring?

= A Short summary (for basic, simple functions)

def add(a, b):
"""The sum of two numbers.

1
2
3
4 i
= Extended summary contains among others:

= 3 simple description (clarify functionality, not implementation details those belong to Notes)

= parameters

= returns

= examples

= notes

m references

Details are available in the Numpy doc style guide

https://numpydoc.readthedocs.io/en/latest/format.html

Example (shortened from np.arange)

1 In [13]: np.arange?

2 Return evenly spaced values within a given interval.
3 | JOMMITTED for space reasons!!

4 Parameters

o T .

6 start : integer or real, optional

/ Start of interval. The interval includes this value. The default
3 start value 1is ©.

9 stop : integer or real

19 1 JOMMITTED for space reasons!!

11

12 Returns

13 -------

14 arange : ndarray

15 Array of evenly spaced values.

16 V' JOMMITTED for space reasons!!

17

18 Examples

19 --------

20 >>> np.arange(3)

21 array([0, 1, 2])

22 Type: builtin_ function_ or method

https://numpy.org/doc/stable/reference/generated/numpy.arange.html

Documentation

= Note that the (numpy) docstrings are also (html-rendered) on the web, e.g., for np.arange

= this is all automatically generated with Sphinx, see https://github.com/numpy/doc

https://numpy.org/doc/stable/reference/generated/numpy.arange.html
https://www.sphinx-doc.org/en/master/
https://github.com/numpy/doc

Docstrings 1n action

= Today you will work on docstrings for your functions!

= Compare to the demo-project

https://github.com/EPFL-BIO-210/demo-project/blob/Functionify/functions.py

Quiz: How do you define a function that can offset
the output by a specific parameter with default 2?

1 In [1]: def f(x,offset = 2):
2 : return x+offset
3

4

5 # Testing our function:

6 In [2]: £(0©)

/7 Out[2]: 2

8

9 In [3]: £(3)

10 Qut[3]: 5

11

12 In [4]: £(2,5)

15 Out[4]: 7

Quiz: How do you write docstrings for this function?

1 def offsetter(x,offset = 2): # use a good name!
2 """ Function that offsets input by default value (offset)
3 Parameters

4 e

5 X . array or float

6 offset : float, optional

7/ default 2

3 Returns

9 0 e

10 numpy array or float

11 x + offset

12 Examples

Ly =======

14 >>> offsetter(2)

15 ‘-

16 >>> offsetter(2,3)

17 5

18 I

19 return x+offset

Questions?

Visualization

= js crucial in science and beyond ("a picture is worth 1000 words...")

= python has strong support for plotting with maptlotlib (our focus), seaborn (neat interface on top),

https://matplotlib.org/
https://seaborn.pydata.org/
https://docs.enthought.com/mayavi/mayavi/index.html
https://plot.ly/
https://docs.bokeh.org/en/latest/index.html
https://pandas.pydata.org/
http://www.gnuplot.info/
https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words
https://matplotlib.org/

Pyplot: simple plotting in matplotlib

UT p WN B

import matplotlib.pyplot as plt # Importing matplotlib.pyplot
Note: we use all functions from this Llibrary with plt.XYZ
plt.plot([1l, 4, 3, 2]) # Plotting x vs. y data
plt.ylabel('label for y-axis') # Making a label for vy

plt.show() # Display all open figures

Pyplot: simple plotting in matplotlib

un PP WD -

import matplotlib.pyplot as plt # Importing matplotlib.pyplot
Note: we use all functions from this Llibrary with plt.XYZ
plt.plot([1l, 4, 3, 2]) # Plotting x vs. y data
plt.ylabel('label for y-axis') # Making a label for vy
plt.show() # Display all open figures
4.0 -
3.5 1
“ 3.0 A
g 2.5 -
= 2.0 -
1.5 1
1.0 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Quiz: Why does the plot look like this?

1 import matplotlib.pyplot as plt # Importing matplotlib.pyplot
2 # Note: we use all functions from this library with plt.XYZ

5 plt.plot([1, 4, 3, 2]) # Plotting x vs. y data

4 plt.ylabel('label for y-axis') # Making a label for vy

5 plt.show() # Display all open figures

Quiz: Why does the plot look like this?

If one gives just one array "a’, this array is interpreted as y-axis values. By default the x-values are just
enumerated O to len(a)-1. All those points are connected by line segments.

4.0

3.5 4

3.0 4

2.5

label for y-axis

2.0 A

1.5 4

1.0 A

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Example 2: formatting the style of plot

un PP WD -

import numpy as np

X = np.linspace(0,1,50)
Plotting x vs. y data
plt.plot(x,x**2,'r' ,x,x*¥*3,'b."' ,x,np.sqrt(x), " 'g’')

plt.show()

1.0 -

0.8 A

0.6 -

0.4 A

0.2 -

0.0 A

(for multiple functions/ x-y pairs with their own style)

0.0 0.2 0.4 0.6 0.8 1.0

Anatomy of a matplotlib figure

Major tick

D

Minor tick

Y axis labe

(line plot)

— B 1 el
= Re A

Legend

0 T
0.2%

I
|‘HEI’JJ$

Minor tick label

|
|
|
|
|
|
|
|
|
|
|
T | |
2

50 1 —=
5 label

X axis label

50 3.75

4

Made with http://matplotlib.org

https://matplotlib.org/stable/tutorials/introductory/usage.html#parts-of-a-figure

OoOoONOTULT PN~ WDN -

ERTR EY
N PO

Creating figures with subplots (here nrows = 2, ncols = 1)

T = np.arange(0.0, 5.0, 0.1)

Y = np.exp(-T) * np.cos(2*np.pi*T) # Vectorized computation!

plt.figure() Creating a new figure (or activate existing)
plt.subplot(211) subplot(nrows, ncols, index)

plt.plot(T, Y, 'bo',T,Y,'-",alpha=.5)
plt.ylabel ("Current [mA]")
plt.subplot(212)

plt.plot(T, np.cos(2*np.pi*T), 'm--')
plt.xlabel("Time [s]")

plt.ylabel ("Current [mA]")

plt.show()

#

3+

y-lLabel
creating index = 2

3+

1.0 A

0.5 A1

0.0 A

Current [mA]

_0.5 -

1.09

0.5 A1

Current [mA]
o
o

Time [s]

Histograms and working with text

1 mu, sigma = 100, 15

2 X = mu + sigma ¥ np.random.randn(10000) # creating 10k samples with mu 100 and std 15
5 # Creating histogram of the data

4 n, bins, patches = plt.hist(x, 50, density=1, facecolor='g', alpha=0.75)

5 plt.xlabel('Random variable')

6 plt.ylabel('Probability')

/ plt.title('Gaussian sample data')

8 plt.text(60, .025, r'$\mu=100,\ \sigma=15%"') # putting text at location (60,0.025)

9 plt.axis([40, 160, @, 0.03]) # setting the axis Llimits

10 plt.grid(True) # making grid

Gaussian sample data

0.030

0.025

0.020

Probability
o
o
(i)
wu

0.010

0.005

0.000 -
40 60 80 100 120 140 160

Random variable

Remember, use docstrings to get help!

1 In [15]: plt.axis?

2 Signature: plt.axis(*args, emit=True, **kwargs)

5 Docstring:

4 Convenience method to get or set some axis properties.

5

6 Call signatures::

/

3 xmin, xmax, ymin, ymax = axis()

9 Xxmin, xmax, ymin, ymax = axis([xmin, xmax, ymin, ymax|)
10 xmin, xmax, ymin, ymax = axis(option)

11 xmin, xmax, ymin, ymax = axis(**kwargs)

12

15 Parameters

14 ----------

15 xmin, xmax, ymin, ymax : float, optional

16 The axis limits to be set. This can also be achieved using
17

138 ax.set(xlLim=(xmin, xmax), ylim=(Cymin, ymax))

19

20 option : bool or str

21 If a bool, turns axis lines and labels on or off. If a string,
22 possible values are:

23

NJ
N

Questions?

Matplotlib has two intertaces

" ‘matplotlib.pyplot is a state-based interface to matplotlib

m this is what we saw so far

= Pyplot tutorial

= it also has an object-oriented (OO) interface. In this case, we utilize an instance of "axes.Axes in order

to render visualizations on an instance of "figure.Figure'.

= more details what that means with a nice example plotting financial data

= all plots we saw so far, you can all also do this way

= Jots of examples

https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/lifecycle.html
https://matplotlib.org/stable/tutorials/index.html

Plotting images "imshow

A = np.random.rand(5, 5) # creating a random 5 x 5 array (uniform)
fig, axs = plt.subplots(l, 3, figsize=(10, 3)) # creating a figure object
for ax, interp in zip(axs, ['nearest', 'bilinear',6 'bicubic']):

ax.imshow(A, interpolation=interp) # plotting image A

ax.set_title(interp.capitalize())
ax.grid(True)

oONONCULITPAWWNWDN B

plt.show()

Nearest Bilinear Bicubic

https://matplotlib.org/stable/gallery/images_contours_and_fields/image_demo.html

Check out the Matplotlib gallery

MATPLOTLIB UNCHAINED

https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/animation/unchained.html#sphx-glr-gallery-animation-unchained-py

Fun stuft I:

Matplotlib can be integrated in GUIs and make complex figures, e.g., here is a screenshot from pbrain

(v EEG Viewer and Analyzer - B X
File Patients View Compute Help

SCaLFlz
SCAaLF1Y

o A0

30
20
10

FREQUENCY (H

H] 4 5 B 7 a 9 1@ 11 12 13

<4 4 b MG E A vVvIiEeD P A

'Message: Electrode: RTG12 |

\

https://github.com/nipy/pbrain

Fun stuft II;

You can plot xkcd-comic style...

/?
THE DAY I REALIZED
I COULD COOK BACON

WHENEVER I WANTED

my overall health

time

"Stove Ownership” from xkcd by Randall Munroe

Quiz: How do you make a plot with 2 columns and 1
row?

T = np.arange(0.0, 5.0, 0.1)

Y = np.exp(-T) * np.cos(2*np.pi*T) # Vectorized computation!

plt.figure() # Creating a new figure (or activate existing)
.subplot(121) # subplot(nrows, ncols, index)

plt.plot(T, Y, 'bo',T,Y,'-",alpha=.5)

plt.subplot(122) # creating index = 2

plt.plot(T, np.cos(2*np.pi*T), 'm--")

plt.show()

ONOUVLT A WN PR
O
‘—I
(_I.

1.0 4 1.00 9,
i A A A A
Voo
AR R A
0.6 1 0.50 1 " " :1 1 1'1
1 1 I g
0.4 4 0.25 1 : \ } 1 I|I
' ' RN
R
0.2 1 0007 v 0 b b b
I
I | 11
0.0 0254 1 b v
1 1 b " I
-0.2 +0504 || Lo
b o
I i I
— 1 1 1 i i
0.4 0754 41 4r brobroh
b i N 1 by
-0.6 lioof ¢ ¥ ¥ 1
T T T

Additional references

Remember, check out the Matplotlib gallery

= Matplotlib tutorial

= Excellent additional matplotlib resources

= Ten Simple Rules for Better Figures

https://github.com/rougier/matplotlib-tutorial
https://matplotlib.org/stable/resources/index.html
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833
https://www.annualreviews.org/doi/pdf/10.1146/annurev-biodatasci-080917-013424
https://matplotlib.org/stable/gallery/index.html

Questions?

Today’s summary

= docstrings

= visualization with matplotlib

As always, try out the commands in the python shell/notebooks!

In the exercises you will add docstrings and visualizations to your project.

After lunch:

= Arrive early for the quiz (so you can start at 13:15)

= This week we will add visualizations and docstrings.

= Stay tuned for your code review, release v3 by Monday at 10 am
= Monday 15:15 - 16: my office hours at SV 2811

https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/release_notes.html

