Welcome to BIO-210

Applied software engineering for life sciences
September 23, 2024 — Lecture 2

Prof. Alexander MATHIS

EPFL

10
11
12
13
14

Date

09/09/2024
16/09/2024
23/09/2024
30/09/2024
07/10/2024
14/10/2024
21/10/2024
28/10/2024
04/11/2024
11/11/2024
18/11/2024
25/11/2024
02/12/2024
09/12/2024
16/12/2024

Topic

Python introduction I

Public holiday

Python introduction II

Git and GitHub (+installation VS Code)
Project introduction

Functionify

EPFL fall break

Visualization and documentation
Unit-tests, functional tests

Code refactoring

Profiling and code optimization
Object oriented programming
Model analysis and project report
Work on project

Wrap up

Software version

vl

V2

V3
v4
v5
V6
V7

v8

Software releases

vl

\
V3
v4
v5
V6

v7

v8

Grading / Feedback

code review (API)

graded (tests)
code review
graded (speed)

code review (0O0)

graded (project)

Announcements

= We posted solutions to the notebook from last week

= All clear about the quizzes?

Reminder:

= quizzes in week 3 (next week), 5, 7, 9 and 11 (online). Pythonic counting...
= for quiz 3 and 11 you have from Monday to Friday to fill it out; quizzes 5, 7 and 9 are in person.
= Monday 15:15 - 16: my office hours at SV 2811

https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/week_1.html

Preparation for projects:

= create a personal GitHub account.

= find two teammates and sign up here. You will need your GitHub names.

Please sign up by the end of the week (we will also announce this via Moodle).

https://github.com/join
https://docs.google.com/spreadsheets/d/1jH0JLXPbivfm_COMBw22dFm8wnCp88_8f0Mo3sfMLDM/edit?gid=0#gid=0

Python’s conceptual hierarchy

1. Programs are composed of modules
2. Modules contain statements
3. Statements contain expressions

4. Expressions create and process objects

Python’s core built-in objects

Object type: Examples:

Numbers 123, 3.14, math.pi, ...

Strings ‘abc’, 'EPFL, "Geneva’', ...

Lists [1, [2, 'troi'],4], list(range(99)

Dictionaries I'Apples’: 200, 'Pears': 123.5}, dict(hours=10)
Tuples (x,y,2), (1, [2, 'troi'],4)

Sets set(‘abc’), {'E','P,’F','L}

Other core types Booleans, types, None

Files open('data.txt’), open(r('/home/alex/abc.bin’), wb")

Program unit types Functions, modules, classes

Learning by trying it out!

® slidev — IPython: alex/slidev — ipython — 123x29

(base) alex®Palexs—MacBook-Air-2 slidev
(base) alex@Palexs—MacBook-Air-2 slidev
(base) alex@Palexs—MacBook—-Air-2 slidev
(base) alex@Palexs—-MacBook-Air-2 slidev
(base) alex@Palexs—-MacBook-Air-2 slidev
(base) alexPalexs—-MacBook-Air-2 slidev
(base) alex(Palexs—MacBook-Air-2 slidev
(base) alex@Palexs—MacBook-Air-2 slidev
(base) alex@Palexs—MacBook-Air-2 slidev
(base) alex@Palexs—MacBook-Air-2 slidev
(base) alex@Palexs—-MacBook-Air-2 slidev
(base) alexPalexs—-MacBook-Air-2 slidev
(base) alexPalexs—-MacBook-Air-2 slidev % ipython

Python 3.9.12 (main, Apr 5 2822, 01:52:34)

Type 'copyright', 'credits' or 'license' for more information
IPython 8.15.8 —— An enhanced Interactive Python. Type '?' for help.

P P P O - - P O P - -

In [1]: 2%4
8

In [2]: 3%k*4
81

In [3]: 33%"exciting"+"python"

'excitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingex
citingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcitingexcit
ingexcitingexcitingexcitingpython'

In [4]: ||

Open your own session with Ipython.

https://ipython.org/

Review: a simple translation system

1 >>> englishZspanish = {}

2 >>> type(english2spanish)

5 <class 'dict'>

4 >>> # defining key-value pairs:

5 >>> englishZspanish['cat'] = 'gato/a' # here str -> str (but can be mixed)
6 >>> english2spanish['dog'] = 'perro/a'

/ >>> english2spanish['fox'] = 'zorro'

g >>> print(english2Zspanish) # let's lLook at our dictionary:

9 {'cat': 'gato/a', 'dog': 'perro/a', 'fox': 'zorro'}

10 # Using our translation system:

11 >>> animal = 'fox'

12 >>> print("What is "+animal+" in Spanish?", englishZspanish[animal],'!")

15 What is fox in Spanish? zorro! # great, but bad spelling! Easy to fix....
14 >>> print("What is "+animal+" in Spanish?", 'j'+englishZspanish[animal |.capitalize()+'!"')
15 What is fox in Spanish? jZorro! # fixed

Note: Python allows the creation of complex expressions.

A second dictionary example: store inventory

1 # defining a dictionary (in one expression):

2 >>> inventory = {'apples': 458, 'oranges': 196, 'pears': 644, 'peaches': 409}

5 >>> print(inventory['apples']) # Looking up number of apples

4 458

5 >>> inventory|['oranges']-=22 # 22 oranges were sold

6 >>> inventory['peaches' |+=100 # 100 peaches were delivered

/ >>> print(inventory)

8 {'apples': 458, 'oranges': 174, 'pears': 644, 'peaches': 509}

9 >>> inventory['melons’]

10 Traceback (most recent call last):

11 File "", line 1, in <module>

12 KeyError: 'melons'

15 >>> inventory.get('melons', 0) # look up with default value, does not give an err.
14 0O

15 >>> inventory.get('oranges',6 0) # get returns the correct number, when present!
16 174

17 >>> del inventory|['oranges’] # Our shop stops having oranges...

18 >>> print(inventory)
19 {'apples': 458, 'pears': 644, 'peaches': 509}

Note: "a+=1" is shorthand for a=a+1"

Ouliz

e

1 inventory = {'skis': 15, 'ski boards': 35} # defining a dictionary
2 statementl = 'skis' in inventory
5 statement2 'boots' in inventory

What is the value and type of "statementl and statement2'?

Quiz: performing tests

1 inventory = {'skis': 15, 'ski boards': 35} # defining a dictionary
2 statementl = 'skis' in inventory
5 statement2 'boots' in inventory

The statements statementl and statement2 evaluate to booleans.

You can use them as tests (for and within your code).

Question: Are 'skis' in our inventory?

Performing tests: comparison operators

= Consider x, y variables names (int, float, strings, lists, ...)

= Comparisons output boolean variables, e.g.:

1 x>y

2 X >=y # larger or equal to
5 x <y

4 x <=y # less or equal to

5 X ==y # equals

6 x l=vy # not equal to

What happens when you compare strings? ... lexicographic order! I.e. "'stringl < string2 iff 'stringl j
< string2 j forall j . Shorter words are padded with blanks, which is considered smaller than every
element in "stringl’

Combining tests: Logic operators on

booleans
A B
True True
True False
False True
False False

not A
False
False
True
True

A and B
True
False
False
False

AorB
True
True
True
False

Control flow: branching with if statements

An example program:

1 1f x>0:

2 print("positive") # Note: colon & indentation!

5 elif x<0: # else if

< print('"negative")

5 else: # alternative case

6 print("zero" # good practice 4 spaces / use tab!

1 if a>@ and isinstance(a,int): # Example for "and as well as type checking!
2 print("a is a natural number")

Questions?

Quiz: What will this program print?

1 if not False:

2 print('EPFL')
5 else:

4 print('ETHZ')

Quiz: What will this program print?

if not False:
print('EPFL')
else:
print('ETHZ')

A NN B

The expression not False is True , so 'EPFL!

[f variants

A WWNDNBE

coONONUVT P~ WWDN P

1f <condition>:

<expression>
<expression>

1f <condition>:

<expression>
<expression>

else:
<expression>
<expression>

else is not required!

O oONOTULT D~ WDN -

if <condition>:
<expression>
<expression>

elif <condition>:

<expression>
<expression>

elif ...:
<expression>
<expression>

else:
<expression>
<expression>

as many else if as you want!

Control flow: while statements

while <condition>: # while condition is true, carry out indented expr.; then expr. post
<expression>
<expression>

ONU1T A WNDN -

<expression post>

Additional control: break statements

= immediately exits the currentloop

= thus, skips remaining expressions in this loop

1 while <condition>:

2 <expression>

3 if <condition>:

4 break # exits while loop!
5 <expression>

6

7/

3

<expression_post>

Examples

1 1i=0

2 while 1i<12:

3 print(1i)

4 i+=1 # note: 1i+=1" 1is python shorthand for i=i+1"

A more compact way of writing this is:

1 for n in range(1l2):
2 print(n)

Here

" ‘range(start,stop,step)’ creates a list of numbers from start to stop incremented with step.

= Bydefault, range(12) ', has start=0" and step=1".

Remember: you can ask for help locally

Of course you can also go to the online help, but you don’t need to.

1 >>> help(range) # help in Python console

2 Help on class range in module builtins:

5 class range(object)

4 range(stop) -> range object

5 range(start, stop[, step]) -> range object

6

7/ Return an object that produces a sequence of integers from start (inclusive)
3 to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1.
9 start defaults to @, and stop is omitted! range(4) produces 0, 1, 2, 3.
10 These are exactly the valid indices for a list of 4 elements.

11 When step 1is given, it specifies the increment (or decrement).

12 ... (output truncated)

1 In [1]: range? # help in ipython/Jupyter
2 Init signature: range(self, /, *args, **kwargs)
5 Docstring:

4 range(stop) -> range object

5 range(start, stop[, step]) -> range object

6
7/

(output truncated)

Quiz: What is the value of counter at the end?

counter=0
for i in range(3,51,5):
counter+=1
1f counter==5:
counter+=1
break
counter+=1

O oOoONOTULT DN WDN -

print(counter)

Quiz: What is the value of counter at the end?

counter+=1

1 counter=9

2 for i in range(3,51,5):

3 counter+=1

4 if counter==5: # enters loop with counter=5

5 counter+=1

6 break # exit for loop here, thus counter = 6
/

3

9

print(counter)

Quiz II: What is the value of counter at the end?

counter=0
while counter<8:
counter+=1
while counter<11:
print("hello!")
break

© VONOUTAWNE

print(counter)

=

Quiz II: What is the value of counter at the end?

1

2 counter=0

5 while counter<8: # We exit at counter = 8
£ counter+=1

5 while counter<ll:

6 print("hello!")

7/ break # This break only exits the *inner LlLoop*
3

9

10 print(counter)

11

Simply 8, no tricks here. The first while loop’s termination is hit then.

Bonus: How often is "hello" printed?

forloops while loops

= control the number of iterations = unbounded number of iterations (e.g. ‘while
= can end early with ‘break" true:)
= uses a counter = can end early with ‘break"

= each for loop canbe writtenasa ‘while' loop! = can use counter, which needs to be initialized and

incremented in the loop

"= notevery while loop can we writtenasa for’

loop

You can loop over sequential objects

i.e, strings, lists, ...

A NN B o1 NMNWNDN B

un PP WD -

>>> for letter in 'EPFL':
print(letter)

CC T Om

>>> for element in [22,'99af']:

print(element)
22
'99af’

>>> squares = [|

>>> for x in [1,2,3,4,5]:
squares.append(x**2)

>>> print(squares)

(1, 4, 9, 16, 25]

can lLoop over mixed types

appending new elements to the list!

Back to the Swiss language greetings...

1 swiss greetings = ['Bonjour', "Gruzi", 'Ciao', 'Allegra']

2 mname = 'Seppl'

5 for greeting in swiss _greetings:

4 if greeting == 'Bonjour':

5 print(greeting, name,'!! ! ") # spaces will be added between each string
6 else:

/ print(greeting +" "+ name+'!!!1") # manually add spaces as needed, full control!
3

9

10 Bonjour Seppl !!!

11 Gruzi Seppl!!!

12 Ciao Seppl!!!

15 Allegra Seppl!!!

Questions?

Tuples

= ordered sequences of objects that cannot be changed (immutable)

>>> T = (0,1,2,3) # a 4-item tuple
>>> len(T)
4
>>> T + (5,6) # concatenation
(0,1,2,3,5,6)
>>> T[0O] # slicing
%)
>>> T[0]=3
. error ...
TypeError: 'tuple' object does not support item assignment

© VO NOUTNANWNE

=

Why tuples? Their immutability is the point; they are used for control...

1 >>>x, vy =3, 4 # here we define two variables in one line
2 >>> print(x,V)

3 (3,4)

4 >>> (x,y) = (v,x) # convenient way to swap values!

5 >>> print(x,y)

6 (4,3)

Sets

= unordered collection of unique and immutable objects

Example definitions and operations:

1 >>> x = set('abcde')

2 >>> vy = set('bdxyz')

3 >>> print(x)

4 {ICI, lel, Idl, lal’ lbl}

5 >>>x -y # difference set

6 {lal, ICI, Iel}

/ >>> X |y # union

8 {lal, lbl, ICI, ldl’ lel, IXI, Iyl, IZI}

9 >>> 'a' in x # membership in sets
10 True

Questions?

NumPy: Python’s foundation of scientific computing

NumPy is a fundamental package that

= provides multidimensional array objects (e.g. matrix of shape (M x N), but also vectors of shape (N) and
tensors of shape M 1xM 2xM 3...x M N))

= with various derived objects and powerful mathematical functions

= numerical problems can often be described with high-level code (vectorized formulas), thus enabling
scientific code that is both easy to maintain and read

= vectorization also fuels speed gains (see later classes)
Importing and checking the version:

In [1]: import numpy as np # NumPy 1is imported like this.

In [2]: np.__version_ _ # checking the version of NumPy
Out[2]: '1.20.1' # [version](https://pypl.org/project/numpy/) in my machine

AN NN B

https://numpy.org/doc/stable/user/whatisnumpy.html

NumPy arrays: the ndarray object

= NumPy arrays have a fixed size at creation, unlike Python lists (which can grow dynamically).
= changing the size of an ndarray will create a new array and delete the original.

= arrays can have any dimensionality

= arrays contain numbers of the same type (e.g. floats, complex numbers, booleans)

= arrays are sequential objects and can be indexed by the "'[] operator

A first example

1 # Generate the integers from zero to eight and # re-arrange them into a 3 x 3 array
2 In [1]: x = np.arange(9).reshape((3, 3))

5 In [2]: X

4 Qut[2]:

5 array([[@0, 1, 2],

6 '3, 4, 5],

/ (6, 7, 8]11)

8 In [3]: type(x)

9 Out[3]: numpy.ndarray

10 In [4]: x.dtype?

11 Type: dtype[inté64 |

12 String form: inté4

13 Length: 0

14 File: ~/opt/anaconda3/lib/python3.8/site-packages/numpy/ init .py
15 Docstring: <no docstring>

=
(O

Shapes of arrays

O oOoONOTULT DN WDN -

R PR R R R R
OUTNANWNRO®

define an array of zeros, also np.ones, etc.

In [1]: x = np.arange(9)
In [2]: X
Out[2]: array([0, 1, 2, 3, 4, 5, 6, 7, 8])
In [3]: np.shape(x)
Out[3]: (9,)
In [4]: E = np.eye(3)
In [5]: E
Out [5]:
array([[1., 0., ©.],
0., 1., 0.1,
0., 0., 1.1
In [6]: np.shape(E)
Out [6]: (3,3)
In [7]: nix=np.zeros((4,3,2))
In [8]: np.shape(nix)

Out [8]: (4,3,2)

next page for looking at this

A (visually big) array

1 In [7]: nix=np.zeros((4,3,2))
2 In [8]: np.shape(nix)

5 Out [8]: (4,3,2)

4 In [8]: nix # let's Llook at the [[... 1]
5 Out [8]:

6 array([[[©., 0.],

7/ (0., 0.],

8 (0., 0.1],

9

10 [[0., O.],

11 (0., 0.],

12 0., 0.]],

13

14 [[@0., 0.1,

15 (0., 0.],

16 0., 0.]],

17

18 [[@0., 0.1,

19 (0., 0.],

20 (0., 0.111)

O Oo0O0ONOULT P~ WWDN -

Let's illustrate standard slicing: start:stop:step’
In [1]: x = np.arange(9).reshape((3, 3))

In [2]: x
Out[2]:
array([

] b

1
4,
/
2

A
O N O

»

- GO U1 N

[Ty I
L
-/

In [3]: X[:
Out[3]:
array([[0, 1, 2],
[3, 4, 511D
In [4]: x[:,1:]
Out [4]:
array([[1, 2],
(4, 57,
/7, 8]11)
In [5]: x[::2,::-1]
Out|[5]:
arravy([[2, 1, @],
[8, 7, 6]11)
In [11]: x
Out[117]:
array([[0, 1, 2],
'3, 4, 5],
(6, 7, 8]1)

9

first two rows of x

columns 1 to the end

every second row and reverse the columns!
reversing as step = -1

Note, x 1s unchanged -- we just used views, but

Views of memory - shallow copy

1 In [1]: import numpy as np

2 . X = np.arange(9).reshape((3, 3))

3 oy = x[:2,:0:-17] # creating a view of the memory
4 ... print(x)

5 [[60 1 2]

6 (3 4 57

/ 6 7 8]]

8 In [2]: print(y)

9 [[2 1 @]

10 [8 7 6]]

11 In [3]: y[0,2]=33

12 In [4]: print(y)

13 [[2 1 33] # obviously y is changed...
14 [8 7 6]]

15 In [5]: print(x)

16 [[33 1 2] # NOTICE: x 1is changed. x and y point to the same memory.
17 [3 4 5] # You can avoid this behavior, by creating a copy during
138 6 7 8]] # assignment: ‘y=x[::2,::-1].copy() (then y is a new obj.)

Here, y is a called a view of x (or a shallow copy).

Note: I'm not displaying "Out [x]: for space reasons here"

Vectorized operations in NumPy

are implemented in C. Always try to use vectorization.

O oOoONOTULT DN WDN -

PR PR R R R
OUTNANWNRO®

In
In
In
Out
In
Out
In
Out
In
Out
In

1]
(2]
EXE
(3]:
(4]
(4]
EXE
(o]
(6]:
(6]:

/]

import numpy as np
X,y=np.arange(10),np.ones(10)

X%y

array([6., 1., 2., 3., 4., 5., 6., 7., 8., 9.1)
X+y
array([1., 2., 3., 4., 5., 6., /7., 8., 9., 10.])
X-y

array([-1., ©., 1., 2., 3., 4., 5., 6., 7., 8.])
X **y

array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.1)

y/X

<ipython-input-7/-d2d3falacc3f>:1: RuntimeWarning: divide by zero encountered in true divi

v/ X
Out[77]:

array([

)

inf, 1 5 , ©.33333333, 0.25 :

9.2 , 0.16666667, 0.14285714, 0.125 , 0.111111117])

Vectorization for mismatched arrays?

np.arange(3) +5

o112 + 500 s = 5| 6

......................

np.ones|(3, 3)) +np.arange(3)

—— ey —
i A I 0 fl 2 | 1| o2

AR S I S A E—

-+ -+ : -
1 | | P2 | 2

...................................

....IZ.'I;EZE'ZI.'ZZ;_"‘g 7 7
0 y Hio L 0|1 2 0|1 2
Y e i D s s | |

......................

|| SR o S U SN o S

7 g lig 1| bip b tie b 7 | 3

S S S [T YU Y RN SR S S

Source: astroml.org

http://www.astroml.org/book_figures/appendix/fig_broadcast_visual.html

Vectorization of mismatched arrays?

1 In [8]: x=np.array([3,18,9.])
2

5 In [9]: m=np.arange(6).reshape((2,3%))
4

5 In [10]: m

6 Out[1l0]:

/ array([[6, 1, 2],

8 [3, 4, 511

9

10 In [11]: m+x

11 Out[11]:

12 array([[3., 19., 11.],

13 [6., 22., 14.1])

To save memory, broadcasted arrays are never physically constructed!

Click here to learn about the broadcasting rules.

https://numpy.org/doc/stable/user/basics.broadcasting.html

Quiz: What is output computing here?

1 x = np.arange(0,100,3)
2 Yy = X*¥*2
5 output = (y[1:]-y[:-1])/(x[1:]-x[:-1])

Quiz: computing finite differences

1 x = np.arange(0,100,3)
2y = X**2
5 dy over dx = (y[1:]-vy[:-1])/(x[1:]-x[:-17])

Subtracting those slices, effectively computes for all :

Ay, _ y(i+1) —y(@)
Ax; x(t+1)— x(3)

This vector has length "len(x)-1".

There is also a built-in function, np.diff for taking discrete differences.

https://numpy.org/doc/stable/reference/generated/numpy.diff.html

Common type-specific operations...

There are tons, check out NumPy’s API reference

1 In [1]: X=np.linspace(0,2*np.pi,10) # create ar. /w 10 linearly sep. pts in [0,2pi]
2 array([0. , 0.6981317 , 1.3962634 , 2.0943951 , 2.7925268 ,

3 5.4906585 , 4.1887902 , 4.88692191, 5.58505361, 6.28318531])

4

5 In [2]: Y=np.sin(X) # calculate sine, vectorized of course
6 array([0.00000000e+00, 6.427/87610e-01, 9.8480//53e-01, 8.66025404e-01,

/ 3.42020143e-01, -3.42020143e-01, -8.66025404e-01, -9.84807/53e-01,

3 -6.42787610e-01, -2.44929360e-161)

9

106 In [3]: Y>0 # where is this array >07? Vectorized
11 Out[3]:

12 array([False, True, True, True, True, False, False, False, False,

13 False])

https://numpy.org/doc/stable/reference/index.html

Quiz: What is computed here?

1 X = np.logspace(-1,2,7)
2 Y = np.logla(X)
5 J = np.argmin(Y)

What is j?

Quiz: Extracting the location of the minimum

1 >>> X = np.logspace(-1,2,7) # Return numbers spaced evenly on a log scale.
2 array([0.1 ; 0.31622777, 1. ;

3 5.16227766, 10. , 31.6227766 , 100. 1

4 >>>Y = np.loglo(X) # Vectorized logarithm of base 10.

5 array([-1. , -6.5, ©. , 0.5, 1. , 1.5, 2. 1)

6 >>> Jj = np.argmin(Y) # Index of the minimum value

/ 0

Note X = 10**np.linspace(-1,2,7)

A minimalist linear algebra example

S
1 In [1]: phi = np.pi/3 # 60 degrees
2 In [2]: el,e2=np.array([1,0]),np.array([0,1]) # two basis vectors of RA2
5 In [3]: rot = np.array([[np.cos(phi), -np.sin(phi)]|,[np.sin(phi), np.cos(phi)|])
4 In [4]: print(rot)
5 Out [4]:
6 [[9.5 -0.8660254]
/ [0.8660254 0.5 11
8 In [5]: print(np.matmul (rot,el)) # matrix multiplication
9 Out [6]:
10 [0.5 0.8660254] # vector rotated to (cos(phi), sin(phi)
11

A minimalist linear algebra example

1 In [1]: phi = np.pi/3 # 60 degrees

2 In [2]: el,e2=np.array([1,0]),np.array([0,1]) # two basis vectors of RA2

5 In [3]: rot = np.array([[np.cos(phi), -np.sin(phi)]|,[np.sin(phi), np.cos(phi)|])

4 In [4]: print(rot)

5 Out [4]:

6 [[9.5 -0.8660254]

/ [0.8660254 0.5 11

8 In [5]: print(np.matmul (rot,el)) # matrix multiplication

9 Out [6]:

10 [0.5 0.8660254] # vector rotated to (cos(phi), sin(phi)

np.dot and np.matmul behave the same for matrices, but not 3D (and larger) arrays, check here, for more

details.

inverse, decompositions (LU, SVD, QR,...), eigenvalues, matrix equation solvers, tensor multiplication...

https://stackoverflow.com/questions/34142485/difference-between-numpy-dot-and-python-3-5-matrix-multiplication
https://numpy.org/doc/stable/reference/routines.linalg.html
https://docs.scipy.org/doc/scipy/reference/reference/linalg.html#module-scipy.linalg

A minimalist stats example

1 In [1]: data = np.array([[1231,np.nan],[23.123, 0],[0,1]]) # Notice: missing data

2 In [2]: np.mean(data) # the mean is also nan!

5 nan

4 In [3]: np.nanmean(data) # nanmean omits nans

5 0Out[3]: 251.02460000000002

6 In [4]: np.nanmean(data,axis=0) # mean along a specific axis
/ Out[4]: array([418.041, 0.5 1)

8

9 In [5]: np.nanmean(data,axis=1)

10 Out[5]: array([1.23100e+03, 1.15615e+01, 5.00000e-011)

Other stats functions: np.std’, np.quantile’, np.nanmax , np.median’, np.corrcoef , ...

https://numpy.org/doc/stable/reference/routines.statistics.html

Creating pseudo random numbers in Numpy

O oOoONOTULT DN WDN -

10
11
12
13
14
15

In
In
In
Out

In
Out
In
Out

In
Out
In
Out

1]
(2]
EXE

[3]:
(4]
: 0.4150299187382156
. np.random.rand(2,2)

(6]:

import numpy as np

X = np.random.randint(10)
X

5

np.random.rand()

array([[0.26249554, ©.219500327,

[0.81072637, 0.0196272511)
np.random.randn()
1.83821560732244607
5 + 2%np.random.randn()

: 4.067/920463989419

See np.random for more options!

Generate a random integer from O to 10 (uniform)

Generate a random float from @ to 1 (uniform)

Gen. random floats in array of 2 rows & 2 col.

Generate samples from standard normal

Gen. normal distr. sample with mean 3 and std 2

https://numpy.org/doc/stable/reference/random/index.html

Questions?

Today’s summary

We learned about:

= built-in objects: "set’, "tuple’,

= routing mechanisms: ‘if ", ‘while ', for’
= introduction to NumPy

Logistics:

= create a personal GitHub account.

= find two teammates and sign up here. You will need your GitHub names. You also need to use your EPFL

login for access to this data sheet!

Please sign up by the end of the week (we will also announce this via Moodle).

Try out the commands in the python shell/notebooks! Practice is key.

https://github.com/join
https://docs.google.com/spreadsheets/d/1jH0JLXPbivfm_COMBw22dFm8wnCp88_8f0Mo3sfMLDM/edit?gid=0#gid=0

After lunch:

= Monday 13 - 15: exercises (5 groups)
= CO4 < A-B+Y +Z (TA: Albert Dominguez Mantes)
= COS5 ¢« C-F+V (TAs: Hale-Seda Radoykova, Shaokai Ye)
= C0O260 < G-L+W (TA: Oliver Ulrich)
= CO6 < M-P (TA: Haoze Qi)
= (CO023 < Q - U (TA: Andy Bonnetto)
= Monday 15:15 - 16: my office hours at SV 2811

