Welcome to BIO-210

Applied software engineering for life sciences
October 15th 2024 — Lecture 5

Prof. Alexander MATHIS

EPFL

Congrats to John Hopfield!

The Nobel Prize & X
@NobelPrize - Follow

This year's #NobelPrize laureate in physics John Hopfield
created an associative memory that can store and
reconstruct images and other types of patterns in data.

The Hopfield network can store patterns and has a method
for recreating them. When the network is given an... Show
more

INPUT PATTERN

H emories are stored When the trained network is gggggggggggggg
i fed with a disterted or CONSOC8COB0000
ina laﬂdSEaPE incomplete pattern, it can e saaoecon

e — be likened to dropping a COCe0COCe0e00T
John Hopfield's associative memaory stores ball down a <lope in this Gg ugﬂoo 0008000

infarmation in a manner similar to shaping a landscape Ce000000008800

landscape. "Hhep lhe_netwofk is trained, it 2 883333338::338

creates avalley in a virtual energy landscape e EaegogooRD
.0

for every saved pattern.

[alslalslel Tolul Telslelels]
SQOO0000000000
SO0oo0000000D0D

&

EMERGY LEVEL

SAVED PATTERN
00000000000000

@ Johan Jarnestad/The Royal Swedish Academy of Sciences (] gggggggg §5580 8

o
ag
fuls)
i Qo
2 The ball rolls until it reaches a place 2883238888088
where it is surrounded by uphills. In the 28230000 ssq00
same way, the network makes its way CODOBREReROO00
towards lower energy and finds the g8gegaseng00e
closest saved pattern, caga 6000 Gg ggg

11:49 AM - Oct 8, 2024 ®

® 11K @ Reply (2 Copylink

Read 172 replies

https://twitter.com/NobelPrize?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks
https://twitter.com/NobelPrize?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks
https://twitter.com/NobelPrize?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks&screen_name=NobelPrize
https://twitter.com/NobelPrize/status/1843589509834821875?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks
https://twitter.com/hashtag/NobelPrize?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks&src=hashtag_click
https://mobile.twitter.com/NobelPrize/status/1843589509834821875?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks
https://x.com/NobelPrize/status/1843589509834821875/photo/1
https://twitter.com/NobelPrize/status/1843589509834821875?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks&tweet_id=1843589509834821875
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks&in_reply_to=1843589509834821875
https://twitter.com/NobelPrize/status/1843589509834821875?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1843589509834821875%7Ctwgr%5E0960d7ee5c6eae0137773a66beae24b97e90ceed%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F2%3Fprint%3Dclicks

Announcements I

= Congrats on your great quiz results! Class average 9.7/10 (before the correction below).

= We had one typos in question 7 (most got it right anyway). However, as a consequence, everyone gets full

points on this question.

Namely for the question, what is the output of the following code:

1 mygrades = {"Linear Algebra" : 3.5, "Analysis": 3, "Physics": 2.5, "SHS" :4}
2 for course, grade in mygrades.items():

3 grade = 6

4 print(mygrades)

The "correct" answer contained an erroneous semicolon:

1 {"Linear Algebra" : 3.5; "Analysis": 3, "Physics'": 2.5, "SHS" :4}

Announcements II

= Today is the first in person quiz: please come in time, there will be no extra time. Submission closes at

13:35. To start, you’ll need to sign in. Bring your Camipro. No notes are allowed. If you switch to a
different tab from Moodle’s quiz or communicate with somebody, you’ll receive 0 points.

= Monday 15:15 - 16: my office hours at SV 2811

Announcements II1

= Please note that we altered the room assignment for the exercises slightly. Check here and go to the

correct room from now on. NOTE: you need your EPFL login to see it!

= Did you release your code, v1?

= vl of your project was due at 10am today (not graded/checked), check out release guide.

= Note: For learning its better if you collaborate via git. But, if multiple team members contribute to a
commit, add all authors to your commit message:

>>> git add . # staging all files
>>> git commit -m "Adding testing symmetry of Hopfield weights

Some more content ...
Co-authored-by: Lucas Stoffl <lucas.stoffl@epfl.ch>
Co-authored-by: Mu Zhou <use_the _email of the github_accuount@epfl.ch>

ONU1T A WNDN -

https://docs.google.com/spreadsheets/d/1jH0JLXPbivfm_COMBw22dFm8wnCp88_8f0Mo3sfMLDM
https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/release_notes.html
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/creating-and-editing-commits/creating-a-commit-with-multiple-authors

Git tutorial video

git push L

Image source: git docs

https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project
https://www.youtube.com/watch?v=oepxj-e78PA
https://github.com/EPFL-BIO-210/BIO-210-CourseMaterials/blob/main/problem_sets/week5/git_manual.pdf

How to ask a question well on the forum/ED?

It’s an important skill to ask good questions.

= (first check docs, e.g., in "ipython ' : ‘range? and python docs)
= (first search if the question was already asked)
= Write a title that summarizes the specific problem
= Bad: C# Math Confusion
= Good: Why does str == "value" evaluate to false when str is set to "value"?
= [ntroduce the problem before you post any code
= Help others reproduce the problem

= Proofread before posting

= Respond to feedback after posting, did it resolve your question?

Tips from Stackoverflow

https://docs.python.org/3/library/functions.html
https://stackoverflow.com/help/how-to-ask

Functions

so far we have mostly written procedural Python statements/programs

a function can group a set of statements so that they can be run more than once in programs
‘functions ' are packaged procedures with a name

‘functions ' also can compute a result based on parameters that we can specify

Coding procedures/operations as functions makes them re-usable

Rule of thumb

Every time you copy/paste some statements, make a function!

Functions are one of the most basic Python structures for maximizing code-reuse

Why should you use functions?

= maximize code reuse and minimize redundancy (thus reducing maintenance effort)
= prodecural decomposition (splitting programs into well-defined roles)

= it’s easier to implement smaller tasks in isolation (rather than the whole process at once)

Function-related statements and expressions

Statement or expression Examples
Call expression myfunc('Seppl’,175,age=22,*rest)
‘def" def printer(message):

print('Hello'tmessage)

def adder(a,b=1,%c):

return return a+b+c[0]
= 'outside’
‘global’ def changer():

global x; x= new'

‘Lambda ‘func = [lambda x: x**2, lambda x: x**37]°

Function basics

= The keyword "def " is an executable statement

= The keyword ‘def " creates an object and assigns it a name
= Functions only exist, once Python reaches "def"

= Functions really behave like other objects, they can be re-assigned, stored in lists etc.

= The keyword 'return’ sends a result back to the caller. When a function is called, the caller stops until
the function is done and returns control to the caller. Functions that compute a value send it back to
caller with a return statement (i.e., the result of the function call).

= Functions without "return’ statements, return ‘None (upon completion)

Def statements

1 def function name(argl, arg2, ..., argN):

2 statementsl

3 statements?2

4

5 statement _not part of function # Added just for illustration

= A function’s body is indented. This code is run when the function is called.

= For a single statement, one can use " ; = and place the code in one line, e.g. "def f(x): return x;'

= The keyword "def " specifies the function name and a list of zero or more "arguments' in parentheses

= The function arguments are assigned to objects passed, when the function is called (not upon definition).

I.e., here "argl’ does not need to exist (see Example 0).

Return statements

def name(argl, arg2, ..., argN):
statements

A WWNDNBE

return value

= Return can be anywhere in the function body (or exist multiple times, e.g. Example 2)

= Jfthere is no return, None will be returned

Example O: defs are not calls

1 In [1]: X

D e e e e e e e e e e e e e e e e
5 NameError Traceback (most recent call last)
4 <ipython-input-7-6fcf9dftbd4/9> in <modul e>

5 ----> 1 x

6

/ NameError: name 'x' is not defined

3

9 In [2]: def f(x): # Create and assign function

10 Ce return X # Body executed when called

11 Ce

12 In [3]: £(2) # Arguments are passed 1n parentheses

13 Out[3]: 2
14 In [4]: £(x)

15 e -
16 NameError Traceback (most recent call Llast)
17 <ipython-input-10-f2d123eel505> in <module>

18 --->1 £(x)

19

20 NameError: name 'x' 1s not defined

Note: even though "x ' appears in the definition of £, £ is not called.

Example 1: Functions are flexible

1 In [1]: def f1(x): #

2 : return x**2

3 Ce

4 In [2]: def f2(x):

5 Ce return x**4

6 C

/7 In [3]: £ = [£f1,£f2] # combine in a list!

g In [4]: £(2) # £ 1s a list, cannot be called...

O
10 TypeError Traceback (most recent call last)
11 <ipython-input-4-c510dc86724b> in <module>

12 ---->1 £(2)

13

14 TypeError: 'list' object is not callable

15 1In [5]: f[0O](2) # Index first element, then pass 2, returns 2**2 = 4
16 Out[5]: 4

17 In [6]: f[0](3)

18 Out[6]: 9

19 In [7]: £[1](3) # Calling f2, via f[1] (shared object)

20 QOut[/]: 81

Example 2: A strange function

1 In [1]: def strange fun(argl):
2 if argl>0:

3 return argl

4 elif argl<o:

5 return -1%*argl

6

/

8 In [2]: type(strange fun(1l.2))
9 Out[2]: float

10 In [3]: type(strange fun(l))
11 Out[3]: int

12 In [4]: type(strange fun(0)) # returns None, as no return exists for argl=0
15 Out[4]: NoneType

Quiz: What is the result?

X=2
1f x>3:
def func(x):
return 3%*x
elif x<3:
def func(x):
return 2*¥x, 0

O oOoONOTULT DN WDN -

result = func(2)

The code will set result to: "'(4,0)".

Note ‘def " executes at run-time. You do not need to define func like in C.

Quiz: What is the result?

1 In [1]: x=5

2 . 1f x>3:

3 print(x)

£ C

5 . ellif x<3:

6 def func(x):

/ return 2*¥x, 0

3 C

9 . result = func(2)

1 5

B T T T T L L T T I kT T T T
5 NameError Traceback (most recent call Llast)
4 Cell In[1l], line 9

5 6 def func(x):

6 / return 2*¥x, 0

/ ----> 9 result = func(2)

3

9 NameError: name 'func' is not defined

Quiz: what is printed when this program runs?

1 x = 'abc'

2 def func():

3 X = 'xyz'
4

5 func()

6 print(x)

It prints "abc ', as "x inside func() is a local variable.

This local variable, thus does not affect the global variable x="abc " (see scoping, later in this lecture)

Functions are typeless, and general!

Defintion:
1 In [17:
2 o
3

Calls:
1 In [2°
2 Qut[2°
3 In [3
4 Qut[3]
5 In [4]
6 Out[4]:
7 In [5]
8 Out[5]:
9 In [6

def times(x,vy):
return x*y

. times(2,3)

. 6

. times(1.0.,4)
. 4.0

. times('"La",3)

'LaLalLa’

; times([1,2],4)

[1, 2, 1, 2, 1, 2, 1, 2]

- my _Llist = times([1,2].,4)

H H H

arguments 1n parentheses

results are casted (type converted)
functions are "typeless"!
polymorphism

save the result object

Scope

= when you use a name in a program, Python creates, or looks up the name in the namespace’
= scope refers to a namespace . Where you assign a name, determines the scope of a name’s visibility

= apart from packaging code for reuse, functions add an extra namespace layer to your programs
= Python has four levels of namespaces:

= builtins

= global

=]Jocal

= enclosing

The built-in namespace

In [1]: print(dir(__builtins_)) # you can list them like this!

["ArithmeticError', 'AssertionkError', 'AttributeError',
'BaseException', 'BlockinglOError', 'BrokenPipeError', 'BufferError',
'BytesWarning', 'ChildProcessError', 'ConnectionAbortedError',
'"ConnectionkError', 'ConnectionRefusedError', 'ConnectionResetError',
'DeprecationWarning', 'EOFError', 'Ellipsis', 'EnvironmentError',
'"Exception', 'False', 'FileExistsError', 'FileNotFoundError',
'"FloatingPointError', 'FutureWarning', 'GeneratorExit', 'IOError',
'ImportError', 'ImportWarning', 'IndentationError', 'IndexError',
'InterruptedError', 'IsADirectoryError', 'KeyError', 'KeyboardInterrupt',
'LookupError', 'MemoryError', 'ModuleNotFoundError', 'NameError', 'None',
'"NotADirectoryError', 'NotImplemented', 'NotImplementedError', 'OSError',
'OverflowError', 'PendingDeprecationWarning', 'PermissionError',
'ProcessLookupError', 'RecursionError', 'ReferenceError', 'ResourceWarning',
'"RuntimeError', 'RuntimeWarning', 'StopAsynclteration',6 'Stoplteration',
'SyntaxError', 'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError',
'"TimeoutError', 'True', 'TypeError', 'UnboundLocalError',
"UnicodeDecodeError', 'UnicodeEncodeError', 'UnicodeError',
'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning', 'ValueError',
'Warning', 'ZeroDivisionError', ' ', ' build class ', ' debug ',
' doc__ ', ' dmport ', ' loader_ ', ' mname__', ' package_ ',

The global namespace

= the global namespace contains all names defined at the level of the main program

= itis created when the main program starts (and exists until the interpreter terminates)

OoONOTULT PD~NWDN B

EETR Y
WNEFEO

(base) alex@mac Code % python
Python 3.8.8 (default, Apr 13 2021, 12:59:45)
Clang 10.0.0 | :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> globals() # list the global variables

{' mame_': ' main__', ' doc__': None, ' package_ ': None,

' loader_': <class ' frozen importlib.BuiltinImporter'>, ' spec__': None,
' _annotations_': {}, ' builtins__': <module 'builtins' (built-in)>}

>>> a=3

>>> globals() # a was added

{' mame__': ' main__', ' doc__': None, ' package_ _': None,

' loader_ ': <class ' frozen importlib.BuiltinImporter'>, ' spec__': None,
' __annotations_': {}, ' _builtins__': <module 'builtins' (built-in)>, 'a':

3}

Local and enclosing namespaces

1 In [2]: def f£(): # £, the enclosing function of g

2 : print('Start £()')

3

4 def g(): # definition of enclosed function g
5 print('Start g()')

6 print('End g()')

/ return

8 g() # call g()

9 Ce

10 C print('End £()"')

11 Ce return

12 C

13 ... 1O # Calling f£()

14 Start f() # Now Python creates a namespace for f()
15 Start g() # A new namespace for g() is created
16 End g()

17 End £0O)

Here g’s namespace is called local namespace, and f’s namespace is called enclosing namespace (as f is the
enclosed function). Each of these namespaces remains in existence until its respective function terminates.

Variable scope: LEGB rule

= Local: If you refer to "x ' inside a function, then the interpreter first searches for it in the innermost scope
that’s local to that function.

= Enclosing: If "x " is not in the local scope, but appears in a function that resides inside another function,
then the interpreter searches in the enclosing function’s scope.

= Global: If neither of the above searches is fruitful, then the interpreter looks in the global scope next.

= Built-in: If the interpreter cannot find "x ' anywhere else, then the interpreter tries the built-in scope.

Source: Python docs

https://realpython.com/python-namespaces-scope/

Questions?

Quiz: what does this code print and why?

1 x = 'abc'

2 def func():

3 X = 'xyz'
£ print(x)
5

6 func()

/ print(x)

It prints "xyz ', then "abc ', as the reference in func() returns the value "xyz' and the reference at the end
returns the value of the variable in the global namespace.

Global statement

The "global * statement is one of the only statements, that remotely resembles a declaration statement in
Python. However, ‘global ' is not a size-declaration, but a namespace declaration.

1 In [1]: x =11 # global x

2 : def func():

3 global x

4 x=99 # global x, within function namescape assignment
5 o

6 . func()

7/ : print(x)

8 99

See more, incl. on ‘nonlocal ', which can be required for enclosed functions, in docs.

https://realpython.com/python-namespaces-scope/

Quiz: what is printed when this program runs?

g

1 x = 'abc'

2 def func():
3 print(x)
4

5 func()

6 print(x)

It prints "abc ', then "abc ', as the reference in func() looks up x in the global scope and the last print refers
to the global "x .

Quiz: what does this code print and why?

1 x = 'abc'

2 def func():

3 global x
£ X = 'xyz'
5 print(x)
6

/ func()

8 print(x)

It prints "xyz ', then "xyz'.

As the reference in func() returns the value "xyz' and when func is called, the value of "x is overwritten.

Quiz: what does this code print and why?

1 x = "abc'

2 def func():

3 global x
£ X = 'xyz'
5 print(x)
6

/ print(x)

It just prints ‘abc’ — nothing will be overwritten, as "func() ' is never called.

However, try to avoid globals...

Consider this example:

1 X =99

2 def f£():

3 global X
£ X =77

5

6 def g():

7/ global X
3 X = 33

9

Why, should you avoid globals?
Here, the value of X is timing dependent, it depends on which function was called last.

Now imagine you want to modify and reuse this code...

Conclusion of scope

Keep in mind that

where you define a name, determines much of its meaning (in functions, modules, etc.)

A simple function factory

Factory functions (a.k.a. closures) are sometimes used to generate handlers on the fly in response to some

condition at runtime.

1 In [1]: def maker(N):

2 : def action(X): # Make and return action

3 return X**N # action retains N from enclosing scope
4 return action

5

1 In [2]: square = maker(2) # Pass 2 to N

2 cube = maker(3) # Pass 3, note cube remembers 3; square 2!
5 In [3]: square(2) #H 2%%)

4 Qut[3]: 4

5

6 In [4]: cube(3) # 3%%3

7/ QOut[4]: 27

g In [5]: maker(5)(2) # 2%%5

9 QOut[5]: 32

The created function, retains the state of N.

https://en.wikipedia.org/wiki/Closure_(computer_programming)

Argument passing

= arguments are passed by automatically assigning objects to local variables (because references are
implemented as pointers, arguments are passed by pointers)
= assignments to argument names in a function, do not affect the caller

= however, changing a mutable object in a function, may impact the caller

Arguments and shared references

1 In [1]: def f(a): # a 1s assigned to (references; i.e. the passed obj.)
2 C a = 99 # Changes local variable a only

3 .. b = 88

4 . £(b) # a and b both reference 88 (initially)

5 : print(b) # b 1s unchanged

6 88

However, if mutable objects (such as lists, dicts,...) are passed, aliasing can happen!

1 In [1]: def f(a,b): # arguments assigned references to objects
2 a=99 # changes local name's value only

3 : b[0]=22 # changes shared object in place!

4 o A=1

5 : B =["hello',2]

6 . £(A,B) # caller

7/ print(A,B) # A 1s unchanged, B is different

8 1 [22, 2]

Note this is the canonical Python behavior!

1 In [1]: x =1

2 ca = X # x and a share the same object

3 .ooa = 2 # resets a only, x 1is still 1.
4 : print(x)

5 1

1 In [2]: x = [1,2]

2 ca = X # X and a share the same object
3 .. al@] = 2 # in-place change to a; x affected!
4 ;. print(x)

5 Ce

6 [2, 2]

Avoiding mutable argument changes

Method 1 (pass a copy):

1n51de f 99 [22, 2]
outside 1 ['hello', 2]

1 In [3]: def f(a,b):

2 ; a, b[0]=99,22 # You can assign in parallel

3 o print("inside f", a,b)

4 .. A, B=1, ['hello', 2]

5 . f(CA,B.copy()) # Caller (pass a copy), also B[:]
6 . print("outside",A,B) # A and B are unchanged

/

3

Method 2 (copy input):

In [4]: def f(a b):
Ce = b[:] # copy input to not impact caller
a, b[@]=99,22
print("inside f", a,b)
f(A,B)
.... print("outside" ,A,B)
inside £ 99 [22, 2]
outside 1 ['hello', 2]

coONONUVT P~ WWNWDN P

Argument-matching modes

Python functions allow highly flexible calling patterns for functions

= Positionals: matched left to right (standard mode seen so far)

= Keywords: matched by argument name; name = value syntax

= Defaults: specify values for optional arguments (that do not need to be passed)

» Varargs collecting: pass arbitrarily many positional or keyword arguments

Let’s look at some examples ... and discuss varargs collecting later in the course.

Keyword examples

>>> def f(x,v,z): print(x,y,z);
>>> £(1,2,3) # passing by position
(1,2,3)

Using keywords
>>> f(z=3,y=2,x=1) # match by name
(1,2,3)

Mixed type
>>> f(1,z=3,y=2) # X gets assigned 1 by position, others by name
(1,2,3)

R, ®WVONOUTDNWNBRE

BRI

Why using the keyword mode?

To better document code, which goes hand in hand with better variable names, e.g.
‘process_user(name='Franz',6age=22,job="'EPFL student')

gives a good idea what this code might do.

Default examples

1 >>> def f(x,y=2,z=3): print(x,v,z); # X required, vy and z optional!

2 >>> f(1) # using defaults

5 (1,2,3)

4

5 >>> f(1.,4) # overwriting defaults by positional variable

6 (1,4,3)

/7 >>> £(1,4,5)

8 (1,4,5)

9 # Mixed keyword and default example:

10 >>> f£(1,z=55) # x gets 1 by position, others by name

11 (1,2,55)

12 >>> f(y=2) # positional arguments need to be passed

LI} e=====s=======s========c=-c=-=====-----oooSSSSSSSSSSSSSSSSSSososSSsSso-ooooooos
14 TypeError Traceback (most recent call Llast)
15 Cell In[3], line 1

16 ---->1 f(y=2)

17

18 TypeError: f£() missing 1 required positional argument: 'x'

Default, is a very flexible, core Python feature. We have seen it in use for many functions, e.g.: ‘range ',
‘nmp.arange , np.linspace ,...

Quiz: How do you get 11 equidistant numbers from O
to1?

Variant 1;:

1 In [1]: import numpy as np

2 In [2]: X = np.linspace(0,1,11)

5 In [3]: X

4 Qut[3]: array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.)

Variant 2:

1 In [1]: import numpy as np
2 In [2]: X = 1./10%np.arange(1l)

Quiz: What will be printed?

1 def £():

2 X = 20

3

4 def g():

5 global x
6 X = 40
/

8 gC)

9 print(x)
10

11

12 £0O)

It will print "20°, as x refers to the enclosing namespace in "£() ', not the global namespace!

Questions?

Project week I passed ...

= Last week, as part of version I (released this morning) you implemented a discrete dynamical simulation
for either the Turing/Hopfield project (with some parameters)
= this week the task is to re-factor your code by creating an interface that we specify in the problem set

= release this v2 by on Monday after the fall break at 10 am (Oct 27).

= we will then review your code and give feedback (this is not graded)

https://github.com/EPFL-BIO-210/BIO-210-CourseMaterials/blob/main/problem_sets/week5/week5.pdf

Today’s summary

= deeper dive into functions: ‘def ', ‘return’

= scoping, namespaces, LEGB rule, global, globals()

= discussion of Python’s argument matching modes

Try out the commands in the Python shell/notebooks!

After lunch:

= Please note that we altered the room assignment for the exercises slightly. Check here and go to the

correct room from now on. NOTE: you need your EPFL login to see it!

= Arrive early for the quiz (so you can start at 13:15)

= Monday 15:15 - 16: my office hours at SV 2811

https://docs.google.com/spreadsheets/d/1jH0JLXPbivfm_COMBw22dFm8wnCp88_8f0Mo3sfMLDM

