
Welcome to BIO-210
Applied software engineering for life sciences

September 23, 2024 – Lecture 2

Prof. Alexander MATHIS

EPFL

Date Topic Software version Software releases Grading / Feedback

0 09/09/2024 Python introduction I

1 16/09/2024 Public holiday

2 23/09/2024 Python introduction II

3 30/09/2024 Git and GitHub (+installation VS Code)

4 07/10/2024 Project introduction v1

5 14/10/2024 Functionify v2 v1

6 21/10/2024 EPFL fall break

7 28/10/2024 Visualization and documentation v3 v2 code review (API)

8 04/11/2024 Unit-tests, functional tests v4 v3

9 11/11/2024 Code refactoring v5 v4 graded (tests)

10 18/11/2024 Profiling and code optimization v6 v5 code review

11 25/11/2024 Object oriented programming v7 v6 graded (speed)

12 02/12/2024 Model analysis and project report v8 v7 code review (OO)

13 09/12/2024 Work on project

14 16/12/2024 Wrap up v8 graded (project)

Announcements
We posted solutions to the notebook from last week

All clear about the quizzes?

Reminder:

quizzes in week 3 (next week), 5, 7, 9 and 11 (online). Pythonic counting…

for quiz 3 and 11 you have from Monday to Friday to fill it out; quizzes 5, 7 and 9 are in person.

Monday 15:15 - 16: my office hours at SV 2811

https://epfl-bio-210.github.io/BIO-210-CourseMaterials/docs/week_1.html

Preparation for projects:
create a personal GitHub account.

find two teammates and sign up here. You will need your GitHub names.

Please sign up by the end of the week (we will also announce this via Moodle).

https://github.com/join
https://docs.google.com/spreadsheets/d/1jH0JLXPbivfm_COMBw22dFm8wnCp88_8f0Mo3sfMLDM/edit?gid=0#gid=0

Python’s conceptual hierarchy
1. Programs are composed of modules

2. Modules contain statements

3. Statements contain expressions

4. Expressions create and process objects

Python’s core built-in objects

Object type: Examples:

Numbers 123, 3.14, math.pi, …

Strings 'abc', 'EPFL', "Geneva", …

Lists [1, [2, 'troi'],4], list(range(99)

Dictionaries {'Apples': 200, 'Pears': 123.5}, dict(hours=10)

Tuples (x,y,z), (1, [2, 'troi'],4)

Sets set('abc'), {'E','P','F','L'}

Other core types Booleans, types, None

Files open('data.txt'), open(r('/home/alex/abc.bin'),'wb')

Program unit types Functions, modules, classes

Learning by trying it out!

Open your own session with Ipython.

https://ipython.org/

Review: a simple translation system

Note: Python allows the creation of complex expressions.

1 >>> english2spanish = {}
2 >>> type(english2spanish)
3 <class 'dict'>
4 >>> # defining key-value pairs:
5 >>> english2spanish['cat'] = 'gato/a' # here str -> str (but can be mixed)
6 >>> english2spanish['dog'] = 'perro/a'
7 >>> english2spanish['fox'] = 'zorro'
8 >>> print(english2spanish) # let's look at our dictionary:
9 {'cat': 'gato/a', 'dog': 'perro/a', 'fox': 'zorro'}
10 # Using our translation system:
11 >>> animal = 'fox'
12 >>> print("What is "+animal+" in Spanish?", english2spanish[animal],'!')
13 What is fox in Spanish? zorro! # great, but bad spelling! Easy to fix....
14 >>> print("What is "+animal+" in Spanish?", '¡'+english2spanish[animal].capitalize()+'!')
15 What is fox in Spanish? ¡Zorro! # fixed

A second dictionary example: store inventory

Note: a+=1 is shorthand for a=a+1

1 # defining a dictionary (in one expression):
2 >>> inventory = {'apples': 458, 'oranges': 196, 'pears': 644, 'peaches': 409}
3 >>> print(inventory['apples']) # Looking up number of apples
4 458
5 >>> inventory['oranges']-=22 # 22 oranges were sold
6 >>> inventory['peaches']+=100 # 100 peaches were delivered
7 >>> print(inventory)
8 {'apples': 458, 'oranges': 174, 'pears': 644, 'peaches': 509}
9 >>> inventory['melons']
10 Traceback (most recent call last):
11 File "", line 1, in <module>
12 KeyError: 'melons'
13 >>> inventory.get('melons', 0) # look up with default value, does not give an err.
14 0
15 >>> inventory.get('oranges', 0) # get returns the correct number, when present!
16 174
17 >>> del inventory['oranges'] # Our shop stops having oranges...
18 >>> print(inventory)
19 {'apples': 458, 'pears': 644, 'peaches': 509}

` ` ` `

Quiz

What is the value and type of statement1 and statement2 ?

1 inventory = {'skis': 15, 'ski boards': 35} # defining a dictionary
2 statement1 = 'skis' in inventory
3 statement2 = 'boots' in inventory

` ` ` `

Quiz: performing tests

The statements statement1 and statement2 evaluate to booleans.

You can use them as tests (for and within your code).

Question: Are 'skis' in our inventory?

1 inventory = {'skis': 15, 'ski boards': 35} # defining a dictionary
2 statement1 = 'skis' in inventory
3 statement2 = 'boots' in inventory

` ` ` `

Performing tests: comparison operators
Consider x, y variables names (int, float, strings, lists, …)

Comparisons output boolean variables, e.g.:

What happens when you compare strings? … lexicographic order! I.e. string1 < string2 iff string1_j
< string2_j for all j . Shorter words are padded with blanks, which is considered smaller than every
element in string1

1 x > y
2 x >= y # larger or equal to
3 x < y
4 x <= y # less or equal to
5 x == y # equals
6 x != y # not equal to

` ` `

` ` `

` `

Combining tests: Logic operators on
booleans
A B not A A and B A or B
True True False True True
True False False False True
False True True False True
False False True False False

Control flow: branching with if statements
An example program:

1 if x>0:
2 print("positive") # Note: colon & indentation!
3 elif x<0: # else if
4 print("negative")
5 else: # alternative case
6 print("zero") # good practice 4 spaces / use tab!

1 if a>0 and isinstance(a,int): # Example for `and` as well as type checking!
2 print("a is a natural number")

Questions?

Quiz: What will this program print?
1 if not False:
2 print('EPFL')
3 else:
4 print('ETHZ')

Quiz: What will this program print?

The expression not False is True , so 'EPFL'!

1 if not False:
2 print('EPFL')
3 else:
4 print('ETHZ')

` ` ` `

If variants
1 if <condition>: # else is not required!
2 <expression>
3 <expression>
4 ...

1 if <condition>:
2 <expression>
3 <expression>
4 ...
5 else:
6 <expression>
7 <expression>
8 ...

1 if <condition>:
2 <expression>
3 <expression>
4 ...
5 elif <condition>:
6 <expression>
7 <expression>
8 ...
9 elif ...: # as many else if as you want!
10 <expression>
11 <expression>
12 ...
13 else:
14 <expression>
15 <expression>
16 ...

Control flow: while statements
1 while <condition>: # while condition is true, carry out indented expr.; then expr._post
2 <expression>
3 <expression>
4 ...
5
6 <expression_post>

Additional control: break statements
immediately exits the current loop

thus, skips remaining expressions in this loop

1 while <condition>:
2 <expression>
3 if <condition>:
4 break # exits while loop!
5 <expression>
6 ...
7
8 <expression_post>

Examples

A more compact way of writing this is:

Here

range(start,stop,step) creates a list of numbers from start to stop incremented with step.

By default, range(12) , has start=0 and step=1 .

1 i=0
2 while i<12:
3 print(i)
4 i+=1 # note: `i+=1` is python shorthand for `i=i+1`

1 for n in range(12):
2 print(n)

` `

` ` ` ` ` `

Remember: you can ask for help locally
Of course you can also go to the online help, but you don’t need to.

1 >>> help(range) # help in Python console
2 Help on class range in module builtins:
3 class range(object)
4 | range(stop) -> range object
5 | range(start, stop[, step]) -> range object
6 |
7 | Return an object that produces a sequence of integers from start (inclusive)
8 | to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1.
9 | start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.
10 | These are exactly the valid indices for a list of 4 elements.
11 | When step is given, it specifies the increment (or decrement).
12 ... (output truncated)

1 In [1]: range? # help in ipython/Jupyter
2 Init signature: range(self, /, *args, **kwargs)
3 Docstring:
4 range(stop) -> range object
5 range(start, stop[, step]) -> range object
6
7 ... (output truncated)

Quiz: What is the value of counter at the end?
1 counter=0
2 for i in range(3,51,5):
3 counter+=1
4 if counter==5:
5 counter+=1
6 break
7 counter+=1
8
9 print(counter)

Quiz: What is the value of counter at the end?
1 counter=0
2 for i in range(3,51,5):
3 counter+=1
4 if counter==5: # enters loop with counter=5
5 counter+=1
6 break # exit for loop here, thus counter = 6
7 counter+=1
8
9 print(counter)

Quiz II: What is the value of counter at the end?
1
2 counter=0
3 while counter<8:
4 counter+=1
5 while counter<11:
6 print("hello!")
7 break
8
9 print(counter)
10

Quiz II: What is the value of counter at the end?

Simply 8, no tricks here. The first while loop’s termination is hit then.

Bonus: How often is "hello" printed?

1
2 counter=0
3 while counter<8: # We exit at counter = 8
4 counter+=1
5 while counter<11:
6 print("hello!")
7 break # This break only exits the *inner loop*
8
9
10 print(counter)
11

for loops
control the number of iterations

can end early with break

uses a counter

each for loop can be written as a while loop!

while loops
unbounded number of iterations (e.g. while

true:)

can end early with break

can use counter, which needs to be initialized and

incremented in the loop

not every while loop can we written as a for

loop

` `

` ` ` `

`

`

` `

` ` ` `

You can loop over sequential objects
i.e, strings, lists, …

1 >>> for letter in 'EPFL':
2 print(letter)
3 E
4 P
5 F
6 L

1 >>> for element in [22,'99af']: # can loop over mixed types
2 print(element)
3 22
4 '99af'

1 >>> squares = []
2 >>> for x in [1,2,3,4,5]:
3 squares.append(x**2) # appending new elements to the list!
4 >>> print(squares)
5 [1, 4, 9, 16, 25]

Back to the Swiss language greetings…
1 swiss_greetings = ['Bonjour', "Grüzi", 'Ciao', 'Allegra']
2 name = 'Seppl'
3 for greeting in swiss_greetings:
4 if greeting == 'Bonjour':
5 print(greeting, name,'!!!') # spaces will be added between each string
6 else:
7 print(greeting +" "+ name+'!!!') # manually add spaces as needed, full control!
8
9
10 Bonjour Seppl !!!
11 Grüzi Seppl!!!
12 Ciao Seppl!!!
13 Allegra Seppl!!!

Questions?

Tuples
ordered sequences of objects that cannot be changed (immutable)

Why tuples? Their immutability is the point; they are used for control…

1 >>> T = (0,1,2,3) # a 4-item tuple
2 >>> len(T)
3 4
4 >>> T + (5,6) # concatenation
5 (0,1,2,3,5,6)
6 >>> T[0] # slicing
7 0
8 >>> T[0]=3
9 ... error ...
10 TypeError: 'tuple' object does not support item assignment

1 >>> x, y = 3, 4 # here we define two variables in one line
2 >>> print(x,y)
3 (3,4)
4 >>> (x,y) = (y,x) # convenient way to swap values!
5 >>> print(x,y)
6 (4,3)

Sets
unordered collection of unique and immutable objects

Example definitions and operations:

1 >>> x = set('abcde')
2 >>> y = set('bdxyz')
3 >>> print(x)
4 {'c', 'e', 'd', 'a', 'b'}
5 >>> x - y # difference set
6 {'a', 'c', 'e'}
7 >>> x | y # union
8 {'a', 'b', 'c', 'd', 'e', 'x', 'y', 'z'}
9 >>> 'a' in x # membership in sets
10 True

Questions?

NumPy: Python’s foundation of scientific computing

provides multidimensional array objects (e.g. matrix of shape (M x N), but also vectors of shape (N) and

tensors of shape (M_1 x M_2 x M_3 … x M_N))

with various derived objects and powerful mathematical functions

numerical problems can often be described with high-level code (vectorized formulas), thus enabling

scientific code that is both easy to maintain and read

vectorization also fuels speed gains (see later classes)

Importing and checking the version:

NumPy is a fundamental package that

1 In [1]: import numpy as np # NumPy is imported like this.
2
3 In [2]: np.__version__ # checking the version of NumPy
4 Out[2]: '1.20.1' # [version](https://pypi.org/project/numpy/) in my machine

https://numpy.org/doc/stable/user/whatisnumpy.html

NumPy arrays: the ndarray object
NumPy arrays have a fixed size at creation, unlike Python lists (which can grow dynamically).

changing the size of an ndarray will create a new array and delete the original.

arrays can have any dimensionality

arrays contain numbers of the same type (e.g. floats, complex numbers, booleans)

arrays are sequential objects and can be indexed by the [] operator` `

A first example
1 # Generate the integers from zero to eight and # re-arrange them into a 3 x 3 array
2 In [1]: x = np.arange(9).reshape((3, 3))
3 In [2]: x
4 Out[2]:
5 array([[0, 1, 2],
6 [3, 4, 5],
7 [6, 7, 8]])
8 In [3]: type(x)
9 Out[3]: numpy.ndarray
10 In [4]: x.dtype?
11 Type: dtype[int64]
12 String form: int64
13 Length: 0
14 File: ~/opt/anaconda3/lib/python3.8/site-packages/numpy/__init__.py
15 Docstring: <no docstring>
16

Shapes of arrays
1 In [1]: x = np.arange(9)
2 In [2]: x
3 Out[2]: array([0, 1, 2, 3, 4, 5, 6, 7, 8])
4 In [3]: np.shape(x)
5 Out[3]: (9,)
6 In [4]: E = np.eye(3)
7 In [5]: E
8 Out [5]:
9 array([[1., 0., 0.],
10 [0., 1., 0.],
11 [0., 0., 1.]])
12 In [6]: np.shape(E)
13 Out [6]: (3,3)
14 In [7]: nix=np.zeros((4,3,2)) # define an array of zeros, also np.ones, etc.
15 In [8]: np.shape(nix)
16 Out [8]: (4,3,2) # next page for looking at this ...

A (visually big) array
1 In [7]: nix=np.zeros((4,3,2))
2 In [8]: np.shape(nix)
3 Out [8]: (4,3,2)
4 In [8]: nix # let's look at the [[...]]
5 Out [8]:
6 array([[[0., 0.],
7 [0., 0.],
8 [0., 0.]],
9
10 [[0., 0.],
11 [0., 0.],
12 [0., 0.]],
13
14 [[0., 0.],
15 [0., 0.],
16 [0., 0.]],
17
18 [[0., 0.],
19 [0., 0.],
20 [0., 0.]]])

1 # Let's illustrate standard slicing: `start:stop:step`
2 In [1]: x = np.arange(9).reshape((3, 3))
3 In [2]: x
4 Out[2]:
5 array([[0, 1, 2],
6 [3, 4, 5],
7 [6, 7, 8]])
8 In [3]: x[:2, :] # first two rows of x
9 Out[3]:
10 array([[0, 1, 2],
11 [3, 4, 5]])
12 In [4]: x[:,1:] # columns 1 to the end
13 Out [4]:
14 array([[1, 2],
15 [4, 5],
16 [7, 8]])
17 In [5]: x[::2,::-1] # every second row and reverse the columns!
18 Out[5]:
19 array([[2, 1, 0], # reversing as step = -1
20 [8, 7, 6]])
21 In [11]: x # Note, x is unchanged -- we just used views, but ...
22 Out[11]:
23 array([[0, 1, 2],
24 [3, 4, 5],
25 [6, 7, 8]])

Views of memory - shallow copy

Here, y is a called a view of x (or a shallow copy).

Note: I’m not displaying "Out [x]: for space reasons here"

1 In [1]: import numpy as np
2 ...: x = np.arange(9).reshape((3, 3))
3 ...: y = x[::2,::-1] # creating a view of the memory
4 ...: print(x)
5 [[0 1 2]
6 [3 4 5]
7 [6 7 8]]
8 In [2]: print(y)
9 [[2 1 0]
10 [8 7 6]]
11 In [3]: y[0,2]=33
12 In [4]: print(y)
13 [[2 1 33] # obviously y is changed...
14 [8 7 6]]
15 In [5]: print(x)
16 [[33 1 2] # NOTICE: x is changed. x and y point to the same memory.
17 [3 4 5] # You can avoid this behavior, by creating a copy during
18 [6 7 8]] # assignment: `y=x[::2,::-1].copy()` (then y is a new obj.)

Vectorized operations in NumPy
are implemented in C. Always try to use vectorization.

1 In [1]: import numpy as np
2 In [2]: x,y=np.arange(10),np.ones(10)
3 In [3]: x*y
4 Out[3]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
5 In [4]: x+y
6 Out[4]: array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
7 In [5]: x-y
8 Out[5]: array([-1., 0., 1., 2., 3., 4., 5., 6., 7., 8.])
9 In [6]: x**y
10 Out[6]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
11 In [7]: y/x
12 <ipython-input-7-d2d3fa2acc3f>:1: RuntimeWarning: divide by zero encountered in true_divi
13 y/x
14 Out[7]:
15 array([inf, 1. , 0.5 , 0.33333333, 0.25 ,
16 0.2 , 0.16666667, 0.14285714, 0.125 , 0.11111111])

Vectorization for mismatched arrays?

Source: astroml.org

When the shapes are different, but share a common shape dimension, operations are broadcasted!

http://www.astroml.org/book_figures/appendix/fig_broadcast_visual.html

Vectorization of mismatched arrays?

To save memory, broadcasted arrays are never physically constructed!

Click here to learn about the broadcasting rules.

1 In [8]: x=np.array([3,18,9.])
2
3 In [9]: m=np.arange(6).reshape((2,3))
4
5 In [10]: m
6 Out[10]:
7 array([[0, 1, 2],
8 [3, 4, 5]])
9
10 In [11]: m+x
11 Out[11]:
12 array([[3., 19., 11.],
13 [6., 22., 14.]])

https://numpy.org/doc/stable/user/basics.broadcasting.html

Quiz: What is output computing here?
1 x = np.arange(0,100,3)
2 y = x**2
3 output = (y[1:]-y[:-1])/(x[1:]-x[:-1])

Quiz: computing finite differences

Subtracting those slices, effectively computes for all :

This vector has length len(x)-1 .

There is also a built-in function, np.diff for taking discrete differences.

1 x = np.arange(0,100,3)
2 y = x**2
3 dy_over_dx = (y[1:]-y[:-1])/(x[1:]-x[:-1])

i

​ =
Δx ​i

Δy ​i
​

x(i + 1) − x(i)
y(i + 1) − y(i)

` `

https://numpy.org/doc/stable/reference/generated/numpy.diff.html

Common type-specific operations…
There are tons, check out NumPy’s API reference

1 In [1]: X=np.linspace(0,2*np.pi,10) # create ar. /w 10 linearly sep. pts in [0,2pi]
2 array([0. , 0.6981317 , 1.3962634 , 2.0943951 , 2.7925268 ,
3 3.4906585 , 4.1887902 , 4.88692191, 5.58505361, 6.28318531])
4
5 In [2]: Y=np.sin(X) # calculate sine, vectorized of course
6 array([0.00000000e+00, 6.42787610e-01, 9.84807753e-01, 8.66025404e-01,
7 3.42020143e-01, -3.42020143e-01, -8.66025404e-01, -9.84807753e-01,
8 -6.42787610e-01, -2.44929360e-16])
9
10 In [3]: Y>0 # where is this array >0? Vectorized
11 Out[3]:
12 array([False, True, True, True, True, False, False, False, False,
13 False])

https://numpy.org/doc/stable/reference/index.html

Quiz: What is computed here?

What is j?

1 X = np.logspace(-1,2,7)
2 Y = np.log10(X)
3 j = np.argmin(Y)

Quiz: Extracting the location of the minimum

Note X = 10**np.linspace(-1,2,7)

1 >>> X = np.logspace(-1,2,7) # Return numbers spaced evenly on a log scale.
2 array([0.1 , 0.31622777, 1. ,
3 3.16227766, 10. , 31.6227766 , 100.])
4 >>> Y = np.log10(X) # Vectorized logarithm of base 10.
5 array([-1. , -0.5, 0. , 0.5, 1. , 1.5, 2.])
6 >>> j = np.argmin(Y) # Index of the minimum value
7 0

` `

A minimalist linear algebra example
s

1 In [1]: phi = np.pi/3 # 60 degrees
2 In [2]: e1,e2=np.array([1,0]),np.array([0,1]) # two basis vectors of R^2
3 In [3]: rot = np.array([[np.cos(phi), -np.sin(phi)],[np.sin(phi), np.cos(phi)]])
4 In [4]: print(rot)
5 Out [4]:
6 [[0.5 -0.8660254]
7 [0.8660254 0.5]]
8 In [5]: print(np.matmul(rot,e1)) # matrix multiplication
9 Out [6]:
10 [0.5 0.8660254] # vector rotated to (cos(phi), sin(phi)
11

A minimalist linear algebra example

np.dot and np.matmul behave the same for matrices, but not 3D (and larger) arrays, check here, for more
details.

For more Linear Algebra, check out np.linalg and scipy.linalg for the matrix inverse, Moore-Penrose pseudo-
inverse, decompositions (LU, SVD, QR,…), eigenvalues, matrix equation solvers, tensor multiplication…

1 In [1]: phi = np.pi/3 # 60 degrees
2 In [2]: e1,e2=np.array([1,0]),np.array([0,1]) # two basis vectors of R^2
3 In [3]: rot = np.array([[np.cos(phi), -np.sin(phi)],[np.sin(phi), np.cos(phi)]])
4 In [4]: print(rot)
5 Out [4]:
6 [[0.5 -0.8660254]
7 [0.8660254 0.5]]
8 In [5]: print(np.matmul(rot,e1)) # matrix multiplication
9 Out [6]:
10 [0.5 0.8660254] # vector rotated to (cos(phi), sin(phi)

https://stackoverflow.com/questions/34142485/difference-between-numpy-dot-and-python-3-5-matrix-multiplication
https://numpy.org/doc/stable/reference/routines.linalg.html
https://docs.scipy.org/doc/scipy/reference/reference/linalg.html#module-scipy.linalg

A minimalist stats example

Other stats functions: np.std , np.quantile , np.nanmax , np.median , np.corrcoef , …

1 In [1]: data = np.array([[1231,np.nan],[23.123, 0],[0,1]]) # Notice: missing data
2 In [2]: np.mean(data) # the mean is also nan!
3 nan
4 In [3]: np.nanmean(data) # nanmean omits nans
5 Out[3]: 251.02460000000002
6 In [4]: np.nanmean(data,axis=0) # mean along a specific axis
7 Out[4]: array([418.041, 0.5])
8
9 In [5]: np.nanmean(data,axis=1)
10 Out[5]: array([1.23100e+03, 1.15615e+01, 5.00000e-01])

` ` ` ` ` ` ` ` ` `

https://numpy.org/doc/stable/reference/routines.statistics.html

Creating pseudo random numbers in Numpy

See np.random for more options!

1 In [1]: import numpy as np
2 In [2]: x = np.random.randint(10) # Generate a random integer from 0 to 10 (uniform)
3 In [3]: x
4 Out[3]: 5
5
6 In [4]: np.random.rand() # Generate a random float from 0 to 1 (uniform)
7 Out[4]: 0.4150299187382156
8 In [5]: np.random.rand(2,2) # Gen. random floats in array of 2 rows & 2 col.
9 Out[5]:
10 array([[0.26249554, 0.21950032],
11 [0.81072637, 0.01962725]])
12 In [6]: np.random.randn() # Generate samples from standard normal
13 Out[6]: 1.8382156073224407
14 In [6]: 3 + 2*np.random.randn() # Gen. normal distr. sample with mean 3 and std 2
15 Out[6]: 4.067920463989419

https://numpy.org/doc/stable/reference/random/index.html

Questions?

Today’s summary

built-in objects: set , tuple ,

routing mechanisms: if , while , for

introduction to NumPy

Logistics:

create a personal GitHub account.

find two teammates and sign up here. You will need your GitHub names. You also need to use your EPFL

login for access to this data sheet!

Please sign up by the end of the week (we will also announce this via Moodle).

Try out the commands in the python shell/notebooks! Practice is key.

We learned about:

` ` ` `

` ` ` ` ` `

https://github.com/join
https://docs.google.com/spreadsheets/d/1jH0JLXPbivfm_COMBw22dFm8wnCp88_8f0Mo3sfMLDM/edit?gid=0#gid=0

After lunch:
Monday 13 - 15: exercises (5 groups)

CO4 ← A-B + Y + Z (TA: Albert Dominguez Mantes)

CO5 ← C-F+V (TAs: Hale-Seda Radoykova, Shaokai Ye)

CO260 ← G-L+W (TA: Oliver Ulrich)

CO6 ← M-P (TA: Haoze Qi)

CO023 ← Q - U (TA: Andy Bonnetto)

Monday 15:15 - 16: my office hours at SV 2811

