Welcome to BIO-210

Applied software engineering for life sciences
November 25th 2024 — Lecture 11

Prof. Alexander MATHIS

EPFL

10
11
12
13
14

Date

09/09/2024
16/09/2024
23/09/2024
30/09/2024
07/10/2024
14/10/2024
21/10/2024
28/10/2024
04/11/2024
11/11/2024
18/11/2024
25/11/2024
02/12/2024
09/12/2024
16/12/2024

Topic

Python introduction I

Public holiday

Python introduction II

Git and GitHub (+installation VS Code)
Project introduction

Functionify

EPFL fall break

Visualization and documentation
Unit-tests, functional tests

Code refactoring

Profiling and code optimization
Object oriented programming
Model analysis and project report
Work on project

Wrap up

Software version Software releases Grading / Feedback

vl

\ vl

V3 v2 code review (API)
v4 V3

v5 v4 graded (tests)

V6 v5 code review

v7 V6 graded (speed)
v8 V7 code review (0O0)

v8 graded (project)

Announcements

= final quiz (please fill it out by Friday 23:59)

= profiling v6 was due today 10am

You received a second round of code reviews (for v5):

= please check them, and answer
= if you already closed them, did you link your updates so it is clear where something was addressed?

= if you did not receive a code review, email me!

https://moodle.epfl.ch/mod/quiz/view.php?id=1315859

Object oriented programming

Everything is an object in python

O oOoONOTULT DN WDN -

R PR R R R R R R
CONOULTNWNREO®

In [1]:
In [2]:
Out[2]:
In [3]:
Out[3]:
In [4]:
In [5]:
Out[5]:
In [6]:
In [7]:
Out|[/]:
In [8]:

Out[8]:

astring="EPFL"
astring.lower()
'epfl’
astring.split('P')
['E', "FL']

Xx=33.0
X.1ls_integer()
True

def f(x):

string (instances) come with methods!'!

float instances come with methods!

"' custom identity function '''

return X

f. name_

lfl

f. doc

' custom identity function '

functions come with attributes!!

Object oriented programming in Python

Classes allow you to bundle data and functionality together

The "class' statement creates a class object and assigns it a name. Just like the function ‘def"
statement, the Python class statement is an executable statement.

When reached and run, it generates a new class object and assigns it to the name in the class header.
Also, like "def s, class statements typically run when the files they are coded in are first imported.

Classes are essentially factories for generating one or more objects. Every time we call a class, we
generate a new object (instance) with a distinct namespace — you cannot do this with modules

Each object generated from a class has access to the class’ attributes and methods as well as gets a
namespace of its own for data that varies per object.

https://docs.python.org/3/tutorial/classes.html

A first example

>>> class FirstClass:
def setdata(self, value):
self.data = value
def display(self):
print(self.data)

Define a class object

Define class' methods

self 1s the instance

Define another method of this class
self.data: per instance

H H H H K

Creating instances (by calling the class, notice ())

O Oo0O0ONOULT P~ WWDN -

>>> x = FirstClass() # Make one instance

>>> vy = FirstClass() # Make another instance, -- each has a new namespace
10 >>> x.setdata("EPFL") # runs FirstClass.setdata(x,"EPFL")
11 >>> y.setdata(0.0001) # Calling methods, self is vy
12 >>> x.display() # self.data differs in each instance
13 EPFL
14 >>> y.display() # Calling FirstClass.display(y)
15 0.0001
16 >>> x.data = "MIT" # Can also overwrite attributes
17 >>> x.display()
18 MIT

19 # NOTE: Classes usually create all of the instance’s attributes

20 # by assignment to the self argument, but they don’t have to

21 >>> x.someotherattribute = 1972 # you can even set new attributes
22 >>> x.someotherattribute

235 1972

What is 'self ?

= self is the name commonly given to the first (leftmost) argument in a class’s method function.

= Python automatically fills it in with the instance object that is the implied subject of the method call.

1 >>> FirstClass.setdata(y,0.0001) # lenghty version of y.setdata(©0.0001)
2 >>> FirstClass.display(y) # lengthy version of y.display()

5 0.0001

How can you look up available attributes and
methods?

1 In [1]: x._ dir ()
2 QOut[1l]:

5 ['data',

4 'someotherattribute’,
5 ' __module_ ',

6 'setdata’,

7/ 'display’,

3 ' dict_ ',

9 ' _weakref ',

10 ' doc__ ',

11 ' _repr_ ',

12 ' _hash__ ',

13 ' str ',

14 ' _getattribute ',
15 ' _setattr_ ',

16 ' delattr_ ',

17 S 5 T

18 ' le ',

19 ' eq__ "',

20 ' ne__ ', # and the list goes on...
21 ' gt ',

N
N
Q
)

Initalizing instances from classes

As currently coded, our class FirstClass does not attach an attribute to an instance until the "setdata
method is called.

AttributeError: 'FirstClass' object has no attribute 'data'

1 >>> a=FirstClass()

2 >>> a.data

3 ___
4 AttributeError Traceback (most recent call last)
5 <ipython-input-171-9b9edf4dc236> in <module>

6 ----> 1 a.data

/

3

9

10 >> a.setdata('abc')
11 >>> a.data
12 "abc'

However, Python automatically calls a method named *__init__ " each time an instance is generated from a
class. This constructor can thus be used.

A second example

1 >>> class Complex:

2 " Qur complex number class """ # you can (and should) put docstrings!

3 def init (self,real,imaginary = 0): # Set re and im attr. when constructed
4 self.real = real

5 self.1imaginary = imaginary # Notice default initialization!
6

/7 >>> z = Complex(0,1) # Define an instance with values (0,1)!

8 >>> z.real # Accessing attributs ()

9 0

10 >>> z.imaginary

11 1

12 # In contrast this is not implemented for FirstClass

15 >>> FirstClass(0)

14

15 TypeError: FirstClass() takes no arguments

16 >>> z2=Complex(1) # Define another instance, with default img.

1/ >>> z2.real,z2.imaginary # Notice default value!

18 (1, 9)

Quiz: Consider the following code

1
2
3 >>> "EPFL" + " is great!!!"
4 "EPFL 1s great!!!"

What is this feature of "+ called?

More complex example with operator overloading

1 >>> class Complex:

2 def init (self,real,imaginary=0):

3 self.real = real

4 self.imaginary = imaginary

5 def add_ (self,z): # Overloading '+'
6 self.real += z.real

7/ self.imaginary += z.imaginary

3 def mul_(self,z): # Overloading '*'
9 real, imaginary = z

10 r = self.real*z.real-self.imaginary*z.imaginary

11 1 = self.real*z.imaginary + z.real*self.imaginary

12 self.real,self.imaginary = r,1 # Tuple assignment
15 >>> z = Complex(0,1) # Create an instance 0+1j

14 >>> z+Complex(0,1) # We can add with '+'; calls Complex. add_ (z,Complex(0,1))
15 >>> z.real,z.imaginary # Look up values

16 (0,2)

17 >>> z*Complex(1,1) # Complex muliplication (of two instances)
18 >>> z.real,z.imaginary # Look up values

19 (-2,2)

20 >>> print(z)

21 < __main__ .Complex object at Ox7f96d9/82c/0>

Overloading continued...

O oOoONOTULT DN WDN -

NRPRRPRRPRPRPRPRLRRPL R PR
C VWoONOCULIdMNWDNEOS

>>> class Complex: # Adding more bells & whistles!

def

3+ 17

_init (self,real,imaginary=0):
self.real = real
self.imaginary = imaginary

def add_ (self,z): # Overloading '+'
self.real += z.real
self.imaginary += z.imaginary
def mul_(self,z): # Overloading '*'
r = self.real*z.real-self.imaginary*z.imaginary
1 = self.real*z.imaginary + z.real*self.imaginary
self.real,self.imaginary = r,1 # Tuple assignment
def str (self): # Overloading print!
if self.imaginary==0:
return str(self.real)
else:
return str(self.real)+ "+" + str(self.imaginary)+"j"
>>> z = Complex(0,1) # Creating an instance
>>> z + Complex(3,0)
>>> print(z) # print operator 1s overloaded

Adding your own methods...

1 >>> class Complex: # Adding more bells & whistles (removed +/* for space)
2 def init (self,real,imaginary=0):

3 self.real = real

4 self.imaginary = imaginary

5 def str (self): # Overloading print!

6 if self.imaginary==1:

7/ return str(self.real)+ "+" + "13"

3 else:

9 return str(self.real)+ "+" + str(self.imaginary)+"j"

10 def norm(self):

11 import math

12 self.norm = math.sqrt(self.real**2+self.imaginary**2)

13

14 >>> z = Complex(3,1) # Creating an instance

15 >>> z.norm() # Running

16 >>> z.norm

17 3.1622776601683795

18 >>> z. dict _ # Namespace dictionary for class-based obj.
19 {'real': 3, 'imaginary': 1, 'norm': 3.1622776601683795}

Quiz: Is statement true?

OO NOOULIT DN NN -

N e N o N = Y Sy BN
UV AN WNDNDEROO

>>> class Complex: # Adding more bells & whistles (removed +/* for space)
def init (self,real,imaginary=0):
self.real = real
self.imaginary = imaginary
def str (self): # Overloading print!
if self.imaginary==1:
return str(self.real)+ "+" + "13"
else:
return str(self.real)+ "+" + str(self.imaginary)+"j"
def norm(self):
import math

self.norm = math.sqrt(self.real**2+self.imaginary**2)

>>> z = Complex(3,1) # creating an instance
>>> statement = 'morm' in z. _dict_ # 1s this statement true?

Questions?

Quiz: how do you create a class?

Quiz: How do you create an instance?

Quiz: What is the difference between a class object
and an instance object?

Reminder: document your classes, just like all code!

“Code is more often read than written.” — Guido van Rossum (Creator of Python)

1 >>> class SimpleClass:

2 """Class docstrings go here."""

3

4 def say hello(self, name: str):

5 """Class method docstrings go here."""
6

/ print(f'Hello {name}')

3

9 >>> help(SimpleClass)

10 Help on class SimpleClass in module _ main__ :
11

12 class SimpleClass(builtins.object)

13 Class docstrings go here.

14

15 Methods defined here:

16

17 say_hello(self, name: str)

18 Class method docstrings go here.

https://realpython.com/documenting-python-code/

Class inheritance

In Python, instances inherit from classes, and classes inherit from superclasses

= Superclasses are listed in parentheses in a class header

= (Classes inherit attributes from their superclasses

= This mechanism allows one to build hierachies

= By redefining attributes in subclasses that appear lower in the hierarchy, we can make specialized

methods/attributes.

A simple hierarchical example

O oOoONOTULT DN WDN -

N N = N = Y BN
NWNEO

>>> class FirstClass:

H

def setdata(self, value): #

self.data

value #

def display(self):

print(self.data) #
>>> class SecondClass(FirstClass): #
def display(self): #

Define a class object
Define class's methods
self 1is the instance

self.data: per instance

Inherits setdata
We overwrite display

print('Current value = "%s"' % self.data)

>>> x = SecondClass()

>>> x.setdata(9)
>>> x.display()
Current value =

ll@ll

inherited from FirstClass

The BIO-210 projects in a nutshell

Dynamical system:

You wrote code for:

= jnitialization

= running dynamics

= checking convergence

= computing invariants

= storing data and plotting

Today’s task: OOP refactoring and releasing as v7 next week (not graded)!

Lotka Volterra project

O oOoONOTULT DN WDN -

PP R R R R
LA WNRO

from scipy import integrate
from LotkaVolterraModel import dX dt

XHQ N O w

0

Initializing

1.0 # natural growth rate of rabbits (prey)
0.1 # natural dying rate of rabbits

= 1.5 # natural dying rate of foxes

.75 # factor describing growth of foxes based on caught rabbits
np.linspace(@, 15, 1000) # time
np.array([10, 5]) # initial conditions: 10 rabbits and 5 foxes

Running the dynamical system and storing the output

X,

)

infodict = integrate.odeint(

Lambda x, : dX dt(x, a, b, ¢, d), X0, T, full output=True

https://github.com/EPFL-BIO-210/demo-project

Lotka Volterra project

Let’s first write it more similarly to your project (with Forward Euler Method)

import numpy as np

Initializing

= 1.0 # natural growth rate of rabbits (prey)

= 0.1 # natural dying rate of rabbits

= 1.5 # natural dying rate of foxes

.75 # factor describing growth of foxes based on caught rabbits
O = np.array([19, 5]) # initial conditions: 10 rabbits and 5 foxes

CoOoNOTULTA WN PR
X an oo %

dt = 0.01

10 num_iter = int(1l5./dt) # to run equally long at "T"

11

12 def update(state):

13 return state + dt * np.array([a * state[@] - b * state[@] * state[1l],
14 -c * state[l] + d * b * state[@]*state[1]])
15

16 X=np.empty((num_iter,2))

17

18 X[0] = X0 # initalize

19 for i1 in range(l,num_iter):

20 X[1] = update(X[1i-11])

N
=

Paired discussion: How should we refactor this?

Refactoring in object oriented way

1 class LVM:

2 " Simple LotkaVolterraClass with Euler Integration """
3 def init (self, a=1.0, b=0.1, c=1.5, d=0.75, dt=0.1):
Z- self.a = a

5 self.b = b

6 self.c = ¢

7/ self.d = d

3 self.dt = dt

9

10 def update(self, X):

11 " Forward Euler method update """

12 return X + self.dt * np.array(

13 [self.a *¥ X[@] - self.b * X[0] * X[1],

14 -self.c * X[1] + self.d * self.b * X[Q] * X[1]])
15

16 def dynamics(self, X0, num_iter, saver): # saver defined later!
17 X = X0 # initalize

18 saver.store_iter(X, 0)

19 for 1 in range(num_iter):

20 X = self.update(X)

21 saver.store iter(X, self.dt * i)

N
N

OoOoONOTULT PN~ WDN -

NNNMNMNMNMNMNMNNRPRPRPPRPPRPPRPPRPRPRRERRER
LUV PN NPRFRPOOCVOONOTOCULIdDNUWNEEOO

class DataSaver:

def

def

def

def

def

__init_(self, instance=None):
self.a = LVM.a
self.data = {"state X": [], "state T": []}
1f instance is not None: # to store parameters with the result
self.a = instance.a
self.b = instance.b
self.c = instance.c
self.d instance.d
self.dt = instance.dt

reset(self):
self.data = {"state X": [], "state T": []}

store_iter(self, X=None, T=None):
if X is not None:

self.data["state X"].append(X.copy())
if T is not None:

self.data["state T"].append(T)

get _data(self):
return self.data

LyapunovFunction():
raise NotImplementedError()

Simulating and storing the results

1 # Definition of parameters

2 a=1.0

5 b =206.1

4 ¢ = 1.5

5 d=20.75

6

/ numiter = 10000

8 dt = 15 ¥ 1.0 / numiter

9

10 X0 = np.array([10, 5]) # initial conditions

11

12 lvm = LVM(a, b, ¢, d, dt) # Creating model instance

15 saver = DataSaver(lvm) # Creating saving instance

14 # Note: passing instance to store parameters!

15

16 lvm.dynamics(X@, numiter, saver) # Running the dynamics and storing in saver instance
17

18 T, Xeuler = saver.get data()['"state T"], np.array(saver.get data()["state X"])
19 rabbits, foxes = Xeuler.T

Quiz: What should you consider when you refactor?

Quiz: What’s wrong?

Evolution of fox and rabbit populations

— Rabbits
80 —— Foxes
- == Rabbits
- == Foxes
60 1
=
=
A
[1%]
S 40 - = ’ oy
£ ; Y + f oy
o J \ Iy
& 4 \ \ !
/] \ / \
f i ! i
! 7 \ ;’ \
! i .
J ~ /
20 - f rf "'ﬁ'l | b f..r ",. x\
F I r i
P f 7 ! \
‘_.-r / o\ -~ ! LY
" ! =< .rf
.-_-"._lf .“‘h _'._.,i'
D =
]]]]]]]]
0 2 4 ¥ 8 10 12 14
fime

dashed: integrate.odeint; lines: our class

Smaller timestep, dt =15 * 1.0/ 10**4

Evolution of fox and rabbit populations

| A
/\ / //\

Questions?

Today’s summary

= object oriented programming in python
= writing a custom complex number class (as an example)

= refactoring the Lotka Volterra project

After lunch:

= Monday 13 - 15: exercises working on your project
= Monday 15:15 - 16 office hours in SV 2811
= Do the final quiz at your own pace until Friday 23:59

