Welcome to BIO-210

Applied software engineering for life sciences
September 30th 2024 — Lecture 3

Prof. Alexander MATHIS

EPFL

Announcements

= As always solutions can be found on our GitHub

= Monday 15:15 - 16: my office hours at SV 2811

https://epfl-bio-210.github.io/BIO-210-CourseMaterials
https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/installation.html
https://moodle.epfl.ch/mod/quiz/view.php?id=1172021

10
11
12
13
14

Date

09/09/2024
16/09/2024
23/09/2024
30/09/2024
07/10/2024
14/10/2024
21/10/2024
28/10/2024
04/11/2024
11/11/2024
18/11/2024
25/11/2024
02/12/2024
09/12/2024
16/12/2024

Topic

Python introduction I

Public holiday

Python introduction II

Git and GitHub (+installation VS Code)
Project introduction

Functionify

EPFL fall break

Visualization and documentation
Unit-tests, functional tests

Code refactoring

Profiling and code optimization
Object oriented programming
Model analysis and project report
Work on project

Wrap up

Software version

vl

V2

V3
v4
v5
V6
V7

v8

Software releases

vl

\
V3
v4
v5
V6

v7

v8

Grading / Feedback

code review (API)

graded (tests)
code review
graded (speed)

code review (0O0)

graded (project)

Functions

We have already used many functions (np.sin’, ‘range ,...). But how are custom functions defined?

A simple example

1 >>> def f(x): # Notice: keyword def, colon

2 return Xx # return is not required in python (then will return None)
3 >>> type(f)

4 function

5 >>> f(1)

6 1 # Our function just returns whatever you pass

/7 >>> f('abc')

3 "abc'

A custom module

A module is a file containing Python definitions and statements.

The file name is the module name plus the suffix " .py .

1 # Heaviside function module
2

5 def HeavisideFun(x):

4 """ Heaviside function with half-maximum convention
5 if x>0:

6 return 1.

7/ elif x<0:

3 return 0.

£ elif x==0:

10 return .5

11 else:

12 return None

13

Let’s save this file as ‘'mymodule.py’

Example use of our custom module

1 In [1]: import mymodule # Import our module

2 In [2]: mymodule.HeavisideFun(13.)

5 Out[2]: 1.0

4 In [3]: mymodule.HeavisideFun(0)

5 Out[3]: 6.5

6 In [4]: f=mymodule.HeavisideFun

/ In [5]: £(153.) # one can assign a local name.
g Out [5]: 1.0

9 In [6]: mymodule.HeavisideFun?

10 Signature: mymodule.HeavisideFun(x)
11 Docstring: Heaviside function with half-maximum convention

12 File: ~/Code/Teaching/BI0-210-materials/slides/mymodule.py
15 Type: function

Remember, we have already seen built-in modules (e.g., ‘math) and packages, which are structured
modules (e.g., numpy).

Note, here we assume that we are in the same folder as mymodule.py. Learn more about where python looks
for modules here.

https://docs.python.org/3/tutorial/modules.html#the-module-search-path

Quiz: What will be printed?

1 print(hex(254))
2 print(hex(©b11111110))
5 print(hex(0Xfe))

The code returns hexadecimal representations of
numbers!

1 print(hex(254)) # decimal input decimal 254
2 print(hex(©b11111110)) # binary input = decimal 254
5 print(hex(0Xfe)) # hexadecimal input = decimal 254

It prints 3 x "@xfe’, standing for the hexadecimal numbers (=base 16: represented by 0-9 and a-f).

Hash Functions

= A hash function is any function that can be used to map data of arbitrary size to fixed-size values

= hashlib gives access to many different hash algorithms in python

= SHA-1 (Secure Hash Algorithm 1) is a hash function which takes an (arbitrary byte) input and produces a

160-bit hash value - typically rendered as a hexadecimal number , and thus 40 digits long.

Example:

>>> import hashlib # importing a module

>>> m = hashlib.shal() # accessing a function in this module
>>> m.update(b"Some text")

>>> m.update(b" and some more...")

>>> print(m.hexdigest())

cal933af/6523fa98a5961lefb6edctb65c64866ef4

>>> print(len(m.hexdigest()))

40

>>> m.update(b"1") # let's add a single character!

>>> print(m.hexdigest())

278c021192e496/€250f4c39305f8dd1fd/8al69 # notice the hash looks completely different!

R, ®WVOONOUTDNWNBRE

BRI

https://docs.python.org/3/library/hashlib.html
https://en.wikipedia.org/wiki/SHA-1

Questions?

Motivational questions:

1. How do you keep track of files?

2. Who has used version control systems?

Why version control?

Version control systems (VCS) record changes to source code, or more general a file or set of files (arranged
in a directory) over time so that you can recall specific versions later.

Thus, it allows you to

= keep track of projects

s collaborate with others

What do VCS allow you to do?

To (easily) answer the questions like:

= Who programmed this module/feature?
= When was this particular line of this particular piece of code edited? By whom? Why was it edited?

= QOver the last 229 revisions, when/why did a particular functionality stop working?

What is git?

= the most commonly used version control system, >85% (others: subversion, mercurial)

= itis adistributed system and was started by Linus Torvalds

Server Computer

Version Database

:

Version 3
|
Version 2
|
Version 1

Computer A Computer B
Version Database | | » | Version Database
Version 3 Version 3
| |
Version 2 Version 2
| I
Version 1 Version 1

image: git-book

https://web.archive.org/web/20190530142357/https://insights.stackoverflow.com/survey/2018/#work-_-version-control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Git’s reputation...

THIS1S GIT. IT TRACKS COLLABORATIVE. LIORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

{ COOL. HOU DO WE.USE IT7

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM To SYRC DR
IF YOU GET ERRORS, SAVE. YOUR LORK
FUSEWHERE, DELETE THE PROJECT,
AND DOUNLOAD A FRESH COPY.

\

<l

https://xkcd.com/1597/

Output of ‘man git

GIT(1) Git Manual

NAME
git - the stupid content tracker

SYNOPSIS
git [--version] [--help] [-C <path>] [-c <name>=<value>]

[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
 -pl--paginate|-P|--no-pager] [--no-replace-objects] [--bare]
[--glit-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
 --super-prefix=<path>] [--config-env <name>=<envvar>]
<command> [<args>’

DESCRIPTION

Git is a fast, scalable, distributed revision control system with an unusually rich cor
provides both high-level operations and full access to internals.

See gittutorial(/) to get started, then see giteveryday(/) for a useful minimum set of
Git User's Manual[1l] has a more in-depth introduction.

After you mastered the basic concepts, you can come back to this page to learn what cor
offers. You can learn more about individual Git commands with "git help command". gitcl
page gives you an overview of the command-line command syntax.

Questions?

Our strategy for diving into git

= Jearn about it’s data model
= then learn key commands and what they do
= over the course of the semester we will cover more aspects of git & you will use it in practice for your

projects
Sources:

= my lecture is partially based on Anish Athalye’s excellent lecture on git at MIT

= Check out the comprehensive git-book

https://missing.csail.mit.edu/2020/version-control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Let’s consider an example directory

B folder314 > B script.py
B readme.txt B script2.py

It contains 1 folder (directory), which contains 2 Python scripts, as well as 1 file (readme.txt)

Git’s data model: Snapshots

Folders with files and (potentially) with subfolders are stored as snapshots.

= g fileis called a "binary large object" (blob)

= adirectory (folder) is called "tree"

For instance, for our example folder:

<root> (tree)

|
+- folder3l4 (tree)

|
+ script.py (blob, contents = "print('hello world')")

+ script2.py (blob, contents = "print('hello BIO-210')")

ONONCULITPAA NN -

+- readme.txt (blob, contents = "Collection of scripts")

Here a tree contains the tree "folder314 " with two blobs ('script.py and 'script2.py) as well as a blob
('readme.txt).

Blobs and trees in pseudo code

// a file 1s a bunch of bytes
type blob = array<byte>

// a directory contains directories and/or named files
type tree = map<string, tree | blob>

un PP WD -

How are snapshots related?

Consider three snapshots. In the simplest case, the snapshots are serially developed (dependent on each
other)

snapshot_1 g—— snapshot_2 g—— snapshot_3

Here 1 is the parent of 2 and 2 the parent of 3.

Snapshots are called commits in git!

How are commits related?

One can develop features in parallel, thus snapshots can give rise to multiple other snapshots (branches)

snapshot_2 g—— snapshot_3

snapshot_1

new_feature

How are commits related?

Further developing the new feature and fixing a bug in parallel

snapshot_1

snapshot_2

.<_

snapshot_3

.<_

new_feature

v2

bugfix

How are commits related?

Another common scenario is to create a version that combines two (or multiple other versions). For

instance, in our example one might want to create a version that contains the bugfix and the new feature.
This is called ‘merging

snapshot_2 g—— snapshot_3 g——| bugfix

snapshot_1 snapshot_4

new_feature g V2 g

Each commit has (at least one) parent (commit). Merges can have multiple.

Note that merging can sometimes not be done automatically (by git), but might need input from the
programmetr. This case is called merge conflict (see later).

Commits from a directed acyclic graph (DAG)

snapshot_2 g—— snapshot_3 g——| bugfix

snapshot_1 snapshot_4

new_feature | V2 g

To flexibly allow all those possiblities, commits are related like nodes in directed acyclic graphs in git!

Git’s data model in pseudo code

Git’s simple model of history (and it’s contents).

1 // a file 1s a bunch of bytes

2 type blob = array<byte>

3

4 // a directory contains named files and directories
5 type tree = map<string, tree | blob>

6

/// a commit has parents, metadata, and the top-level tree
g type commit = struct {

9 parents: array<commit>

10 author: string

11 message:. string

12 snapshot: tree

=
N
-

Objects and content-addressing

On object is a blob, tree or commit.

1 type object = blob | tree | commit

In Git’s data store, all objects are content-addressed by their SHA-1 hash.

objects = map<string, object>

def store(object):
id = shal(object)
objects[i1id] = object

def load(id):
return objects| id]

ONONCULITPAA NN -

Thus, git has integrity — you can’t lose information in transit or get file corruption without git being able to
detect it as the id is based on the content!

Looking up content for our example folder

B folder314 > B script.py
B readme.txt B script2.py

Looking up content (we will later see how we know the ID, for now let’s assume this folder is a git repository)

alex@amac git demo % git cat-file -p bcb0914d467/80824038f469a15d4d613a6143d17
040000 tree 4b2451c9990d8b6cb39/8bc413f/681a/8/a3209 folder3l4d
100644 blob ef/9fe5c6£f74de@d99£906017/94d96c9c40£157/8 readme. txt

Diving deeper into the tree

O oOoONOTULT DN WDN -

10
11
12
13
14
15
16
17
18

alex@mac git demo % git cat-file -p bcb0914d46780824038f469a15d4d613a6143d17
040000 tree 4b2451c9990d8b6cb39/8bc413f/7681a/8/7a3209 folder3l4

100644 blob ef/9fe5c6£/4de@dd99£90601794d96c9c40£157/8 readme.txt

alexamac git demo % git cat-file -p 4b2451c9999d8b6cb39/8bc413f/7681a/87a3209
100644 blob /5d9/766db981cft4e8c59be50ffO1le5/4581d43fc script.py

100644 blob 9a/f6fc3ea99e6fbb8134ab329a3b51/f5d6c827 script2.py

alexamac git demo % git cat-file -p 9a/fé6fc3ea99e6fbb8134a0329a3b51/f5d6c827
print('hello BIO-210")

alex@mac git demo % git cat-file -p ef/9fe

Collection of scripts

So far we checked blobs and trees....

Looking up a commit object!

alex@amac git demo % git cat-file -p 53e1d980/8b0499f4abab5e98/4633e4/8415ef4b
tree bcb0914d46780824038£f469a15d4d613a6143d17

author AlexEMG <alexander@deeplabcut.org> 1634469842 +0200

committer AlexEMG <alexander@deeplabcut.org> 1634469842 +0200

Example folder

Notice: you don’t need to give the full hexadecimal ID!

References

Having unique commit identifiers via SHA-1 hashes is great (data integrity and unique), but inconvenient
for users (try remembering lots of 40 hexadecimal characters).

Git provides references. References are pointers to commits. Unlike objects, which are immutable, references
are mutable.

1 references = map<string, string>
2

5 def update_reference(name, 1id):
£ references[name| = id

5

6 def read reference(name):

7/ return references|[name |

3

9 def load reference(name_or_ 1id):
10 if name _or_id in references:
11 return load(references[name _or id])
12 else:

13 return load(name_or_id)

Check out: https://git-scm.com/book/en/v2/Git-Internals-Git-References

https://git-scm.com/book/en/v2/Git-Internals-Git-References

Important references:

» master/main reference usually points to the latest commit in the main branch of development.

= masteris the old name and is being phased out, but you will find it in older projects

= The special reference HEAD refers to where we currently are in the history

= HFEAD also defines the state of the working directory. The working directory’s state is the tree of the
HEAD’s snapshot

= commits are relative to the HEAD (i.e. where you are, which provides the parents file)

Git repositories

= git stores objects and references on disk
= git thinks about its data more like a stream of snapshots (commits); to be efficient, if files have not
changed, git does not store the file again, just a link to the previous identical file it has already stored.

= Git commands alter the commit DAG by adding objects and adding/updating references

Staging area
In order to be part of a commit, blobs and trees need to be staged (added).

This allows to control which new files should be committed in what order!

Visual illustration of staging and committing

.glit directory
(Repository)

Working

Directory

Checkout the project

Stage Fixes

Fundamentally, staging gives you control to decide what should be commited from your working directory.

Source: git docs

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

Questions?

Quiz: What are?

= man
= echo
= s

= mkdir
= cd

= cat

Useful bash (unix shell) commands
we will use later

man look up the manual (e.g., ‘'man man', ‘man echo’)
echo write arguments to standard output
Is list directory contents

mkdir make a directory
cd change directory

cat concatenate and print files

Basic git commands

For more details, see git’s reference manual.

= 'git help <command>: get help for a git command

= ‘git init :creates a new git repo, with data stored in the .git directory

= ‘git status :tells you what’s going on

= 'git add <filename> :adds files to staging area

" ‘git commit :creates a new commit

= ‘git log :shows a (flattened) log of history

" 'git log --all --graph --decorate :visualizes history as a DAG

» ‘git diff <filename>':show changes you made relative to the staging area

» ‘git diff <revision> <filename>':shows differences in a file between snapshots

m ‘git checkout <revision>':switch branches or restore working tree files

Let’s use them. We will step-by-step create a demo repo folder.

https://git-scm.com/docs

Initializing a git repository

Note, we run this in a bash/zsh (shell). For windows see here and in particular with git: git BASH.

1 alex@mac Code % mkdir demo-repo
alex@gmac Code % demo-repo
alex@mac demo-repo % Lls
alex@mac demo-repo % git init
hint: Using as the name for the initial branch. This default branch name
hint: 1s subject to change. To configure the initial branch name to use in all
hint: of your new repositories, which will suppress this warning, call:

hint:

hint: git config --global init.defaultBranch <name

hint:

hint: Names commonly chosen instead of are and
hint: . The just-created branch can be renamed via this command.:
hint:

hint: git branch -m <name

Initialized empty Git repository in /Users/alex/Code/demo-repo/.git/
alex@mac demo-repo % ls - a
.git

Note: Hidden folder .git is created when we initialize the repository (try it out!)

https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://superuser.com/questions/608106/how-can-i-use-a-bash-like-shell-on-windows
https://gitforwindows.org/

Initializing a git repository

Note, we run this in a bash/zsh (shell). For windows see here and in particular with git: git BASH.

=

alex@mac Code % mkdir demo-repo

alex@gmac Code % cd demo-repo

5 alex@mac demo-repo % Ls

alex@mac demo-repo % git init

hint: Using as the name for the initial branch. This default branch name
hint: is subject to change. To configure the initial branch name to use in all
hint: of your new repositories, which will suppress this warning, call:

N

hint:

hint: git config --global init.defaultBranch <name

hint:

hint: Names commonly chosen instead of are and
hint: . The just-created branch can be renamed via this command.:
hint:

hint: git branch -m <name

Initialized empty Git repository in /Users/alex/Code/demo-repo/.git/
alex@mac demo-repo % ls - a
.git

Note: Hidden folder .git is created when we initialize the repository (try it out!)

https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://superuser.com/questions/608106/how-can-i-use-a-bash-like-shell-on-windows
https://gitforwindows.org/

Initializing a git repository

O oOoONOTULT DN WDN -

10
11
12
13
14
15
16
17

alex@mac Code % mkdir demo-repo

alexa@mac Code % cd demo-repo

alex@mac demo-repo % Lls

alex@mac demo-repo % git init

hint: Using 'master' as the name for the initial branch. This default branch name
hint: 1is subject to change. To configure the initial branch name to use in all
hint: of your new repositories, which will suppress this warning, call:

hint:

hint: git config --global init.defaultBranch <name>

hint:

hint: Names commonly chosen instead of 'master' are 'main', 'trunk' and

hint: 'development'. The just-created branch can be renamed via this command.:
hint:

hint: git branch -m <name>

Initialized empty Git repository in /Users/alex/Code/demo-repo/.git/

alex@mac demo-repo % ls - a

.git

Note: Hidden folder .git is created when we initialize the repository (try it out!)

https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://superuser.com/questions/608106/how-can-i-use-a-bash-like-shell-on-windows
https://gitforwindows.org/

Creating content (in demo-repo)

1 alex@mac demo-repo % echo "print('Hello world!')" > script.py
2 alex@mac demo-repo % Ls
3 script.py

Creating content (in demo-repo)

3 script.py
4 alex@mac demo-repo % cat script.py
5 print('Hello world!"')

Creating content (in demo-repo)

alex@mac demo-repo % echo "print('Hello world!')" > script.py
alex@mac demo-repo % Ls

script.py

alex@mac demo-repo % cat script.py

print('Hello world!')

alex@mac demo-repo % python3 script.py

Hello world!

NONULT T AW DN -

Tracking and staging content with git

1 alex@mac demo-repo % git status

2 0On branch master

3

4 No commits yet

5

6 Untracked files:

/ (use '""git add <file>..." to include in what will be committed)

3 script.py

9

10 nothing added to commit but untracked files present (use "git add" to track)

Tracking and staging content with git

1 alex@mac demo-repo % git status

2 0On branch master

3

4 No commits yet

5

6 Untracked files:

/ (use '""git add <file>..." to include in what will be committed)
3 script.py

9

10 nothing added to commit but untracked files present (use "git add" to track)
11 alex@mac demo-repo % git add script.py # staging!
12 alex@mac demo-repo % git status

15 On branch master

14

15 No commits vyet

16

1/ Changes to be committed:

18 (use "git rm --cached <file>..." to unstage)

19 new file: script.py

20

21 alex@mac demo-repo %

Our first commit

1 alex@mac demo-repo % git commit -m "Adding script”
2 [master (root-commit) 5be/f54] Adding script

3 1 file changed, 1 insertion(+)

Z- create mode 100644 script.py

5 alex@mac demo-repo % git status

6 On branch master

/- nothing to commit, working tree clean

g alex@mac demo-repo % git log

9 commit 5be/f545//0el2a42fc8831102f166/aad5d1228c (HEAD -> master)
10 Author: AlexEMG <alexander@deeplabcut.org>

11 Date: Sun Sep 29 19:18:47 2024 +0200

12

13 Adding script

Visual illustration of staging and committing

.glit directory
(Repository)

Working

Directory

Checkout the project

Stage Fixes

Fundamentally, staging gives you control to decide what should be commited from your working directory.

Source: git docs

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

Quiz: I changed script.py, what did I change?

1 alex@mac demo-repo % python3 script.py
2 Hello BIO-210 class

Changing content and noticing it!

Notice that ‘git diff notices the changes automatically!

1 alex@mac demo-repo % python3 script.py

2 Hello BI0O-210 class

5 alex@mac demo-repo % git diff script.py

4 diff --git a/script.py b/script.py

5 index 60f08aa..bddabf9 100644

6 --- a/script.py

/ +++ b/script.py

& @a -1 +1 @e

9 -print('Hello world!")

10 +print('Hello BIO-210 class')

11 alex@mac demo-repo % git status

12 On branch master

15 Changes not staged for commit:

14 (use "git add <file>..." to update what will be committed)

15 (use "git restore <file>..." to discard changes in working directory)
16 modified: script.py

17

18 mno changes added to commit (use '"git add" and/or "git commit -a")

Staging the changes and committing

1 alex@mac demo-repo % git add .

2 alex@mac demo-repo % git commit -m "new greeting"
5 [master 6baa498| new greeting

4 1 file changed, 1 insertion(+), 1 deletion(-)

5 alex@mac demo-repo % git log

6 commit 6baa498d512d’23ceSla30ac8cbcl54/ce2069eec (HEAD -> master)
/ Author: AlexEMG <alexander@deeplabcut.org>

g Date: Sun Sep 29 19:21:58 2024 +0200

9

10 new greeting

11

12 commit 5be/f545770e2a42fc8831102f166/aad5d1228c
15 Author: AlexEMG <alexander@deeplabcut.org>

14 Date: Sun Sep 29 19:18:47 2024 +0200

15

16 Adding script

=
N

Questions?

Quiz: What does this program do?

1 # Simple greeting program

2

5 def greeting(context=None):

Z- prefix="'Hello'

5 if context == 'teaching':
6 suffix="BI0-210!"
7/ else:

3 suffix = "World!"
9

10 print(prefix,suffix)

11

12 if name_ == " main__":

13 import sys

14 greeting(sys.argv[1l] if len(sys.argv)>1 else None)

Module and script use!

When a python module is imported, ©_ _name__ " is set to the module’s name!

1 # Simple greeting program

2

5 def greeting(context=None): # Custom function that
Z- prefix='Hello'

5 if context == 'teaching':
6 suffix="BI0-210!"
7/ else:

3 suffix = "World!"
9

10 print(prefix,suffix)

11

12 # Execute when the module is not initialized from an import statement.
15 if name == " main__":

14 import sys # sys library: https://docs.python.org/3/library/sys.html
15 # sys.argv -- returns list of command line arguments passed to a Python script.
16 # sys.argv[@] is the script name

17 greeting(sys.argv[1l] if len(sys.argv)>1 else None)

Used as a module

Let’s assume we call this program "script.py and are in this folder!

>>> import script # Nothing 1s printed!
>>> script.greeting()

'Hello World!'

>>> script.greeting('teaching')

'Hello BIO-210!"'

>>> print(script. name_)

'script'’

NOYUT A WNWDN -

Used as a script

OoOoONOTULT D~ WDN K-

PR R RPRRPRRLRR R
NOuUuPAWNEO

18

=
\O

20

alexamac demo-repo % python script.py
Hello World!
alex@amac demo-repo % python script.py teaching
Hello BI0O-210!
alex@mac demo-repo % git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: script.py

no changes added to commit (use "git add" and/or "git commit -a'")
alex@mac demo-repo % git add .
alex@mac demo-repo % git commit -m "Greeting program expanded"
master f/d2e/70] Greeting program expanded
1 file changed, 14 insertions(+), 1 deletion(-)
alex@amac demo-repo % git lLog --all --graph --decorate --oneline
* f£f7d2e70 (HEAD -> master) Greeting program expanded
* 6baa498 new greeting
* 5S5be/f54 Adding script

Questions?

git init / log / status / add / commit?

Git branching and merging

m ‘git branch :shows branches

" ‘git branch <name> :creates a branch

= 'git checkout -b <name> :creates a branch and switches to it. This is the same as 'git branch
<name> ; git checkout <name>

" 'git merge <revision>':merges the commit <revision>" into current branch

Creating a branch and adding a new context

1 alex@mac demo-repo % git branch feature/new_context
2 alex@mac demo-repo % git checkout feature/new_context
3 Switched to branch 'feature/new context'

4 alex@mac demo-repo % vim script.py # see below!
5 alex@mac demo-repo % python3 script.py research

6 Hello Lucas

1 # Simple greeting program

2 def greeting(context=None):

3 prefix="Hello'

4 if context == 'teaching':

5 suffix="BI0-210!"

6 elif context == 'research':

/ suffix="Lucas"

3 else:

9 suffix = "World!"

10

11 print(prefix,suffix)

12

15 1if name_ == " main__":

14 import sys

15 greeting(sys.argv[1l] if len(sys.argv)>1 else None)

Let’s commit to the new branch

alex@amac demo-repo % git add .
alex@mac demo-repo % git commit -m "Greeting Lucas"
| feature/new_context a/ed/42]| Greeting Lucas
1 file changed, 2 insertions(+)
alex@mac demo-repo % git log --all --graph --decorate --oneline
* a/ed/742 (HEAD -> feature/new_context) Greeting Lucas
* f£7d2e70 (master) Greeting program expanded
* 6baa498 new greeting
* Sbe/f54 Adding script

O oOoONOTULT DN WDN -

Quiz: What is happening here?

We are still on branch: 'feature/new context'.

alex@amac demo-repo % python3 script.py research
Hello Lucas

alex@amac demo-repo % git checkout master
Switched to branch 'master'

alex@mac demo-repo % python3 script.py research
Hello World!

ONU1T A WNDN -

Checkout also changes the working directory files!

alex@amac demo-repo % python3 script.py research
Hello Lucas

alex@amac demo-repo % git checkout master
Switched to branch 'master'

NOTE: RESEARCH FUNCTIONALITY MISSING on master
alex@mac demo-repo % python3 script.py research
Hello World!

NONULT T AW DN -

Create a new feature on master (in parallel)

(we are still on master and updated script.py)

1 alex@mac demo-repo % git diff script.py

2 diff --git a/script.py b/script.py

5 dindex 6fc/272..ce5355¢c 100644

4 --- a/script.py

5 +++ b/script.py

6 @@ -4,6 +4,8 @@ def greeting(context=None):
/ prefix="'Hello'

3 if context == 'teaching':

9 suffix="BI0-210!"

10 + elif context == 'research':

11 + suffix="Alberto"

12 else:

13 suffix = "World!"

14 alex@mac demo-repo % git add .

15 alex@mac demo-repo % git commit -m "Greeting Alberto”
16 [master /99c9ac]| Greeting Alberto

17 1 file changed, 2 insertions(+)

Our DAG is becoming more interesting

1 alex@mac demo-repo % git log --all --graph --decorate --oneline
2 * 799c9ac (HEAD -> master) Greeting Alberto

3 | * a/ed/42 (feature/new_context) Greeting Lucas

4 |/

5 * f7d2e70 Greeting program expanded

6 % 6baa498 new greeting

/ * bbe/f54 Adding script

g alex@mac demo-repo % python3 script.py research

9 Hello Alberto

10 alex@mac demo-repo % git checkout feature/new_context
11 Switched to branch 'feature/new _context'

12 alex@mac demo-repo % python3 script.py research

15 Hello Lucas

14 alex@mac demo-repo % python3 script.py

15 Hello World!

Let’s merge ...

1 alex@mac demo-repo % git merge feature/new_context

2 Auto-merging script.py

5 CONFLICT (content): Merge conflict in script.py

4 Automatic merge failed; fix conflicts and then commit the result.
5 alex@mac demo-repo % vim script.py

6 alex@mac demo-repo % git status

/ On branch master

g All conflicts fixed but you are still merging.

9 (use "git commit" to conclude merge)

10 alex@mac demo-repo % git commit -m "Conflicts fixed and greeting Alberto"
11 [master bB33/d2| Conflicts fixed and greeting Alberto

12 alex@mac demo-repo % git log --all --graph --decorate --oneline
15 b033/d2 (HEAD -> master) Conflicts fixed and greeting Alberto
14 |\

15 | * a7ed742 (feature/new_context) Greeting Lucas

16 * | /799c9ac Greeting Alberto

17 |/

18 * f7d2e70 Greeting program expanded
19 * 6baa498 new greeting

20 * 5be/f54 Adding script

isual support for git in Visua

SOURCE CONTROL

NS

£° master

& Publish Changes

& Python 3.8.9 64-bit

®O0AO0

script.py X

Views

View & Sort

Pull
Push
Clone

Checkout to...

Commit
Changes
Pull, Push
Branch
Remote
Stash
Tags

Show Git Output

>

>

jreeting(context=None):
prefix="Hello'
context 'teaching’:
suffix="BI0-210!"
context 'research':
suffix="Alberto"

n |
Merge Branch... World!

Rebase Branch...

Create Branch... 1ffix)
Create Branch From...
Rename Branch...
Delete Branch...

Publish Branch... len(sys.argv)>1

None)

Ln1, Col 1

Spaces: 8 UTF-8

LF Python

R

Q

VS Code visually highlights the conflicts and you can solve them (by clicking on the correct one/editing):

SOURCE CONTROL E v O - script.py

Merge branch 'feature/new_context' 1scr|pt.py 0 o
v Merge Changes

script.py def greeting(context=None):

39 prefix="'Hello'
1 v Changes
context 'teaching':

suffix="BI0-210!"
context 'research':

Accept Current Change | Accept Incoming Change | Accept Both Changes | Compare Changes
<<<<<<< HEAD (Current Change)
suffix="Alberto"

suffix=""Lucas"
>>>>>>> feature/new_context (Incoming Change)

suffix = "World!"
print(prefix, suffix)
__nhame__ " main__":

SYys
greeting(sys.argv[1] len(sys.argv)>1 None)

X PP master! @ Python3.8964-bit ® 12 A1 Ln1,Col1 Spaces:8 UTF-8 LF Python & [

A multiple-developer git workflow

III!HHHHHHIII IIIE%HHHHHIII IIIII!HHIIIIII
-
) git commit

i

git commit C

—

>
D git merge

git merge C

git clone
git clone
git push
git fetch
git push
git fetch
git push
git fetch

Jessica Server John

You will practice this (a bit) in the exercises and then we cover it next week. Image source: git docs

https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project

Git beyond the command line?

= there are many graphical interfaces for git

= gijtis also integrated in many integrated (code) development environment (IDEs, e.g., Visual Studio Code

(our focus), atom, PyCharm, etc.)

https://git-scm.com/downloads/guis
https://code.visualstudio.com/
https://atom.io/
https://www.jetbrains.com/pycharm

GitHub provides web-based software development
and version control using git

o Why GitHub? Team Enterprise Explore Marketplace Pricing Search GitHub Sign in

Where the worid
builds software

Millions of developers and companies build, ship, and
maintain their software on GitHub—the largest and
most advanced development platform in the world.

Email address Sign up for GitHub

65+ million 3+ million 200+ million 72%

Developers Organizations Repositories Fortune 50

Advanced topics

= vast resources in the git-book

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://ohshitgit.com/
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/removing-sensitive-data-from-a-repository
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/removing-sensitive-data-from-a-repository#avoiding-accidental-commits-in-the-future

Today’s summary

We learned about:

= introduction to data model of git
= intro to git (init/staging/branching/merging)

= in exercises: you will practice those, use GitHub and familiarize yourself with git clone/pull/push

Questions?

After lunch:

= Monday 13 - 15: exercises (5 groups)
= CO4 < A-B+Y +Z (TA: Albert Dominguez Mantes)
= COS5 ¢« C-F+V (TAs: Hale-Seda Radoykova, Shaokai Ye)
= C0O260 < G-L+W (TA: Oliver Ulrich)
= CO6 < M-P (TA: Haoze Qi)
= (CO023 < Q - U (TA: Andy Bonnetto)
= Monday 15:15 - 16: my office hours at SV 2811
= Do not forget to do the quiz.

