
Welcome to BIO-210
Applied software engineering for life sciences

September 9th 2024 – Lecture 1

Prof. Alexander MATHIS

EPFL

Today’s content
Course overview

Introduction to Python

Who am I, and what do I do with Python?
Assistant Professor at EPFL since 8/2020

In my lab we carry out computational

neuroscience and machine learning research

We mostly use Python --> check out our

research code

We develop open-source software, e.g.:

DeepLabCut, DLC2action, AmadeusGPT, …

NOTE: underlined terms indicate hyperlinks!

DeepLabCut
@DeepLabCut · Follow

#ma@DeepLabCut is out in
@NatureMethods!
We bring you an end-to-end high
performance solution to multi-animal
tracking.
1 line install 𝚙𝚒𝚙 𝚒𝚗𝚜𝚝𝚊𝚕𝚕

'𝚍𝚎𝚎𝚙𝚕𝚊𝚋𝚌𝚞𝚝[𝚐𝚞𝚒]'
use a full GUI, or only 7 lines of code...

nature.com/articles/s4159…

The media could not be played.

Reload

5:42 PM · Apr 12, 2022

411 Reply Copy link

Read 4 replies

https://www.mathislab.org/
https://github.com/amathislab
https://github.com/DeepLabCut/DeepLabCut
https://twitter.com/DeepLabCut?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1513905504434671623%7Ctwgr%5Ece9f910b4c012b6771d37f2ff9b0060c666f3b91%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F3%3Fprint%3Dclicks
https://twitter.com/DeepLabCut?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1513905504434671623%7Ctwgr%5Ece9f910b4c012b6771d37f2ff9b0060c666f3b91%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F3%3Fprint%3Dclicks
https://twitter.com/DeepLabCut?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1513905504434671623%7Ctwgr%5Ece9f910b4c012b6771d37f2ff9b0060c666f3b91%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F3%3Fprint%3Dclicks
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1513905504434671623%7Ctwgr%5Ece9f910b4c012b6771d37f2ff9b0060c666f3b91%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F3%3Fprint%3Dclicks&screen_name=DeepLabCut
https://twitter.com/DeepLabCut/status/1513905504434671623?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1513905504434671623%7Ctwgr%5Ece9f910b4c012b6771d37f2ff9b0060c666f3b91%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F3%3Fprint%3Dclicks
https://twitter.com/hashtag/ma?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1513905504434671623%7Ctwgr%5Ece9f910b4c012b6771d37f2ff9b0060c666f3b91%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F3%3Fprint%3Dclicks&src=hashtag_click
https://twitter.com/DeepLabCut?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1513905504434671623%7Ctwgr%5Ece9f910b4c012b6771d37f2ff9b0060c666f3b91%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F3%3Fprint%3Dclicks
https://twitter.com/naturemethods?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1513905504434671623%7Ctwgr%5Ece9f910b4c012b6771d37f2ff9b0060c666f3b91%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F3%3Fprint%3Dclicks
https://t.co/iuCxSCcJRJ
https://twitter.com/DeepLabCut/status/1513905504434671623?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1513905504434671623%7Ctwgr%5Ece9f910b4c012b6771d37f2ff9b0060c666f3b91%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F3%3Fprint%3Dclicks
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1513905504434671623%7Ctwgr%5Ece9f910b4c012b6771d37f2ff9b0060c666f3b91%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F3%3Fprint%3Dclicks&tweet_id=1513905504434671623
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1513905504434671623%7Ctwgr%5Ece9f910b4c012b6771d37f2ff9b0060c666f3b91%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F3%3Fprint%3Dclicks&in_reply_to=1513905504434671623
https://twitter.com/DeepLabCut/status/1513905504434671623?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1513905504434671623%7Ctwgr%5Ece9f910b4c012b6771d37f2ff9b0060c666f3b91%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A12445%2F3%3Fprint%3Dclicks

Course content

Software engineering content:

Python (object types, statements, functions, packages, object oriented programming)

Distributed version control via git

Debugging, profiling, refactoring

Unit and functional testing

Project and code documentation

Those topics will be covered in a learning-by doing fashion, while you expand your project. Different
versions need to be released according to a schedule (see next page). Code updates should be version
controlled (git).

Life science engineering content:

Models from developmental biology and neuroscience

This is a project-based learning course. You will develop a software project in teams of three students.

Class schedule
Date Topic Software version Software releases Grading / Feedback

0 09/09/2024 Python introduction I

1 16/09/2024 Public holiday

2 23/09/2024 Python introduction II

3 30/09/2024 Git and GitHub (+installation VS Code)

4 07/10/2024 Project introduction v1

5 14/10/2024 Functionify v2 v1

6 21/10/2024 EPFL fall break

7 28/10/2024 Visualization and documentation v3 v2 code review (API)

8 04/11/2024 Unit-tests, functional tests v4 v3

9 11/11/2024 Code refactoring v5 v4 graded (tests)

10 18/11/2024 Profiling and code optimization v6 v5 code review

11 25/11/2024 Object oriented programming v7 v6 graded (speed)

12 02/12/2024 Model analysis and project report v8 v7 code review (OO)

13 09/12/2024 Work on project

d d

Our teaching team

Teaching assistants: Mu Zhou, Albert Dominguez Mantes, Seda Radoykova, Shaokai Ye, Haozhe Qi, Oliver

Ulrich, Andy Bonnetto

Student assistants: Huyen Nguyen, Jennifer Shan, Jeremy Barghorn, Leo Ganser, Leonardo Tredici, Louise

Montlahuc, Lucie Manson, Maylis Muller, Pires Joana, Benjamin Gabriel Mancini, Eva Quinto, Ismael

Salioski, Wesley Monteith, Viva Berlenghi, Henryk Viana, Timothe Dufour

Contacting me:

Email: alexander.mathis@epfl.ch

Office hours at SV 2811, Monday 15:15 - 16

Exercises:

mailto:alexander.mathis@epfl.ch

Logistics
Monday 10 - 12: lecture in CE12

Monday 13 - 15: exercises (5 groups)

CO4 ← A-B + Y + Z

CO5 ← C-F+V

CO260 ← G-L+W

CO6 ← M-P

CO023 ← Q - U

Monday 15:15 - 16: my office hours at SV 2811

Online:

Moodle – announcements, quizzes, and slides (posted before class)

Ed – forum for questions

GitHub – we share code there

https://moodle.epfl.ch/course/view.php?id=16732
https://edstem.org/eu/courses/722/discussion/
https://github.com/EPFL-BIO-210

Assessment

40% individual assessments (via Moodle)

several quizzes (see next slide)

35% evaluation of the group project (tests, profiling and project report)

graded versions v4, v6 and v8

25% individual contributions to the group project (participation and individual contributions to code)

we check code contributions on GitHub

participation assessed in exercise sessions

See Fiche de cours.

Final grade comprises three independent scores:

https://edu.epfl.ch/coursebook/en/applied-software-engineering-for-life-sciences-BIO-210

Quizzes
Week 3 - 7.5% of the grade (online available for 1 work week).

Week 5 - 12.5% of the grade. This will be in person for 20 min at the beginning of the exercises.

Week 7 - 12.5% of the grade. This will be in person for 20 min at the beginning of the exercises.

Week 9 - 12.5% of the grade. This will be in person for 20 min at the beginning of the exercises.

Week 11 - 7.5% of the grade (online available for 1 work week).

Note for the in-person quizzes, your score will be based on the best two.

Questions?

What is Python?
a general-purpose programming language

Why Python?

software quality: highly readable code

hence reusable and maintainable

developer productivity: code is shorter (about 1/5 of C++/Java), and runs immediately

large support libraries (large standard library, Numpy, etc.)

dynamic typing (no declarations)

automatic memory management

it’s free and open source

Cons:

speed, but … numpy, TensorFlow, PyTorch, cython…

Pros:

Why Python?
simple programming structure

flexible and easy to learn

vibrant community python.org, stackoverflow

many available packages, e.g. via Python Package Index (PyPI), Conda (an open source package

management system)

excellent Application Programming Interface (APIs) to the open-source machine learning libraries

TensorFlow, PyTorch, etc.

great to learn as a second language (after you learned C++)

https://www.python.org/community/
https://stackoverflow.com/questions/tagged/python
https://pypi.org/
https://docs.conda.io/en/latest/
https://www.tensorflow.org/api_docs
https://pytorch.org/

C++ code Python code

Notes:

shorter code

no line determination ";"

no header files

no return value needed

#include <iostream>
int main() {

 std::cout << "Hello, World!";

 return 0;

}

print('Hello, world!')

Quiz: What does this code do?
#include <iostream>

int main() {
 int number;

 std::cout << "Enter an integer: ";
 std::cin >> number;

 if (number > 0) {
 std::cout << "You entered a positive integer: " << number << std::endl;
 }
 else {
 int number2 = 3;
 }
 std::cout << "Program ended.";
 return 0;
}

C++ code Python code

Notice:

lack of {,}

indenting in if / else

Comments with #

#include <iostream>

int main() {
 int number; // declare variable /w type

 std::cout << "Enter an integer: ";
 std::cin >> number;

 if (number > 0) {
 // Print number if it is positive.
 // Also notice allowed line breaks
 std::cout << "You entered"
 "a positive integer: "
 << number << std::endl;
 }
 else {
 // Let's just assign a new number
 int number2 = 3;
 }
 std::cout << "Program ended.";
 return 0;
}

number = int(input('Enter an integer: '))

if number> 0:
 # Print number if it is positive.
 # Also notice allowed line breaks
 print("You entered a \
 positive integer ", number)
else:
 # Let's just assign a new number
 number2=3 # type not defined

print("Program ended.")

` ` ` `

` `

Who uses Python?
Google

Dropbox

Spotify

Facebook/Meta

…

scientific research

many labs at EPFL (mine included)

case study: first image of a black hole!

Google decided:

“Python where we can, C++ where we must.”

Sources

Image Credits: Event Horizon Telescope Collaboration

https://numpy.org/case-studies/blackhole-image
https://realpython.com/world-class-companies-using-python/

What can you do with Python?

scientific computing (many powerful libraries exist: scipy, numpy, scikit-learn,…)

AI, machine learning, computer vision, NLP, … (Libraries: TensorFlow, PyTorch, HuggingFace, JAX, …)

data visualization (e.g., Matplotlib, Bokeh, etc.)

graphical user interfaces (GUI) (e.g. overview, wxPython)

web frameworks and cloud stacks

rapid prototyping

microcontroller development

data analytics and distributed processing

system-level glue code

…

Pretty much anything…

https://scipy.org/
https://numpy.org/
https://scikit-learn.org/stable/
https://www.tensorflow.org/api_docs
https://pytorch.org/
https://huggingface.co/
https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
https://matplotlib.org/
http://docs.bokeh.org/en/latest/#
https://towardsdatascience.com/top-10-python-gui-frameworks-for-developers-adca32fbe6fc
https://www.wxpython.org/

Python is an interpreted language
InterpreterPython Code *.py Code Execution

More precisely CPython, the reference implementation of the Python language, is a bytecode interpreter.
When executing a script (*.py file), a compilation step generates bytecode (a *.pyc file/s), that is then
interpreted and executed by a virtual machine.

Compiler Python Virtual MachinePython Code *.py Bytecode *.pyc Code Execution

In contrast, for C++:

Compiler LinkerC++ source file *.cpp Object file Executable -Machine Code

https://github.com/python/cpython

Quick demo …
showing the interactive Python console

showing a Jupyter notebook

in today’s exercises, you’ll use EPFL’s internal Jupyter Hub --> https://noto.epfl.ch/

https://docs.python.org/3/tutorial/interpreter.html
https://jupyter.org/
https://noto.epfl.ch/

Learning by trying it out

Ipython

https://ipython.org/

Questions?

Python’s conceptual hierarchy
1. Programs are composed of modules

2. Modules contain statements

3. Statements contain expressions

4. Expressions create and process objects

Today we will focus on the lowest level (expressions and certain built-in objects)

Python’s core built-in objects

Object type: Examples:

Numbers 123, 3.14, math.pi, …

Strings 'abc', 'EPFL', "Geneva", …

Lists [1, [2, 'troi'],4], list(range(99)

Dictionaries {'Apples': 200, 'Pears': 123.5}, dict(hours=10)

Tuples (x,y,z), (1, [2, 'troi'],4)

Sets set('abc'), {'E','P','F','L'}

Other core types Booleans, types, None

Files open('data.txt'), open(r('/home/alex/abc.bin'),'wb')

Program unit types Functions, modules, classes

Numbers and operations
Python’s core objects include integers, floating-point, complex numbers, etc.

>>> 3+12455 # Here and later, ```>>>```, denotes what you type in a Python shell
12458 # here is the output!
back to numbers:
>>> 3+12455 # integer addition
12458
>>> 1.5*4 # floating-point multiplication (note: one integer!)
6.0
>>> 2**99 # 2 to the power of 99; also pow(2,99)
633825300114114700748351602688
>>> 3-2 # subtraction
1
>>> abs(-19.2) # absolute value
19.2
>>> 13 % 3 # Remainder of 13/3
1

Numbers in Python have types

int represents integers, e.g. 2 , 14213555

float represents reals, e.g. pi , 1.0 , 0.000001

complex represents complex numbeers, e.g. real + imaginary

bool represents Boolean values, True and False

type() returns the type of Python objects

` `
Types of numbers:

` ` ` ` ` `

` ` ` ` ` ` ` `

` `

` ` ` ` ` `

` `

>>> type(5) # again, ```>>>```m denotes what you type in a Python shell
int # here is the output!
>>> type(3.0)
float
>>> type(True)
bool
>>> complex(1,1) # define a complex number
(1+1j) # evaluates to this!
>>> complex(0,1)**2	 # remember: sqrt(-1) = j
(-1,0j)
>>> type(complex(1,1))
complex

Type conversion (casting)

For instance,

Allows converting the type of one object to another.

>>> float(5) # converts integer to float
5.0
>>> int(4.9) # rounds float to integer!
4

The type can also change during a computation
>>> 12/3 # division --> note the type changes from int to float
4.
>>> 12//3 # floored quotient (division)
4
>>> 1//2
0
>>> -1//2 # floored (rounded towards -infinity)
-1

Simple numerical example

Note: it is good practice to use meaningful names.

Note: radius is an integer, but area will be float (type conversion).

from math import pi # module import, we will cover this later, just importing pi
radius = 3	 	 	 	 # names and assignment statement

area = pi * radius**2 # calculating the area of a circle.
circumference = 2*pi*radius

Brief interlude on variable names and keywords

must begin with a letter

are arbitrarily long sequences of letters ('a'…'z', 'A', …,'Z'), underscore ('_') and digits that are not keywords.

For instance, those don’t work:

Other keywords: else , elif , class , … (we’ll learn more about them later)

Valid variable names:

>>> 1969EPFL = "founding date school name"
SyntaxError: invalid syntax
>>> 10k$ = 10000
SyntaxError: invalid syntax
>>> if = 1000 # this is a keyword
SyntaxError: invalid syntax

` ` ` ` ` `

Quiz: What happens here?
>>> from math import e, pi
>>> e**(pi*complex(0,1))+complex(1,0)
1.2246467991473532e-16j

Quiz

This is Euler’s identity:

Why is it not zero?

Check out What every computer scientist should know about floating-point arithmetic by David

Goldberg. But in essence, "Squeezing infinitely many real numbers into a finite number of bits" implies

rounding and computing errors!

Euler’s identity

>>> from math import e, pi
>>> e**(pi*complex(0,1))+complex(1,0)
1.2246467991473532e-16j

e +π∗1j 1 = 0

https://dl.acm.org/doi/10.1145/103162.103163

Questions?

Strings
strings are concatenations of letters, special characters, numbers, and spaces

strings are case sensitive

strings can be defined by enclosing in quotation marks (") or single quotes (').

Examples:

>>> S = 'Geneva' # make a 6-character string and assign it to a name
>>> S = "Lausanne" # make a 8-character string and assign it to a name
>>> S = str(3) # cast integer 3 to string and assign to name
>>> type(S)
str

Sequence operations (on strings)

Note: in Python indices start from 0, the second index is 1, etc. That’s why we also enumerate our classes in
this way.

>>> S = 'Geneva' # make a 6-character string and assign it to a name
>>> S
'Geneva'
>>> len(S) # Length
6
>>> S[0] # The first item in S.
'G'
>>> S[1] # The second item in S
'e'
>>> S[-1] # The last item of S
'a'
>>> S[len(S)-1] # The last item of S, the hard way
'a'
>>> S[-2] # The penultimate item of S
'v'

Sequence operations (on strings)

Note: in Python indices start from 0, the second index is 1, etc. That’s why we also enumerate our classes in
this way.

>>> S = 'Geneva' # make a 6-character string and assign it to a name
>>> S
'Geneva'
>>> len(S) # Length
6
>>> S[0] # The first item in S.
'G'
>>> S[1] # The second item in S
'e'
>>> S[-1] # The last item of S
'a'
>>> S[len(S)-1] # The last item of S, the hard way
'a'
>>> S[-2] # The penultimate item of S
'v'

More sequence operations (on strings)

Note: X[I:J] means everything in X from offset I up to (but excluding) J .

>>> S = 'Geneva' # make a 6-character string and assign it to a name
>>> S[1:] # characters past the first (1:len(S))
'eneva'
>>> S # notice S has not changed!
'Geneva'
>>> S[1:3] # characters from first to third
'en'
>>> S[:-1] # everything but last item
'Genev'
>>> S+', GE' # concatenation
'Geneva, GE'
>>> S*3 # repetition
'GenevaGenevaGeneva'
>>> S # notice, S is unchanged!
'Geneva'

` ` ` ` ` ` ` `

Immutability
strings are immutable in Python (i.e., they cannot change after they have been created)

numbers are also immutable (obviously)

>>> S = 'Geneva'
>>> S[0]=S # immutable objects cannot be changed
... error ...
TypeError: 'str' object does not support item assignment
>>> S = S[:3]+'etics' # but we can re-assign it! (expression to make new object)
>>> print(S)
'Genetics'

Immutability
strings are immutable in Python (i.e., they cannot change after they have been created)

numbers are also immutable (obviously)

>>> S = 'Geneva'
>>> S[0]=S # immutable objects cannot be changed
... error ...
TypeError: 'str' object does not support item assignment
>>> S = S[:3]+'etics' # but we can re-assign it! (expression to make new object)
>>> print(S)
'Genetics'

Swiss greeetings and polymorphism

concatenate strings with '+':

repetition with '*'

greeting1 = 'Bonjour' # definition with single quote
greeting2 = "Grüzi" # definition with quotation mark
greeting3 = 'Ciao'
greeting4 = 'Allegra'

>>> name = 'Seppl'
>>> print(greeting1 + name)
BonjourSeppl

#Better, introduce a space:
>> print(greeting1 +" "+ name) # explicitly control spaces
Bonjour Seppl
>> print(greeting2,name) # print always introduces a space per ','
Grüzi Seppl

>>> print(3*greeting3)
CiaoCiaoCiao

Briefly back to numbers

Note: nested evaluation from left to right (with temporary result along the way)!

>>> 2**99 # 2 to the power of 99
633825300114114700748351602688

>>> len(str(2**100000)) # how many digits in a BIG number?
30103

Quiz
What is the output of?

>>> -5//2

Quiz
What is the output of?

>>> -5//2
-3 # i.e., greatest integer smaller than -2.5

Lists
ordered sequences of objects

accessible by index

have no fixed size and are very flexible

a list is denoted by square brackets []

Three examples:

[0,1,2,3]
[0,'abc'] # lists can have mixed types; here int + str
['EPFL','is','in',['Lausanne','VD']] # they support arbitrary nesting

Sequence operations (on lists)
NOTE: Lists are sequence objects (just like strings and tuples) and thus behave the same.

>>> empty_list=[] #empty list
>>> L = ['EPFL','is',1,['Lausanne','Geneva']]
>>> len(L) # length of L. Here 4, not 5!
4

>>> L[0]
'EPFL'
>>> L[0]*3
'EPFLEPFLEPFL'
>>> L[2]*3
3	 	 	 	 	 	 	 # polymorphism at play!
>>> L[3]
['Lausanne','Geneva']	 	 # evaluates to another list,
>>> L[-1] 		 	 	 # evaluates the last element; L[-2] to second to last, etc.
['Lausanne','Geneva']
>>> L[4] 	 	 	 # L does not have as many objects!
... error ...
IndexError: list index out of range

Lists are mutable
assigning an element, changes the value!

>>> L = ['EPFL','is',1,['Lausanne','Geneva']]
>>> L[0]='MIT'
>>> print(L)
['MIT','is',1,['Lausanne','Geneva']]

Type-specific operations on lists
adding and removing elements from a list (lists are mutable!)

Notes:

like everything in Python, lists are objects. Objects have data!

and objects have methods and functions, e.g. append , pop , …

>>> L = [0,1,2,3]
>>> L.append(4) # now the list is [0,1,2,3,4]
>>> print(L)
[0, 1, 2, 3, 4]
>>> L.pop(1) # remove the 1st element and return value
1
>>> print(L)
[0, 2, 3, 4]

` ` ` `

How to learn about type-specific operations?
Check out the standard library reference

stackoverflow ;)

ask in the Python shell

>>> L = [0,1,2,3]
>>> dir(L) # ommitting some of the options below!
['__add__',...., 'append','clear','copy','count','extend','index','insert','pop',
 'remove','reverse','sort']
>>> help(L.pop) # alternatively in ipython you can call: L.pop?
Help on built-in function pop:

pop(index=-1, /) method of builtins.list instance
 Remove and return item at index (default last).

 Raises IndexError if list is empty or index is out of range.

https://docs.python.org/3/library/
https://stackoverflow.com/questions/11828270/how-do-i-exit-the-vim-editor

Dictionaries
collection of key-value pairs that maps from keys to values.

the keys can be any immutable type, and the values can be any type.

like lists they can also be mixed and nested

a dict is denoted by curly brackets {}

A first example: a simple translation system
>>> english2spanish = {}
>>> type(english2spanish)
<class 'dict'>
>>> english2spanish['cat'] = 'gato/a' # defining key-value pairs
>>> # Here str -> str (but can be mixed)
>>> english2spanish['dog'] = 'perro/a'
>>> english2spanish['fox'] = 'zorro'

Using our translation system:
>>> animal = 'fox'
>>> print("What is "+animal+" in spanish?", english2spanish[animal],', tío/a!')
What is fox in spanish? zorro, tío/a!
>>> # great, but bad spelling! This is easy to fix....
>>> print("What is "+animal+" in spanish?", \
 '¡'+english2spanish[animal].capitalize()+', tío/a!')
What is fox in spanish? ¡Zorro, tío/a!

Today’s summary
we encountered several of the built-in objects: numbers , strings , lists and dictionaries

we learned about immutability

Try out the commands in the Python shell/notebooks! Practice is key.

You will dig more into these topics in the exercises (hint: we saw if/else)

` ` ` ` ` ` ` `

Learning by trying it out

Open your own session with Ipython

https://ipython.org/

Questions?

After lunch:
Monday 13 - 15: exercises (5 groups)

CO4 ← A-B + Y + Z

CO5 ← C-F+V

CO260 ← G-L+W

CO6 ← M-P

CO023 ← Q - U

Monday 15:15 - 16: my office hours at SV 2811 (not today, but email me: alexander.mathis@epfl.ch)

mailto:alexander.mathis@epfl.ch

