
Welcome to BIO-210
Applied software engineering for life sciences

October 15th 2024 – Lecture 5

Prof. Alexander MATHIS

EPFL

Congrats to John Hopfield!
The Nobel Prize
@NobelPrize · Follow

This year’s #NobelPrize laureate in physics John Hopfield
created an associative memory that can store and
reconstruct images and other types of patterns in data.

The Hopfield network can store patterns and has a method
for recreating them. When the network is given an… Show
more

11:49 AM · Oct 8, 2024

11K Reply Copy link

Read 172 replies

https://twitter.com/NobelPrize?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks
https://twitter.com/NobelPrize?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks
https://twitter.com/NobelPrize?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks&screen_name=NobelPrize
https://twitter.com/NobelPrize/status/1843589509834821875?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks
https://twitter.com/hashtag/NobelPrize?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks&src=hashtag_click
https://mobile.twitter.com/NobelPrize/status/1843589509834821875?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks
https://x.com/NobelPrize/status/1843589509834821875/photo/1
https://twitter.com/NobelPrize/status/1843589509834821875?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks&tweet_id=1843589509834821875
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks&in_reply_to=1843589509834821875
https://twitter.com/NobelPrize/status/1843589509834821875?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks

Announcements I
Congrats on your great quiz results! Class average 9.7/10 (before the correction below).

We had one typos in question 7 (most got it right anyway). However, as a consequence, everyone gets full
points on this question.

Namely for the question, what is the output of the following code:

The "correct" answer contained an erroneous semicolon:

1 mygrades = {"Linear Algebra" : 3.5, "Analysis": 3, "Physics": 2.5, "SHS" :4}
2 for course, grade in mygrades.items():
3 	 grade = 6
4 print(mygrades)

1 {"Linear Algebra" : 3.5; "Analysis": 3, "Physics": 2.5, "SHS" :4}

Announcements II
Today is the first in person quiz: please come in time, there will be no extra time. Submission closes at
13:35. To start, you’ll need to sign in. Bring your Camipro. No notes are allowed. If you switch to a
different tab from Moodle’s quiz or communicate with somebody, you’ll receive 0 points.

Monday 15:15 - 16: my office hours at SV 2811

Announcements III
Please note that we altered the room assignment for the exercises slightly. Check here and go to the
correct room from now on. NOTE: you need your EPFL login to see it!

Did you release your code, v1?

v1 of your project was due at 10am today (not graded/checked), check out release guide.

Note: For learning its better if you collaborate via git. But, if multiple team members contribute to a
commit, add all authors to your commit message:

1 >>> git add . # staging all files
2 >>> git commit -m "Adding testing symmetry of Hopfield weights
3
4 Some more content ...
5 Co-authored-by: Lucas Stoffl <lucas.stoffl@epfl.ch>
6 Co-authored-by: Mu Zhou <use_the_email_of_the_github_accuount@epfl.ch>

https://docs.google.com/spreadsheets/d/1jH0JLXPbivfm_COMBw22dFm8wnCp88_8f0Mo3sfMLDM
https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/release_notes.html
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/creating-and-editing-commits/creating-a-commit-with-multiple-authors

Git tutorial video

Image source: git docs

Jennifer Shan (one of the SAs) developed a video tutorial on how to use git in Visual Studio Code

Viva Berlenghi (one of the SAs) wrote a Git survival kit

https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project
https://www.youtube.com/watch?v=oepxj-e78PA
https://github.com/EPFL-BIO-210/BIO-210-CourseMaterials/blob/main/problem_sets/week5/git_manual.pdf

How to ask a question well on the forum/ED?

(first check docs, e.g., in ipython : range? and python docs)

(first search if the question was already asked)

Write a title that summarizes the specific problem

Bad: C# Math Confusion

…

Good: Why does str == "value" evaluate to false when str is set to "value"?

Introduce the problem before you post any code

Help others reproduce the problem

Proofread before posting

Respond to feedback after posting, did it resolve your question?

Tips from Stackoverflow

It’s an important skill to ask good questions.

` ` ` `

https://docs.python.org/3/library/functions.html
https://stackoverflow.com/help/how-to-ask

Functions
so far we have mostly written procedural Python statements/programs

a function can group a set of statements so that they can be run more than once in programs

functions are packaged procedures with a name

functions also can compute a result based on parameters that we can specify

Coding procedures/operations as functions makes them re-usable

` `

` `

` `

` `

Rule of thumb

Functions are one of the most basic Python structures for maximizing code-reuse

Every time you copy/paste some statements, make a function!

Why should you use functions?
maximize code reuse and minimize redundancy (thus reducing maintenance effort)

prodecural decomposition (splitting programs into well-defined roles)

it’s easier to implement smaller tasks in isolation (rather than the whole process at once)

Function-related statements and expressions

Statement or expression Examples

Call expression myfunc('Seppl',175,age=22,*rest)

def def printer(message):

  print('Hello'+message)

return def adder(a,b=1,*c):

  return a+b+c[0]

global
x = 'outside'

def changer():

  global x; x= 'new'

lambda func = [lambda x: x**2, lambda x: x**3]

` `

` `

` `

` ` ` `

Function basics
The keyword def is an executable statement

The keyword def creates an object and assigns it a name

Functions only exist, once Python reaches def

Functions really behave like other objects, they can be re-assigned, stored in lists etc.

The keyword return sends a result back to the caller. When a function is called, the caller stops until

the function is done and returns control to the caller. Functions that compute a value send it back to

caller with a return statement (i.e., the result of the function call).

Functions without return statements, return None (upon completion)

` `

` `

` `

` `

` ` ` `

Def statements

A function’s body is indented. This code is run when the function is called.

For a single statement, one can use ; and place the code in one line, e.g. def f(x): return x;

The keyword def specifies the function name and a list of zero or more arguments in parentheses

The function arguments are assigned to objects passed, when the function is called (not upon definition).

I.e., here arg1 does not need to exist (see Example 0).

1 def function_name(arg1, arg2, ..., argN):
2 statements1
3 statements2
4
5 statement_not_part_of_function # Added just for illustration

` ` ` `

` ` ` `

` `

Return statements

Return can be anywhere in the function body (or exist multiple times, e.g. Example 2)

If there is no return, None will be returned

1 def name(arg1, arg2, ..., argN):
2 statements
3 ...
4 return value

` `

Example 0: defs are not calls

Note: even though x appears in the definition of f , f is not called.

1 In [1]: x
2 ---
3 NameError Traceback (most recent call last)
4 <ipython-input-7-6fcf9dfbd479> in <module>
5 ----> 1 x
6
7 NameError: name 'x' is not defined
8
9 In [2]: def f(x): # Create and assign function
10 ...: return x # Body executed when called
11 ...:
12 In [3]: f(2) # Arguments are passed in parentheses
13 Out[3]: 2
14 In [4]: f(x)
15 ---
16 NameError Traceback (most recent call last)
17 <ipython-input-10-f2d123ee1505> in <module>
18 ----> 1 f(x)
19
20 NameError: name 'x' is not defined

` ` ` ` ` `

Example 1: Functions are flexible
1 In [1]: def f1(x): #
2 ...: return x**2
3 ...:
4 In [2]: def f2(x):
5 ...: return x**4
6 ...:
7 In [3]: f = [f1,f2] # combine in a list!
8 In [4]: f(2) # f is a list, cannot be called...
9 ---
10 TypeError Traceback (most recent call last)
11 <ipython-input-4-c510dc86724b> in <module>
12 ----> 1 f(2)
13
14 TypeError: 'list' object is not callable
15 In [5]: f[0](2) # Index first element, then pass 2, returns 2**2 = 4
16 Out[5]: 4
17 In [6]: f[0](3)
18 Out[6]: 9
19 In [7]: f[1](3) # Calling f2, via f[1] (shared object)
20 Out[7]: 81

Example 2: A strange function
1 In [1]: def strange_fun(arg1):
2 ...: if arg1>0:
3 ...: return arg1
4 ...: elif arg1<0:
5 ...: return -1*arg1
6 ...:
7
8 In [2]: type(strange_fun(1.2))
9 Out[2]: float
10 In [3]: type(strange_fun(1))
11 Out[3]: int
12 In [4]: type(strange_fun(0)) # returns None, as no return exists for arg1=0
13 Out[4]: NoneType

Quiz: What is the result?

The code will set result to: (4,0) .

Note def executes at run-time. You do not need to define func like in C.

1 x=2
2 if x>3:
3 def func(x):
4 return 3*x
5 elif x<3:
6 def func(x):
7 return 2*x, 0
8
9 result = func(2)

` `

` `

Quiz: What is the result?
1 In [1]: x=5
2 ...: if x>3:
3 ...: print(x)
4 ...:
5 ...: elif x<3:
6 ...: def func(x):
7 ...: return 2*x, 0
8 ...:
9 ...: result = func(2)

1 5
2 ---
3 NameError Traceback (most recent call last)
4 Cell In[1], line 9
5 6 def func(x):
6 7 return 2*x, 0
7 ----> 9 result = func(2)
8
9 NameError: name 'func' is not defined

Quiz: what is printed when this program runs?

It prints abc , as x inside func() is a local variable.

This local variable, thus does not affect the global variable x= abc (see scoping, later in this lecture)

1 x = 'abc'
2 def func():
3 x = 'xyz'
4
5 func()
6 print(x)

` ` ` `

` `

Functions are typeless, and general!

Calls:

Defintion:

1 In [1]: def times(x,y):
2 ...: return x*y
3 ...:

1 In [2]: times(2,3) # arguments in parentheses
2 Out[2]: 6
3 In [3]: times(1.0,4)
4 Out[3]: 4.0 # results are casted (type converted)
5 In [4]: times("La",3) # functions are "typeless"!
6 Out[4]: 'LaLaLa' # polymorphism
7 In [5]: times([1,2],4)
8 Out[5]: [1, 2, 1, 2, 1, 2, 1, 2]
9 In [6]: my_list = times([1,2],4) # save the result object

Scope
when you use a name in a program, Python creates, or looks up the name in the namespace

scope refers to a namespace . Where you assign a name, determines the scope of a name’s visibility

apart from packaging code for reuse, functions add an extra namespace layer to your programs

Python has four levels of namespaces:

builtins

global

local

enclosing

` `

` `

The built-in namespace
The built-in namespace contains the names of all of Python’s built-in objects.

1 In [1]: print(dir(__builtins__)) # you can list them like this!
 ...:
 ['ArithmeticError', 'AssertionError', 'AttributeError',
 'BaseException','BlockingIOError', 'BrokenPipeError', 'BufferError',
 'BytesWarning', 'ChildProcessError', 'ConnectionAbortedError',
 'ConnectionError', 'ConnectionRefusedError', 'ConnectionResetError',
 'DeprecationWarning', 'EOFError', 'Ellipsis', 'EnvironmentError',
 'Exception', 'False', 'FileExistsError', 'FileNotFoundError',
 'FloatingPointError', 'FutureWarning', 'GeneratorExit', 'IOError',
 'ImportError', 'ImportWarning', 'IndentationError', 'IndexError',
 'InterruptedError', 'IsADirectoryError', 'KeyError', 'KeyboardInterrupt',
 'LookupError', 'MemoryError', 'ModuleNotFoundError', 'NameError', 'None',
 'NotADirectoryError', 'NotImplemented', 'NotImplementedError', 'OSError',
 'OverflowError', 'PendingDeprecationWarning', 'PermissionError',
 'ProcessLookupError', 'RecursionError', 'ReferenceError', 'ResourceWarning',
 'RuntimeError', 'RuntimeWarning', 'StopAsyncIteration', 'StopIteration',
 'SyntaxError', 'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError',
 'TimeoutError', 'True', 'TypeError', 'UnboundLocalError',
 'UnicodeDecodeError', 'UnicodeEncodeError', 'UnicodeError',
 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning', 'ValueError',
 'Warning', 'ZeroDivisionError', '_', '__build_class__', '__debug__',
 '__doc__', '__import__', '__loader__', '__name__', '__package__',

The global namespace
the global namespace contains all names defined at the level of the main program

it is created when the main program starts (and exists until the interpreter terminates)

1 (base) alex@mac Code % python
2 Python 3.8.8 (default, Apr 13 2021, 12:59:45)
3 [Clang 10.0.0] :: Anaconda, Inc. on darwin
4 Type "help", "copyright", "credits" or "license" for more information.
5 >>> globals() # list the global variables
6 {'__name__': '__main__', '__doc__': None, '__package__': None,
7 '__loader__': <class '_frozen_importlib.BuiltinImporter'>, '__spec__': None,
8 '__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>}
9 >>> a=3
10 >>> globals() # a was added
11 {'__name__': '__main__', '__doc__': None, '__package__': None,
12 '__loader__': <class '_frozen_importlib.BuiltinImporter'>, '__spec__': None,
13 '__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>, 'a': 3}

Local and enclosing namespaces

Here g’s namespace is called local namespace, and f’s namespace is called enclosing namespace (as f is the
enclosed function). Each of these namespaces remains in existence until its respective function terminates.

1 In [2]: def f(): # f, the enclosing function of g
2 ...: print('Start f()')
3 ...:
4 ...: def g(): # definition of enclosed function g
5 ...: print('Start g()')
6 ...: print('End g()')
7 ...: return
8 ...: g() # call g()
9 ...:
10 ...: print('End f()')
11 ...: return
12 ...:
13 ...: f() # Calling f()
14 Start f() # Now Python creates a namespace for f()
15 Start g() # A new namespace for g() is created
16 End g()
17 End f()

Variable scope: LEGB rule
Local: If you refer to x inside a function, then the interpreter first searches for it in the innermost scope

that’s local to that function.

Enclosing: If x is not in the local scope, but appears in a function that resides inside another function,

then the interpreter searches in the enclosing function’s scope.

Global: If neither of the above searches is fruitful, then the interpreter looks in the global scope next.

Built-in: If the interpreter cannot find x anywhere else, then the interpreter tries the built-in scope.

Source: Python docs

` `

` `

` `

https://realpython.com/python-namespaces-scope/

Questions?

Quiz: what does this code print and why?

It prints xyz , then abc , as the reference in func() returns the value xyz and the reference at the end
returns the value of the variable in the global namespace.

1 x = 'abc'
2 def func():
3 x = 'xyz'
4 print(x)
5
6 func()
7 print(x)

` ` ` ` ` `

Global statement

See more, incl. on nonlocal , which can be required for enclosed functions, in docs.

The global statement is one of the only statements, that remotely resembles a declaration statement in
Python. However, global is not a size-declaration, but a namespace declaration.

` `

` `

1 In [1]: x = 11 # global x
2 ...: def func():
3 ...: global x
4 ...: x=99 # global x, within function namescape assignment
5 ...:
6 ...: func()
7 ...: print(x)
8 99

` `

https://realpython.com/python-namespaces-scope/

Quiz: what is printed when this program runs?

It prints abc , then abc , as the reference in func() looks up x in the global scope and the last print refers
to the global x .

1 x = 'abc'
2 def func():
3 print(x)
4
5 func()
6 print(x)

` ` ` `

` `

Quiz: what does this code print and why?

It prints xyz , then xyz .

As the reference in func() returns the value xyz and when func is called, the value of x is overwritten.

1 x = 'abc'
2 def func():
3 global x
4 x = 'xyz'
5 print(x)
6
7 func()
8 print(x)

` ` ` `

` ` ` `

Quiz: what does this code print and why?

It just prints abc – nothing will be overwritten, as func() is never called.

1 x = 'abc'
2 def func():
3 global x
4 x = 'xyz'
5 print(x)
6
7 print(x)

` ` ` `

However, try to avoid globals…

Why, should you avoid globals?

Here, the value of X is timing dependent, it depends on which function was called last.

Now imagine you want to modify and reuse this code…

Consider this example:

1 X = 99
2 def f():
3 global X
4 X = 77
5
6 def g():
7 global X
8 X = 33
9

Conclusion of scope

where you define a name, determines much of its meaning (in functions, modules, etc.)

Keep in mind that

A simple function factory

The created function, retains the state of N.

Factory functions (a.k.a. closures) are sometimes used to generate handlers on the fly in response to some
condition at runtime.

1 In [1]: def maker(N):
2 ...: def action(X): # Make and return action
3 ...: return X**N # action retains N from enclosing scope
4 ...: return action
5 ...:

1 In [2]: square = maker(2) # Pass 2 to N
2 ...: cube = maker(3) # Pass 3, note cube remembers 3; square 2!
3 In [3]: square(2) # 2**2
4 Out[3]: 4
5
6 In [4]: cube(3) # 3**3
7 Out[4]: 27
8 In [5]: maker(5)(2) # 2**5
9 Out[5]: 32

https://en.wikipedia.org/wiki/Closure_(computer_programming)

Argument passing
arguments are passed by automatically assigning objects to local variables (because references are

implemented as pointers, arguments are passed by pointers)

assignments to argument names in a function, do not affect the caller

however, changing a mutable object in a function, may impact the caller

Arguments and shared references

However, if mutable objects (such as lists, dicts,…) are passed, aliasing can happen!

1 In [1]: def f(a): # a is assigned to (references; i.e. the passed obj.)
2 ...: a = 99 # Changes local variable a only
3 ...: b = 88
4 ...: f(b) # a and b both reference 88 (initially)
5 ...: print(b) # b is unchanged
6 88

1 In [1]: def f(a,b): # arguments assigned references to objects
2 ...: a=99 # changes local name's value only
3 ...: b[0]=22 # changes shared object in place!
4 ...: A = 1
5 ...: B = ['hello',2]
6 ...: f(A,B) # caller
7 ...: print(A,B) # A is unchanged, B is different
8 1 [22, 2]

Note this is the canonical Python behavior!
1 In [1]: x = 1
2 ...: a = x # x and a share the same object
3 ...: a = 2 # resets `a` only, `x` is still 1.
4 ...: print(x)
5 1

1 In [2]: x = [1,2]
2 ...: a = x # x and a share the same object
3 ...: a[0] = 2 # in-place change to a; x affected!
4 ...: print(x)
5 ...:
6 [2, 2]

Avoiding mutable argument changes

Method 2 (copy input):

Method 1 (pass a copy):

1 In [3]: def f(a,b):
2 ...: a, b[0]=99,22 # You can assign in parallel
3 ...: print("inside f", a,b)
4 ...: A, B = 1, ['hello',2]
5 ...: f(A,B.copy()) # Caller (pass a copy), also B[:]
6 ...: print("outside",A,B) # A and B are unchanged
7 inside f 99 [22, 2]
8 outside 1 ['hello', 2]

1 In [4]: def f(a,b):
2 ...: b = b[:] # copy input to not impact caller
3 ...: a, b[0]=99,22
4 ...: print("inside f", a,b)
5 ...: f(A,B)
6 ...: print("outside",A,B)
7 inside f 99 [22, 2]
8 outside 1 ['hello', 2]

Argument-matching modes

Positionals: matched left to right (standard mode seen so far)

Keywords: matched by argument name; name = value syntax

Defaults: specify values for optional arguments (that do not need to be passed)

Varargs collecting: pass arbitrarily many positional or keyword arguments

Let’s look at some examples … and discuss varargs collecting later in the course.

Python functions allow highly flexible calling patterns for functions

` `

Keyword examples

Why using the keyword mode?

To better document code, which goes hand in hand with better variable names, e.g.
process_user(name='Franz',age=22,job='EPFL student')

gives a good idea what this code might do.

1 >>> def f(x,y,z): print(x,y,z);
2 >>> f(1,2,3) # passing by position
3 (1,2,3)
4
5 # Using keywords
6 >>> f(z=3,y=2,x=1) # match by name
7 (1,2,3)
8
9 # Mixed type
10 >>> f(1,z=3,y=2) # x gets assigned 1 by position, others by name
11 (1,2,3)

` `

Default examples

Default, is a very flexible, core Python feature. We have seen it in use for many functions, e.g.: range ,
np.arange , np.linspace , …

1 >>> def f(x,y=2,z=3): print(x,y,z); # x required, y and z optional!
2 >>> f(1) # using defaults
3 (1,2,3)
4
5 >>> f(1,4) # overwriting defaults by positional variable
6 (1,4,3)
7 >>> f(1,4,5)
8 (1,4,5)
9 # Mixed keyword and default example:
10 >>> f(1,z=55) # x gets 1 by position, others by name
11 (1,2,55)
12 >>> f(y=2) # positional arguments need to be passed
13 ---
14 TypeError Traceback (most recent call last)
15 Cell In[3], line 1
16 ----> 1 f(y=2)
17
18 TypeError: f() missing 1 required positional argument: 'x'

` `

` ` ` `

Quiz: How do you get 11 equidistant numbers from 0
to 1?

Variant 2:

…

Variant 1:

1 In [1]: import numpy as np
2 In [2]: X = np.linspace(0,1,11)
3 In [3]: X
4 Out[3]: array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.])

1 In [1]: import numpy as np
2 In [2]: X = 1./10*np.arange(11)

Quiz: What will be printed?

It will print 20 , as x refers to the enclosing namespace in f() , not the global namespace!

1 def f():
2 x = 20
3
4 def g():
5 global x
6 x = 40
7
8 g()
9 print(x)
10
11
12 f()

` ` ` `

Questions?

Project week I passed …
Last week, as part of version I (released this morning) you implemented a discrete dynamical simulation

for either the Turing/Hopfield project (with some parameters)

this week the task is to re-factor your code by creating an interface that we specify in the problem set

release this v2 by on Monday after the fall break at 10 am (Oct 27).

we will then review your code and give feedback (this is not graded)

https://github.com/EPFL-BIO-210/BIO-210-CourseMaterials/blob/main/problem_sets/week5/week5.pdf

Today’s summary
deeper dive into functions: def , return

scoping, namespaces, LEGB rule, global, globals()

discussion of Python’s argument matching modes

Try out the commands in the Python shell/notebooks!

` ` ` `

After lunch:
Please note that we altered the room assignment for the exercises slightly. Check here and go to the
correct room from now on. NOTE: you need your EPFL login to see it!

Arrive early for the quiz (so you can start at 13:15)

Monday 15:15 - 16: my office hours at SV 2811

https://docs.google.com/spreadsheets/d/1jH0JLXPbivfm_COMBw22dFm8wnCp88_8f0Mo3sfMLDM

