
Welcome to BIO-210
Applied software engineering for life sciences

October 28th 2024 – Lecture 6

Prof. Alexander MATHIS

EPFL

Announcements I
Congrats on your excellent quiz results: Quiz 1: class average 9.7/10;

For Quiz 2 we have: 8.6/12. Let’s keep studying Python!

Announcements II
Today is the second in person quiz: please come in time, there will be no extra time. Submission closes at
13:35. To start, you’ll need to sign in. Bring your Camipro. No notes are allowed. If you switch to a
different tab from Moodle’s quiz or communicate with somebody, you’ll receive 0 points.

Monday 15:15 - 16: my office hours at SV 2811

Announcements III
Final room assigment here. NOTE: you need your EPFL login to see it!

v2 of your project was due at 10am today (not graded/checked), check out release guide.

try to do the majority in the exercise session (we share the problem set at least by Friday, so you can

prepare better)

what if you get stuck? -> discuss with your teammates, ask on ED, … and release your best version on

Monday at 10am

make sure you get feedback about your latest version on Monday from the SA/TAs! You can release a

bugfix/patch/update, e.g. v2.1 , see details on releases

We will provide code review for your v2!

` `

https://docs.google.com/spreadsheets/d/1jH0JLXPbivfm_COMBw22dFm8wnCp88_8f0Mo3sfMLDM
https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/release_notes.html
https://github.com/EPFL-BIO-210/BIO-210-CourseMaterials/tree/main/problem_sets
https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/release_notes.html

Quiz

Write a program to calculate the standard deviation of the expression levels of each gene.

You have a dataset representing the expression levels of 5 genes across 4 tissue samples. Each row
corresponds to a gene, and each column corresponds to a tissue sample.

1 import numpy as np
2 expression_levels = np.array([
3 [5.1, 2.3, 3.4, 6.5], # Gene 1
4 [1.5, 3.5, 2.4, 4.6], # Gene 2
5 [3.2, 5.1, 1.6, 3.8], # Gene 3
6 [4.1, 3.2, 4.5, 2.2], # Gene 4
7 [2.8, 1.5, 3.1, 5.0], # Gene 5
8])
9

1 In [1]: np.std(expression_levels,axis=1)
2 Out[1]: array([1.60370664, 1.16404467, 1.25772612, 0.88600226, 1.2509996])
3
4 In [2]: np.sqrt(np.var(expression_levels,axis=1)) #if you don't know the std command
5 Out[2]: array([1.60370664, 1.16404467, 1.25772612, 0.88600226, 1.2509996])

Useful conventions for developing a project

for new features make branches. Give the branch a good name, e.g. your_name/novel_featurename

once you’re ready you make a pull request and assign your collaborators for review (e.g., see this example

PR)

here is an example for the demo project

New feature development:

https://github.com/DeepLabCut/DeepLabCut/pull/2767
https://github.com/EPFL-BIO-210/demo-project/pull/1

Recommended project workflow:
1. Develop a feature (on a branch)

2. Merge main/master into it [when you’re done]

3. Test it, again after you merge: git push

4. create a pull request and assign your teammates as reviewers

Alternative workflow: sometimes 2) and 3) are done by the reviewer. i.e. they merge!

` `

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://docs.github.com/en/issues/tracking-your-work-with-issues/assigning-issues-and-pull-requests-to-other-github-users

Comments in Python code
We already learned that "#" allows to put comments in code.

1 # Hello world <--- this will not be interpreted!
2 # "#" also allows multi-line comments
3
4 # we have also seen inline comments...
5 a=3 # you can also make inline comments!
6 b=4 # assigning b to 4.
7
8 ''' single quotes
9 You can also make long comments ... everything is "ignored" by python!
10 a=f2d123ee1505
11 b=123
12 '''
13 c=a+b
14
15 """ quotation marks
16 Alternative,
17 multiline comment
18 """
19

Some guidelines (not rules)

Comments should be complete sentences. The first word should be capitalized, unless it is an identifier

that begins with a lower case letter (never alter the case of identifiers, aka keywords, module names, etc.).

Ensure that your comments are clear and easily understandable to other speakers of the language you are

writing in.

You can look for typos by using the pip-package codespell.

Comments that contradict the code are worse than no comments. Always make a priority of keeping the

comments up-to-date when the code changes!

P.S.: PEP stands for Python Enhancement Proposal. A PEP is a design document providing information to
the Python community, or describing a new feature for Python or its processes or environment. The PEP
should provide a concise technical specification of the feature and a rationale for the feature – from PEP 1.

From pep 8 = Style Guide for Python Code

https://github.com/codespell-project/codespell
https://www.python.org/dev/peps/pep-0001/#what-is-a-pep
https://www.python.org/dev/peps/pep-0008/#comments

Quiz: How do you create a np.array …

But what if you forgot how to use np.arange ?

… starting at 12, ending at 176 containing every third number?

1 In [1]: import numpy as np
2 In [2]: np.arange(12,177,3)
3 Out[2]:
4 array([12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
5 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87,
6 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126,
7 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165,
8 168, 171, 174])

` `

1 help(np.arange)
2 np.arange?

The displayed help is actually the docstring` `

1 In [3]: help(np.arange)
2
3 Help on built-in function arange in module numpy:
4
5 arange(...)
6 arange([start,] stop[, step,], dtype=None, *, like=None)
7
8 Return evenly spaced values within a given interval.
9
10 Values are generated within the half-open interval ``[start, stop)``
11 (in other words, the interval including `start` but excluding `stop`).
12 For integer arguments the function is equivalent to the Python built-in
13 `range` function, but returns an ndarray rather than a list.
14
15 When using a non-integer step, such as 0.1, the results will often not
16 be consistent. It is better to use `numpy.linspace` for these cases.
17
18 Parameters
19 ----------
20 start : integer or real, optional
21 Start of interval. The interval includes this value. The default
22 start value is 0.
23 stop : integer or real
24 End of interval. The interval does not include this value, except

Essential documentation: Docstrings

Docstrings provide help for your code (so you (and others) can re-use it in the future!)

A docstring is a string literal that occurs as the first statement in a module, function, class, or method
definition. Such a docstring becomes the __doc__ special attribute of that object.` `

1 In [4]: def myfun(x):
2 ...: ''' identity function ''' # Docstrings are defined like comments!
3 ...: return x
4 ...:
5 ...: print(myfun.__doc__) # Docstrings are assinged to the attribute `__doc__`
6 ...:
7 identity function
8
9 In [5]: help(myfun) # They become accessible via help!
10 Help on function myfun in module __main__:
11
12 myfun(x)
13 identity function

Python’s recommendations for docstrings
Write docstrings for all public modules, functions, classes, and methods.

Docstrings are not necessary for non-public methods, but you should have a comment that describes

what the method does. This comment should appear after the def line.

PEP 257 immortalizes Python’s docstring conventions

For mathematical functions (like in our projects) the detailed numpy style guide is excellent to follow

https://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html

What should be contained in a docstring?
A Short summary (for basic, simple functions)

Extended summary contains among others:

a simple description (clarify functionality, not implementation details those belong to Notes)

parameters

returns

examples

notes

references

Details are available in the Numpy doc style guide

1 def add(a, b):
2 """The sum of two numbers.
3
4 """

https://numpydoc.readthedocs.io/en/latest/format.html

Example (shortened from np.arange)
1 In [13]: np.arange?
2 Return evenly spaced values within a given interval.
3 !!OMMITTED for space reasons!!
4 Parameters
5 ----------
6 start : integer or real, optional
7 Start of interval. The interval includes this value. The default
8 start value is 0.
9 stop : integer or real
10 !!OMMITTED for space reasons!!
11
12 Returns
13 -------
14 arange : ndarray
15 Array of evenly spaced values.
16 !!OMMITTED for space reasons!!
17
18 Examples
19 --------
20 >>> np.arange(3)
21 array([0, 1, 2])
22 Type: builtin_function_or_method

https://numpy.org/doc/stable/reference/generated/numpy.arange.html

Documentation
Note that the (numpy) docstrings are also (html-rendered) on the web, e.g., for np.arange

this is all automatically generated with Sphinx, see https://github.com/numpy/doc

https://numpy.org/doc/stable/reference/generated/numpy.arange.html
https://www.sphinx-doc.org/en/master/
https://github.com/numpy/doc

Docstrings in action
Today you will work on docstrings for your functions!

Compare to the demo-project

https://github.com/EPFL-BIO-210/demo-project/blob/Functionify/functions.py

Quiz: How do you define a function that can offset
the output by a specific parameter with default 2?
1 In [1]: def f(x,offset = 2):
2 ...: return x+offset
3 ...:
4
5 # Testing our function:
6 In [2]: f(0)
7 Out[2]: 2
8
9 In [3]: f(3)
10 Out[3]: 5
11
12 In [4]: f(2,5)
13 Out[4]: 7

Quiz: How do you write docstrings for this function?
1 def offsetter(x,offset = 2): # use a good name!
2 """ Function that offsets input by default value (offset)
3 Parameters
4 ----------
5 x : array or float
6 offset : float, optional
7 default 2
8 Returns
9 -------
10 numpy array or float
11 x + offset
12 Examples
13 -------
14 >>> offsetter(2)
15 4
16 >>> offsetter(2,3)
17 5
18 """
19 return x+offset

Questions?

Visualization
is crucial in science and beyond ("a picture is worth 1000 words…")

python has strong support for plotting with maptlotlib (our focus), seaborn (neat interface on top),

Majavi (esp. 3D visualization), Plotly (esp. web), Bokeh (esp. web), Pandas, gnuplot, …

P.S. A formula is worth a thousand pictures… (by Edsger W. Dijkstra)

P.P.S. Just like Numpy, maptlotlib is a library you need to install --> pip install matplotlib` `

https://matplotlib.org/
https://seaborn.pydata.org/
https://docs.enthought.com/mayavi/mayavi/index.html
https://plot.ly/
https://docs.bokeh.org/en/latest/index.html
https://pandas.pydata.org/
http://www.gnuplot.info/
https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words
https://matplotlib.org/

Pyplot: simple plotting in matplotlib
1 import matplotlib.pyplot as plt # Importing matplotlib.pyplot
2 # Note: we use all functions from this library with plt.XYZ
3 plt.plot([1, 4, 3, 2]) # Plotting x vs. y data
4 plt.ylabel('label for y-axis') # Making a label for y
5 plt.show() # Display all open figures

Pyplot: simple plotting in matplotlib
1 import matplotlib.pyplot as plt # Importing matplotlib.pyplot
2 # Note: we use all functions from this library with plt.XYZ
3 plt.plot([1, 4, 3, 2]) # Plotting x vs. y data
4 plt.ylabel('label for y-axis') # Making a label for y
5 plt.show() # Display all open figures

Quiz: Why does the plot look like this?

Quiz: Why does the plot look like this?

If one gives just one array a , this array is interpreted as y-axis values. By default the x-values are just
enumerated 0 to len(a)-1. All those points are connected by line segments.

1 import matplotlib.pyplot as plt # Importing matplotlib.pyplot
2 # Note: we use all functions from this library with plt.XYZ
3 plt.plot([1, 4, 3, 2]) # Plotting x vs. y data
4 plt.ylabel('label for y-axis') # Making a label for y
5 plt.show() # Display all open figures

` `

Example 2: formatting the style of plot
1 import numpy as np
2 x = np.linspace(0,1,50)
3 # Plotting x vs. y data (for multiple functions/ x-y pairs with their own style)
4 plt.plot(x,x**2,'r',x,x**3,'b.',x,np.sqrt(x),'g^')
5 plt.show()

Anatomy of a matplotlib figure

https://matplotlib.org/stable/tutorials/introductory/usage.html#parts-of-a-figure

1 # Creating figures with subplots (here nrows = 2, ncols = 1)
2 T = np.arange(0.0, 5.0, 0.1)
3 Y = np.exp(-T) * np.cos(2*np.pi*T) # Vectorized computation!
4 plt.figure() # Creating a new figure (or activate existing)
5 plt.subplot(211) # subplot(nrows, ncols, index)
6 plt.plot(T, Y, 'bo',T,Y,'-',alpha=.5)
7 plt.ylabel("Current [mA]") # y-label
8 plt.subplot(212) # creating index = 2
9 plt.plot(T, np.cos(2*np.pi*T), 'm--')
10 plt.xlabel("Time [s]")
11 plt.ylabel("Current [mA]")
12 plt.show()

Histograms and working with text
1 mu, sigma = 100, 15
2 x = mu + sigma * np.random.randn(10000) # creating 10k samples with mu 100 and std 15
3 # Creating histogram of the data
4 n, bins, patches = plt.hist(x, 50, density=1, facecolor='g', alpha=0.75)
5 plt.xlabel('Random variable')
6 plt.ylabel('Probability')
7 plt.title('Gaussian sample data')
8 plt.text(60, .025, r'$\mu=100,\ \sigma=15$') # putting text at location (60,0.025)
9 plt.axis([40, 160, 0, 0.03]) # setting the axis limits
10 plt.grid(True) # making grid

Remember, use docstrings to get help!
1 In [15]: plt.axis?
2 Signature: plt.axis(*args, emit=True, **kwargs)
3 Docstring:
4 Convenience method to get or set some axis properties.
5
6 Call signatures::
7
8 xmin, xmax, ymin, ymax = axis()
9 xmin, xmax, ymin, ymax = axis([xmin, xmax, ymin, ymax])
10 xmin, xmax, ymin, ymax = axis(option)
11 xmin, xmax, ymin, ymax = axis(**kwargs)
12
13 Parameters
14 ----------
15 xmin, xmax, ymin, ymax : float, optional
16 The axis limits to be set. This can also be achieved using ::
17
18 ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax))
19
20 option : bool or str
21 If a bool, turns axis lines and labels on or off. If a string,
22 possible values are:
23
24 ======== ==

Questions?

Matplotlib has two interfaces
matplotlib.pyplot is a state-based interface to matplotlib

this is what we saw so far

Pyplot tutorial

it also has an object-oriented (OO) interface. In this case, we utilize an instance of axes.Axes in order

to render visualizations on an instance of figure.Figure .

more details what that means with a nice example plotting financial data

all plots we saw so far, you can all also do this way

lots of examples

` `

` `

` `

https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/tutorials/introductory/lifecycle.html
https://matplotlib.org/stable/tutorials/index.html

Plotting images imshow

Source / also works for images (loaded as arrays)

` `

1 A = np.random.rand(5, 5) # creating a random 5 x 5 array (uniform)
2 fig, axs = plt.subplots(1, 3, figsize=(10, 3)) # creating a figure object
3 for ax, interp in zip(axs, ['nearest', 'bilinear', 'bicubic']):
4 ax.imshow(A, interpolation=interp) # plotting `image` A
5 ax.set_title(interp.capitalize())
6 ax.grid(True)
7
8 plt.show()

https://matplotlib.org/stable/gallery/images_contours_and_fields/image_demo.html

Check out the Matplotlib gallery
Tons of visual examples with code, e.g. matlab-unchained

https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/animation/unchained.html#sphx-glr-gallery-animation-unchained-py

Fun stuff I:
Matplotlib can be integrated in GUIs and make complex figures, e.g., here is a screenshot from pbrain

https://github.com/nipy/pbrain

Fun stuff II:
You can plot xkcd-comic style…

Quiz: How do you make a plot with 2 columns and 1
row?
1 T = np.arange(0.0, 5.0, 0.1)
2 Y = np.exp(-T) * np.cos(2*np.pi*T) # Vectorized computation!
3 plt.figure() # Creating a new figure (or activate existing)
4 plt.subplot(121) # subplot(nrows, ncols, index)
5 plt.plot(T, Y, 'bo',T,Y,'-',alpha=.5)
6 plt.subplot(122) # creating index = 2
7 plt.plot(T, np.cos(2*np.pi*T), 'm--')
8 plt.show()

Additional references

Matplotlib tutorial

Excellent additional matplotlib resources

Ten Simple Rules for Better Figures

Review on Visualization of Biomedical Data

Remember, check out the Matplotlib gallery

https://github.com/rougier/matplotlib-tutorial
https://matplotlib.org/stable/resources/index.html
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833
https://www.annualreviews.org/doi/pdf/10.1146/annurev-biodatasci-080917-013424
https://matplotlib.org/stable/gallery/index.html

Questions?

Today’s summary
docstrings

visualization with matplotlib

As always, try out the commands in the python shell/notebooks!

In the exercises you will add docstrings and visualizations to your project.

After lunch:
Arrive early for the quiz (so you can start at 13:15)

This week we will add visualizations and docstrings.

Stay tuned for your code review, release v3 by Monday at 10 am

Monday 15:15 - 16: my office hours at SV 2811

https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/release_notes.html

