
Welcome to BIO-210
Applied software engineering for life sciences

November 25th 2024 – Lecture 11

Prof. Alexander MATHIS

EPFL

Date Topic Software version Software releases Grading / Feedback

0 09/09/2024 Python introduction I

1 16/09/2024 Public holiday

2 23/09/2024 Python introduction II

3 30/09/2024 Git and GitHub (+installation VS Code)

4 07/10/2024 Project introduction v1

5 14/10/2024 Functionify v2 v1

6 21/10/2024 EPFL fall break

7 28/10/2024 Visualization and documentation v3 v2 code review (API)

8 04/11/2024 Unit-tests, functional tests v4 v3

9 11/11/2024 Code refactoring v5 v4 graded (tests)

10 18/11/2024 Profiling and code optimization v6 v5 code review

11 25/11/2024 Object oriented programming v7 v6 graded (speed)

12 02/12/2024 Model analysis and project report v8 v7 code review (OO)

13 09/12/2024 Work on project

14 16/12/2024 Wrap up v8 graded (project)

Announcements
final quiz (please fill it out by Friday 23:59)

profiling v6 was due today 10am

You received a second round of code reviews (for v5):

please check them, and answer

if you already closed them, did you link your updates so it is clear where something was addressed?

if you did not receive a code review, email me!

https://moodle.epfl.ch/mod/quiz/view.php?id=1315859

Object oriented programming

Everything is an object in python
1 In [1]: astring="EPFL"
2 In [2]: astring.lower() # string (instances) come with methods!!
3 Out[2]: 'epfl'
4 In [3]: astring.split('P')
5 Out[3]: ['E', 'FL']
6 In [4]: x=33.0
7 In [5]: x.is_integer() # float instances come with methods!
8 Out[5]: True
9 In [6]: def f(x):
10 ...: ''' custom identity function '''
11 ...: return x
12 ...:
13
14 In [7]: f.__name__ # functions come with attributes!!
15 Out[7]: 'f'
16
17 In [8]: f.__doc__
18 Out[8]: ' custom identity function '

Object oriented programming in Python
Classes allow you to bundle data and functionality together

The class statement creates a class object and assigns it a name. Just like the function def
statement, the Python class statement is an executable statement.

When reached and run, it generates a new class object and assigns it to the name in the class header.
Also, like def s, class statements typically run when the files they are coded in are first imported.

Classes are essentially factories for generating one or more objects. Every time we call a class, we
generate a new object (instance) with a distinct namespace – you cannot do this with modules

Each object generated from a class has access to the class’ attributes and methods as well as gets a
namespace of its own for data that varies per object.

` ` ` `

` `

https://docs.python.org/3/tutorial/classes.html

A first example
1 >>> class FirstClass: # Define a class object
2 def setdata(self, value): # Define class' methods
3 self.data = value # self is the instance
4 def display(self): # Define another method of this class
5 print(self.data) # self.data: per instance
6
7 # Creating instances (by calling the class, notice `()`)
8 >>> x = FirstClass() # Make one instance
9 >>> y = FirstClass() # Make another instance, -- each has a new namespace
10 >>> x.setdata("EPFL") # runs FirstClass.setdata(x,"EPFL")
11 >>> y.setdata(0.0001) # Calling methods, self is y
12 >>> x.display() # self.data differs in each instance
13 EPFL
14 >>> y.display() # Calling FirstClass.display(y)
15 0.0001
16 >>> x.data = "MIT" # Can also overwrite attributes
17 >>> x.display()
18 MIT
19 # NOTE: Classes usually create all of the instance’s attributes
20 # by assignment to the self argument, but they don’t have to
21 >>> x.someotherattribute = 1972 # you can even set new attributes
22 >>> x.someotherattribute
23 1972

What is self ?
self is the name commonly given to the first (leftmost) argument in a class’s method function.

Python automatically fills it in with the instance object that is the implied subject of the method call.

` `

1 >>> FirstClass.setdata(y,0.0001) # lenghty version of y.setdata(0.0001)
2 >>> FirstClass.display(y) # lengthy version of y.display()
3 0.0001

How can you look up available attributes and
methods?
1 In [1]: x.__dir__()
2 Out[1]:
3 ['data',
4 'someotherattribute',
5 '__module__',
6 'setdata',
7 'display',
8 '__dict__',
9 '__weakref__',
10 '__doc__',
11 '__repr__',
12 '__hash__',
13 '__str__',
14 '__getattribute__',
15 '__setattr__',
16 '__delattr__',
17 '__lt__',
18 '__le__',
19 '__eq__',
20 '__ne__', # and the list goes on...
21 '__gt__',
22 ' ge ',

Initalizing instances from classes

However, Python automatically calls a method named __init__ each time an instance is generated from a
class. This constructor can thus be used.

As currently coded, our class FirstClass does not attach an attribute to an instance until the setdata
method is called.

` ` ` `

1 >>> a=FirstClass()
2 >>> a.data
3 ---
4 AttributeError Traceback (most recent call last)
5 <ipython-input-171-9b9edf4dc236> in <module>
6 ----> 1 a.data
7
8 AttributeError: 'FirstClass' object has no attribute 'data'
9
10 >> a.setdata('abc')
11 >>> a.data
12 'abc'

` `

A second example
1 >>> class Complex:
2 """ Our complex number class """ # you can (and should) put docstrings!
3 def __init__(self,real,imaginary = 0): # Set re and im attr. when constructed
4 self.real = real
5 self.imaginary = imaginary # Notice default initialization!
6
7 >>> z = Complex(0,1) # Define an instance with values (0,1)!
8 >>> z.real # Accessing attributs ()
9 0
10 >>> z.imaginary
11 1
12 # In contrast this is not implemented for FirstClass
13 >>> FirstClass(0)
14
15 TypeError: FirstClass() takes no arguments
16 >>> z2=Complex(1) # Define another instance, with default img.
17 >>> z2.real,z2.imaginary # Notice default value!
18 (1, 0)

Quiz: Consider the following code

What is this feature of + called?

1 >>> 3+3
2 6
3 >>> "EPFL" + " is great!!!"
4 "EPFL is great!!!"

` `

More complex example with operator overloading
1 >>> class Complex:
2 def __init__(self,real,imaginary=0):
3 self.real = real
4 self.imaginary = imaginary
5 def __add__(self,z): # Overloading '+'
6 self.real += z.real
7 self.imaginary += z.imaginary
8 def __mul__(self,z): # Overloading '*'
9 real, imaginary = z
10 r = self.real*z.real-self.imaginary*z.imaginary
11 i = self.real*z.imaginary + z.real*self.imaginary
12 self.real,self.imaginary = r,i # Tuple assignment
13 >>> z = Complex(0,1) # Create an instance 0+1j
14 >>> z+Complex(0,1) # We can add with '+'; calls Complex.__add__(z,Complex(0,1))
15 >>> z.real,z.imaginary # Look up values
16 (0,2)
17 >>> z*Complex(1,1) # Complex muliplication (of two instances)
18 >>> z.real,z.imaginary # Look up values
19 (-2,2)
20 >>> print(z)
21 <__main__.Complex object at 0x7f96d9782c70>

Overloading continued…
1 >>> class Complex: # Adding more bells & whistles!
2 def __init__(self,real,imaginary=0):
3 self.real = real
4 self.imaginary = imaginary
5 def __add__(self,z): # Overloading '+'
6 self.real += z.real
7 self.imaginary += z.imaginary
8 def __mul__(self,z): # Overloading '*'
9 r = self.real*z.real-self.imaginary*z.imaginary
10 i = self.real*z.imaginary + z.real*self.imaginary
11 self.real,self.imaginary = r,i # Tuple assignment
12 def __str__(self): # Overloading print!
13 if self.imaginary==0:
14 return str(self.real)
15 else:
16 return str(self.real)+ "+" + str(self.imaginary)+"j"
17 >>> z = Complex(0,1) # Creating an instance
18 >>> z + Complex(3,0)
19 >>> print(z) # print operator is overloaded
20 3+ 1j

Adding your own methods…
1 >>> class Complex: # Adding more bells & whistles (removed +/* for space)
2 def __init__(self,real,imaginary=0):
3 self.real = real
4 self.imaginary = imaginary
5 def __str__(self): # Overloading print!
6 if self.imaginary==1:
7 return str(self.real)+ "+" + "1j"
8 else:
9 return str(self.real)+ "+" + str(self.imaginary)+"j"
10 def norm(self):
11 import math
12 self.norm = math.sqrt(self.real**2+self.imaginary**2)
13
14 >>> z = Complex(3,1) # Creating an instance
15 >>> z.norm() # Running
16 >>> z.norm
17 3.1622776601683795
18 >>> z.__dict__ # Namespace dictionary for class-based obj.
19 {'real': 3, 'imaginary': 1, 'norm': 3.1622776601683795}

Quiz: Is statement true?` `

1 >>> class Complex: # Adding more bells & whistles (removed +/* for space)
2 def __init__(self,real,imaginary=0):
3 self.real = real
4 self.imaginary = imaginary
5 def __str__(self): # Overloading print!
6 if self.imaginary==1:
7 return str(self.real)+ "+" + "1j"
8 else:
9 return str(self.real)+ "+" + str(self.imaginary)+"j"
10 def norm(self):
11 import math
12 self.norm = math.sqrt(self.real**2+self.imaginary**2)
13
14 >>> z = Complex(3,1) # creating an instance
15 >>> statement = 'norm' in z.__dict__ # is this statement true?

Questions?

Quiz: how do you create a class?

Quiz: How do you create an instance?

Quiz: What is the difference between a class object
and an instance object?

Reminder: document your classes, just like all code!
“Code is more often read than written.” — Guido van Rossum (Creator of Python)

1 >>> class SimpleClass:
2 """Class docstrings go here."""
3
4 def say_hello(self, name: str):
5 """Class method docstrings go here."""
6
7 print(f'Hello {name}')
8
9 >>> help(SimpleClass)
10 Help on class SimpleClass in module __main__:
11
12 class SimpleClass(builtins.object)
13 | Class docstrings go here.
14 |
15 | Methods defined here:
16 |
17 | say_hello(self, name: str)
18 | Class method docstrings go here.

https://realpython.com/documenting-python-code/

Class inheritance

Superclasses are listed in parentheses in a class header

Classes inherit attributes from their superclasses

This mechanism allows one to build hierachies

By redefining attributes in subclasses that appear lower in the hierarchy, we can make specialized

methods/attributes.

In Python, instances inherit from classes, and classes inherit from superclasses

A simple hierarchical example
1 >>> class FirstClass: # Define a class object
2 def setdata(self, value): # Define class's methods
3 self.data = value # self is the instance
4 def display(self):
5 print(self.data) # self.data: per instance
6
7 >>> class SecondClass(FirstClass): # Inherits setdata
8 def display(self): # We overwrite display
9 print('Current value = "%s"' % self.data)
10
11 >>> x = SecondClass()
12 >>> x.setdata(0) # inherited from FirstClass
13 >>> x.display()
14 Current value = "0"

The BIO-210 projects in a nutshell

You wrote code for:

initialization

running dynamics

checking convergence

computing invariants

storing data and plotting

Today’s task: OOP refactoring and releasing as v7 next week (not graded)!

Dynamical system:

X ​ =n+1 F (X ​, θ)n

Lotka Volterra project
1 from scipy import integrate
2 from LotkaVolterraModel import dX_dt
3
4 # Initializing
5 a = 1.0 # natural growth rate of rabbits (prey)
6 b = 0.1 # natural dying rate of rabbits
7 c = 1.5 # natural dying rate of foxes
8 d = 0.75 # factor describing growth of foxes based on caught rabbits
9 T = np.linspace(0, 15, 1000) # time
10 X0 = np.array([10, 5]) # initial conditions: 10 rabbits and 5 foxes
11
12 # Running the dynamical system and storing the output
13 X, infodict = integrate.odeint(
14 lambda x, _: dX_dt(x, a, b, c, d), X0, T, full_output=True
15)

https://github.com/EPFL-BIO-210/demo-project

Lotka Volterra project
Let’s first write it more similarly to your project (with Forward Euler Method)

1 import numpy as np
2 # Initializing
3 a = 1.0 # natural growth rate of rabbits (prey)
4 b = 0.1 # natural dying rate of rabbits
5 c = 1.5 # natural dying rate of foxes
6 d = 0.75 # factor describing growth of foxes based on caught rabbits
7 X0 = np.array([10, 5]) # initial conditions: 10 rabbits and 5 foxes
8
9 dt = 0.01
10 num_iter = int(15./dt) # to run equally long at "T"
11
12 def update(state):
13 return state + dt * np.array([a * state[0] - b * state[0] * state[1],
14 -c * state[1] + d * b * state[0]*state[1]])
15
16 X=np.empty((num_iter,2))
17
18 X[0] = X0 # initalize
19 for i in range(1,num_iter):
20 X[i] = update(X[i-1])
21

Paired discussion: How should we refactor this?

Refactoring in object oriented way
1 class LVM:
2 """ Simple LotkaVolterraClass with Euler Integration """
3 def __init__(self, a=1.0, b=0.1, c=1.5, d=0.75, dt=0.1):
4 self.a = a
5 self.b = b
6 self.c = c
7 self.d = d
8 self.dt = dt
9
10 def update(self, X):
11 """ Forward Euler method update """
12 return X + self.dt * np.array(
13 [self.a * X[0] - self.b * X[0] * X[1],
14 -self.c * X[1] + self.d * self.b * X[0] * X[1]])
15
16 def dynamics(self, X0, num_iter, saver): # saver defined later!
17 X = X0 # initalize
18 saver.store_iter(X, 0)
19 for i in range(num_iter):
20 X = self.update(X)
21 saver.store_iter(X, self.dt * i)
22

1 class DataSaver:
2 def __init__(self, instance=None):
3 # self.a = LVM.a
4 self.data = {"state_X": [], "state_T": []}
5 if instance is not None: # to store parameters with the result
6 self.a = instance.a
7 self.b = instance.b
8 self.c = instance.c
9 self.d = instance.d
10 self.dt = instance.dt
11
12 def reset(self):
13 self.data = {"state_X": [], "state_T": []}
14
15 def store_iter(self, X=None, T=None):
16 if X is not None:
17 self.data["state_X"].append(X.copy())
18 if T is not None:
19 self.data["state_T"].append(T)
20
21 def get_data(self):
22 return self.data
23
24 def LyapunovFunction():
25 raise NotImplementedError()

Simulating and storing the results
1 # Definition of parameters
2 a = 1.0
3 b = 0.1
4 c = 1.5
5 d = 0.75
6
7 numiter = 10000
8 dt = 15 * 1.0 / numiter
9
10 X0 = np.array([10, 5]) # initial conditions
11
12 lvm = LVM(a, b, c, d, dt) # Creating model instance
13 saver = DataSaver(lvm) # Creating saving instance
14 # Note: passing instance to store parameters!
15
16 lvm.dynamics(X0, numiter, saver) # Running the dynamics and storing in saver instance
17
18 T, Xeuler = saver.get_data()["state_T"], np.array(saver.get_data()["state_X"])
19 rabbits, foxes = Xeuler.T

Quiz: What should you consider when you refactor?

Quiz: What’s wrong?

dashed: integrate.odeint; lines: our class

Smaller timestep, dt = 15 * 1.0 / 10**4

Questions?

Today’s summary
object oriented programming in python

writing a custom complex number class (as an example)

refactoring the Lotka Volterra project

After lunch:
Monday 13 - 15: exercises working on your project

Monday 15:15 - 16 office hours in SV 2811

Do the final quiz at your own pace until Friday 23:59

