
Welcome to BIO-210
Applied software engineering for life sciences

November 18th 2024 – Lecture 10

Prof. Alexander MATHIS

EPFL

Date Topic Software version Software releases Grading / Feedback

0 09/09/2024 Python introduction I

1 16/09/2024 Public holiday

2 23/09/2024 Python introduction II

3 30/09/2024 Git and GitHub (+installation VS Code)

4 07/10/2024 Project introduction v1

5 14/10/2024 Functionify v2 v1

6 21/10/2024 EPFL fall break

7 28/10/2024 Visualization and documentation v3 v2 code review (API)

8 04/11/2024 Unit-tests, functional tests v4 v3

9 11/11/2024 Code refactoring v5 v4 graded (tests)

10 18/11/2024 Profiling and code optimization v6 v5 code review

11 25/11/2024 Object oriented programming v7 v6 graded (speed)

12 02/12/2024 Model analysis and project report v8 v7 code review (OO)

13 09/12/2024 Work on project

14 16/12/2024 Wrap up v8 graded (project)

Status of your project

a readme with information on how to install the code and what it can do

a module for relevant functions and utilities (e.g., plotting)

tests to assess the correctness of the code (also for refactoring)

we also gave you some test targets, so your functions should be correct

scripts to reproduce various results

…

You have

You may wonder …
what is the slowest part of my code?

how often is a particular piece of code run?

how long does it take?

why does my code take so long …

Profiling

To get the biggest speed improvement per coding hour, you should focus on the slowest part of your
program (in a typical use case).

Note the specific use-case, can also be user-specific and one can optimize for different target groups.

We’ll consider the following tools:

cProfile

timeit

line_profiler

Profiling addresses these questions and helps you optimize your code - so that you can make it faster.

Donald Knuth’s advice

“The real problem is that programmers have spent far too much time worrying about efficiency in the wrong
places and at the wrong times; premature optimization is the root of all evil (or at least most of it) in
programming.”

From the Art of Programming:

https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

Fastest code prize!
we will assess speed of key functions (see problem set)

Note on the problem set
you should use the different profiling tools I describe today

you should release your fastest code as v6

if your version has any special dependencies, make that clear in the readme

if you develop variants that ultimately aren’t the fastest you can document it in Issues (for yourself & the

team); we won’t grade this, but it’s a good exercise to learn how to keep track of different variants.

Typically, you would leave such variants as branches (if they are interesting enough)

P.S.: We will run your code on a machine with CPUs, not GPUs. So optimize for this setting. Note: the choice
of hardware can make different algorithms more efficient!

Built-in profilers: cProfile (and profile)

records total run time

records the time taken by each function

…

–> This allows you to find which parts need optimization

recorded data can be exported, looked at with the pstats module and visualized with the snakeviz module.

cProfile is recommended, as it is the C extension with less overhead than profile

https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html#module-profile

cProfile syntax

As statement you can pass python code or a function (as a string).

Output can be saved in filename (if passed)

1 import cProfile # import the module
2 cProfile.run(statement, filename=None)

` `

A demo program
What does this program do and how should the profiling output look like?

1 import time
2
3 def shortbreak():
4 time.sleep(0.05)
5
6 def longbreak():
7 time.sleep(1)
8
9 def program():
10 print("Starting!")
11
12 for l in range(3):
13 shortbreak()
14
15 print("Now to the long break...")
16 longbreak()
17
18 print("Done!")

Adding cProfiler (when executed as script)
1 # Script: cProfiler_demo.py
2 import time
3
4 def shortbreak():
5 time.sleep(0.05)
6
7 def longbreak():
8 time.sleep(1)
9
10 def program():
11 print("Starting!")
12 for l in range(3):
13 shortbreak()
14 print("Now to the long break...")
15 longbreak()
16 print("Done!")
17
18 if __name__=='__main__':
19 import cProfile
20 profiler = cProfile.Profile() # Initializing a profiler instance
21 profiler.runcall(program) # Run it on program()
22 profiler.print_stats() # Print runtime statistics

Running the script
1 alex@mac% python3 cProfiler_demo.py
2 Starting!
3 Now to the long break...
4 Done!
5 13 function calls in 1.161 seconds
6
7 Ordered by: standard name
8
9 ncalls tottime percall cumtime percall filename:lineno(function)
10 3 0.000 0.000 0.160 0.053 cProfiler_demo.py:3(shortbreak)
11 1 0.000 0.000 1.000 1.000 cProfiler_demo.py:6(longbreak)
12 1 0.000 0.000 1.161 1.161 cProfiler_demo.py:9(program)
13 3 0.000 0.000 0.000 0.000 {built-in method builtins.print}
14 4 1.161 0.290 1.161 0.290 {built-in method time.sleep}
15 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' obj

What is summarized in the output?

Line #2: Ordered by: standard name (i.e. ordered by function name)

In the table:

ncalls : number of calls

tottime : total time spent in the given function (and excluding time spend in calls to sub-functions)

percall : ratio tottime/ncalls

cumtime : cumulative time spent in this function and all subfunctions (from invocation utill exit). This

figure is accurate even for recursive functions.

percall : cumtime/primitive calls [see later!]

filename:lineno : provides the respective data of each function

Line #1: summary (# function calls and time)

` `

` `

` `

` `

` `

` `

You can also store/load the stats

Let’s store this as cProfiler_visualization.py

1 from cProfiler_demo import program # importing the program from prior
2 import cProfile
3
4 # You can also save stats, here to the file summary.stats
5 cProfile.run('program()','summary.stats')
6
7 import pstats
8 stats = pstats.Stats('summary.stats') # Load the stats
9 stats.print_stats() # Print them

` `

Output of this program
1 alex@mac% python3 cProfiler_visualization.py
2 Starting!
3 Now to the long break...
4 Done!
5 Thu Nov 14 17:21:34 2024 summary.stats
6
7 15 function calls in 1.170 seconds
8
9 Random listing order was used
10
11 ncalls tottime percall cumtime percall filename:lineno(function)
12 1 0.000 0.000 1.170 1.170 {built-in method builtins.exec}
13 3 0.000 0.000 0.000 0.000 {built-in method builtins.print}
14 4 1.169 0.292 1.169 0.292 {built-in method time.sleep}
15 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' obj
16 1 0.000 0.000 1.004 1.004 /Users/alex/Code/Teaching/profiling/cProfil
17 1 0.000 0.000 1.170 1.170 /Users/alex/Code/Teaching/profiling/cProfil
18 3 0.000 0.000 0.165 0.055 /Users/alex/Code/Teaching/profiling/cProfil
19 1 0.000 0.000 1.170 1.170 <string>:1(<module>)

You can sort the output

gives:

1 stats.sort_stats('calls') # sort it by calls (see link in title for more options)
2 stats.print_stats()

1 Thu Nov 14 18:31:15 2024 summary.stats
2
3 15 function calls in 1.170 seconds
4
5 Ordered by: call count
6
7 ncalls tottime percall cumtime percall filename:lineno(function)
8 4 1.170 0.293 1.170 0.293 {built-in method time.sleep}
9 3 0.000 0.000 0.000 0.000 {built-in method builtins.print}
10 3 0.000 0.000 0.165 0.055 /Users/alex/Code/Teaching/profiling/cProfil
11 1 0.000 0.000 1.170 1.170 {built-in method builtins.exec}
12 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' obj
13 1 0.000 0.000 1.005 1.005 /Users/alex/Code/Teaching/profiling/cProfil
14 1 0.000 0.000 1.170 1.170 /Users/alex/Code/Teaching/profiling/cProfil
15 1 0.000 0.000 1.170 1.170 <string>:1(<module>)

https://docs.python.org/3/library/profile.html#pstats.Stats.sort_stats

Visualization of the the cProfiler output

Snakeviz is a Python package and thus needs to be installed --> pip install snakeviz

The visualization is interactive, and available in the browser!

Can be used from the command line for profiling output (summary.stats).

Can also be used in IPython directly, see docs!

Snakeviz provides visualizations based on profiling output.

` `

` `

1 snakeviz summary.stats

https://jiffyclub.github.io/snakeviz/
https://jiffyclub.github.io/snakeviz/

Visualization type 1 (icicle)
1 snakeviz summary.stats

Visualization type 2 (sunburst)
1 snakeviz summary.stats

Alternative use of cProfile

Here sorted by total-time, and stored in summary.txt

Running cProfile on a script (in the command line).

1 python -m cProfile -s tottime script2profile.py > summary.txt

Reminder: Fibonacci

Note: for

A possible solution for Fibonacci:

1 number_of_fibonaccielements = 50
2 # Initialization
3 x0 = 0
4 x1 = 1
5
6 fibo_list = [x0, x1]
7 i = 2
8
9 while i < number_of_fibonaccielements:
10 # Updating
11 next_x = x0 + x1 # computing sum
12 fibo_list.append(next_x) # data collection
13 x0 = x1 # updating 1
14 x1 = next_x # updating 2
15 i += 1
16
17 print(fibo_list) # result

F ​ =0 0,F ​ =1 1,F ​ =n F ​ +n−1 F ​n−2 n > 1

Python allows recursive functions

 for

You can define this as follows:

F ​ =0 0,F ​ =1 1,

F ​ =n F ​ +n−1 F ​n−2 n > 1

1 def fib(n):
2 if n < 2:
3 return n
4 return fib(n-1) + fib(n-2)

What will ncalls be?
1 def fib(n):
2 if n < 2:
3 return n
4 return fib(n-1) + fib(n-2)
5
6 if __name__ == "__main__":
7 import cProfile
8 profiler = cProfile.Profile() # Initializing a profiler instance
9 profiler.run('fib(32)') # Run profiler on fib(32)
10 profiler.print_stats() # Print stats

Profiling results for fib(32)

Note: primitive call counts calls excluding recursion.

` `

1 7049158 function calls (4 primitive calls) in 1.148 seconds
2
3 Ordered by: standard name
4
5 ncalls tottime percall cumtime percall filename:lineno(function)
6 7049155/1 1.148 0.000 1.148 1.148 <ipython-input-14-cb3508afaaa3>:1(fib)
7 1 0.000 0.000 1.148 1.148 <string>:1(<module>)
8 1 0.000 0.000 1.148 1.148 {built-in method builtins.exec}
9 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' obj

cProfile may have a lot of overhead

The recursive Fibonacci implementation nicely can illustrate the overhead costs of cProfile. Let’s measure it
it with timeit.repeat

returns (5 repeats of the runtime as a list; number is # of iterations for the main loop to be carried out):

which is about half as long!!! Thus,

don’t use cProfile for estimating runtimes (per se)

use it for assessing relative runtimes & bottlenecks

when ncalls >> 1!

1 ## adding to if __name__ == "__main__":
2 import timeit
3 print("Runtime:", timeit.repeat('fib(32)', \
4 setup="from __main__ import fib",repeat= 5,number=1))

` ` ` `

1 Runtime: [0.5889114580000125, 0.588767292, 0.5895812910000018,
 0.5903672500000141, 0.5895792499999857]

https://docs.python.org/3/library/timeit.html#timeit.repeat

Alternatives to cProfile: Statistical profiling
Statical profiler do not track every call, but instead the call stack every 1ms

this gives much lower overhead costs

note that tracking profilers (such as cProfile) can distort the results (e.g. when there are lots of lots of

function calls)

If you are interested, check out the statistical profiler Pyinstrument

Timeit is a lightweight alternative for us!

https://github.com/joerick/pyinstrument

Timeit: measure exection time for code snipplets

Simple example:

The Timeit module provides a simple way to time small bits of Python code (it is highly accurate and runs
code statements multiple times for robustness).

1 # testing timeit()
2 In [1]: import timeit
3 ...: print(timeit.timeit('output = 30*125'))
4 0.032772750000003015
5 # Combining multiple lines with ;
6 In [2]: print("Summation takes ",timeit.timeit(stmt='x=123.3;y=0.245;sum=x+y'))
7 Summation takes 0.06631987499999781

Timeit: measure exection time for code snipplets

Simple example:

The Timeit module provides a simple way to time small bits of Python code (it is highly accurate and runs
code statements multiple times for robustness).

1 # testing timeit()
2 In [1]: import timeit
3 ...: print(timeit.timeit('output = 30*125'))
4 0.032772750000003015
5 # Combining multiple lines with ;
6 In [2]: print("Summation takes ",timeit.timeit(stmt='x=123.3;y=0.245;sum=x+y'))
7 Summation takes 0.06631987499999781

Timeit: measure exection time for code snipplets

Simple example:

The Timeit module provides a simple way to time small bits of Python code (it is highly accurate and runs
code statements multiple times for robustness).

1 # testing timeit()
2 In [1]: import timeit
3 ...: print(timeit.timeit('output = 30*125'))
4 0.032772750000003015
5 # Combining multiple lines with ;
6 In [2]: print("Summation takes ",timeit.timeit(stmt='x=123.3;y=0.245;sum=x+y'))
7 Summation takes 0.06631987499999781

Timeit’s CLI
Timeit also has a convenient command line interface:

1 alex@mac% python -m timeit 'try:' ' str.__bool__' 'except AttributeError:' ' pass'
2 1000000 loops, best of 5: 304 nsec per loop
3
4 alex@mac% python -m timeit 'if hasattr(str, "__bool__"): pass'
5 2000000 loops, best of 5: 197 nsec per loop

https://docs.python.org/3/library/timeit.html#command-line-interface

Another use case: timestamps
1 import numpy as np
2 import timeit
3
4 N=2**5
5 print("Running test with N =", str(N))
6
7 start = timeit.default_timer()
8 calltime=0
9
10 def fib(n):
11 global calltime
12 calltime+=1
13 if n < 2:
14 return n
15 return fib(n-1) + fib(n-2)
16
17 fibo_list=[fib(n) for n in range(N)]
18 stop = timeit.default_timer()
19
20 print(fibo_list)
21 print("Method recursion: ", round(stop - start,6),' seconds')
22 print("fib was called ", calltime, " times!")

Output from this script

Quiz: How can we improve the speed of Fibonacci?

1 Running test with N = 32
2 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,
3 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269]
4 Method recursion: 1.602827 seconds
5 fib was called 11405740 times!

This recursive code is highly inefficient …

Let’s illustrate this for fib(6):

1 def fib(n):
2 if n < 2:
3 return n
4 return fib(n-1) + fib(n-2)

Reminder: Simple recursion implementation
1 N=2**5
2 print("Running test with N =", str(N))
3 start = timeit.default_timer()
4 calltime=0
5 def fib(n):
6 global calltime
7 calltime+=1
8 if n < 2:
9 return n
10 return fib(n-1) + fib(n-2)
11
12 fibo_list=[fib(n) for n in range(N)]
13 stop = timeit.default_timer()
14 print(fibo_list)
15 print("Method recursion: ", round(stop - start,6),' seconds')
16 print("fib was called ", calltime, " times!")

1 Running test with N = 32
2 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765
3 Method recursion: 1.602827 seconds
4 fib was called 11405740 times!

Simple memoization implementation
1 start = timeit.default_timer()
2 calltime=0
3 Fibs={0: 0, 1:1} # initialize memory as dictionary
4 def fib(n):
5 global calltime
6 calltime+=1
7 if n in Fibs.keys(): # if result in memory, look it up!
8 return Fibs[n]
9 else:
10 Fibs[n]=fib(n-1) + fib(n-2) # if result not in memory... compute...
11 return Fibs[n]
12
13 fibo_list=[fib(n) for n in range(N)]
14 stop = timeit.default_timer()
15
16 print("Method dictionary cache: ", round(stop - start,6),' seconds')
17 print("fib was called ", calltime, " times!")

1 Method dictionary cache: 6.5e-05 seconds
2 fib was called 92 times!

https://en.wikipedia.org/wiki/Memoization

Using built-in cache functools for memoization

Here, @lru_cache is a decorator to wrap a function with a memoizing callable that saves up to the
maxsize most recent calls; here LRU stands for least recently used.

1 from functools import lru_cache
2 start = timeit.default_timer()
3 calltime=0
4 @lru_cache(maxsize=None)
5 def fib(n):
6 global calltime
7 calltime+=1
8 if n < 2:
9 return n
10 return fib(n-1) + fib(n-2)
11
12 fibo_list = [fib(n) for n in range(N)]
13 stop = timeit.default_timer()
14 print("Method cached: ", round(stop - start,6),' seconds')
15 print("fib was called ", calltime, " times!")

1 Method cached: 3.4e-05 seconds
2 fib was called 32 times!

` `

` `

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_LRU

Questions?

Clustering

Clustering has many applications. You’ll encounter it in many different classes in the future.

genome analysis

behavioral analysis

social network analysis

…

Scikit-learn has many clustering algorithms implemented. Check them out, if you are interested!

Clustering is an important computational task to group data into different groups (called clusters).

https://scikit-learn.org/stable/modules/clustering.html
https://en.wikipedia.org/wiki/Cluster_analysis

Problem Setting

Today we will learn about one classic clustering algorithms, Kmeans. K-means is an iterative algorithm that
partitions the data into groups based on the distance between the centroids. The centroid, or cluster center,
is the mean of all the points within the cluster.

We pick this algorithm, as it is 1) fundamental algorithm that you should know (you will learn much more in
later classes at EPFL) and 2) can nicely be implemented in different ways to show profiling in action.

Imagine you have some data with different features (see the next slide for an example with 2 feature
dimensions). The ground truth labels are shown on the slide after that. However, how the data was
generated is unknown to us and for clusting, the goal is to assign each data point to one cluster so that the
assignment represents the data efficiently.

https://en.wikipedia.org/wiki/K-means_clustering

Example dataset (two features on x and y axis)

Example dataset (ground truth labels)

K-means

First: (randomly) pick centers

Then iterate:

1. assign data points to nearest center (this defines the clusters)

2. update the center to the mean of the points in each cluster

3. check convergence (stop if converged, otherwise goto 1)

Here is a pseudo algorithm:

Example dataset

Initialize k-means

Assign label (iteration: 0)

Update centers (iteration: 0)

Assign label (iteration: 1)

Update centers (iteration: 1)

Assign label (iteration: 2)

Update centers (iteration: 2)

Assign label (iteration: 3)

Update centers (iteration: 3)

Assign label (iteration: 4)

Update centers (iteration: 4)

Assign label (iteration: 5)

Update centers (iteration: 5); it converged

Example dataset (ground truth labels)

Side note: Of course, the specific label (here color) cannot be exactly recovered. K-means recovers three
reasonable clusters, but of course fails to accurately assign the datapoints where the blue and red clusters
mix. If you are interested in learning more, check out alternative clustering algorithms..

We will now return to our goal, profiling this algorithm!

https://scikit-learn.org/1.5/modules/clustering.html

K-means clustering algorithm

Then iterate:

1. assign data points to nearest center (this defines the clusters)

2. update the center to the mean of the points in each cluster

3. check convergence (stop if converged, otherwise goto 1)

Note: Code below adapted from Jake VanderPlas.

First: (randomly) pick centers

Background: zip / zip*
1 In [1]: list(zip((0,1,2),(5,3,6))) # combing two lists into lists of pairs
2 Out[1]: [(0, 5), (1, 3), (2, 6)]
3 In [2]: list(zip(*[(0,1,2),(3,4,5)])) # Unpacking triples into list of 3 tuples
4 Out[2]: [(0, 3), (1, 4), (2, 5)]
5 In [3]: zip?
6 Init signature: zip(self, /, *args, **kwargs)
7 Docstring:
8 zip(*iterables) --> A zip object yielding tuples until an input is exhausted.
9
10 >>> list(zip('abcdefg', range(3), range(4)))
11 [('a', 0, 0), ('b', 1, 1), ('c', 2, 2)]

https://realpython.com/python-zip-function/#using-zip-in-python

Pure Python implementation: assigning labels
1 import math
2 def distance(v, w):
3 """ Computes the Euclidean distance for vectors v and w"""
4 return math.sqrt(sum((vi - wi) ** 2 for vi, wi in zip(v, w)))
5
6
7 def assign_labels(data, centers):
8 """ Assign data to closest label (corresponding to centers)."""
9 labels = []
10 for item in data:
11 distances = [distance(item, center) for center in centers]
12 labels.append(distances.index(min(distances)))
13 return labels

1 def update_centers(data, labels):
2 """ Update centers of mass according to labels """
3 n_centers = len((set(labels)))
4 n_dims = len(data[0])
5 centers = [[0 for i in range(n_dims)] for j in range(n_centers)]
6 counts = [0 for j in range(n_centers)]
7
8 for label, item in zip(labels, data):
9 counts[label] += 1 # keeping count of # elements and summing per label:
10 centers[label] = [ci + ii for ci, ii in zip(centers[label], item)]
11
12 return [[x / count for x in center] for center, count in zip(centers, counts)]
13
14 def kmeans(data, n_clusters):
15 centers = data[-n_clusters:]
16 iteration = 0
17 while True:
18 old_centers = centers
19 labels = assign_labels(data, centers)
20 centers = update_centers(data, labels)
21
22 if centers == old_centers:
23 break
24
25 return labels

Setting up cProfile
1 ## Experiment:
2 import kmeans.utils, timeit
3
4 # Creating some data:
5 n_clusters = 10
6 n_dims = 10000
7 data, gt_labels = kmeans.utils.sampledata(n_dims, n_clusters, plotting=False)
8
9 from kmeans.kmeans_python import kmeans
10
11 import cProfile
12
13 cProfile.run("kmeans(data,n_clusters)", "summary_kmeans.stats")
14
15 import pstats
16 stats = pstats.Stats("summary_kmeans.stats")
17 stats.sort_stats("calls")
18 stats.print_stats()

Output of cProfile
1 Thu Nov 14 18:54:52 2024 summary_kmeans.stats

 50701252 function calls in 11.380 seconds

 Ordered by: call count

 ncalls tottime percall cumtime percall filename:lineno(function)
 23400000 2.959 0.000 2.959 0.000 /Users/alex/Code/Teaching/profiling/kmeans/kmean
 7800000 2.433 0.000 5.392 0.000 {built-in method builtins.sum}
 7800000 0.504 0.000 0.504 0.000 {built-in method math.sqrt}
 7800000 3.269 0.000 9.165 0.000 /Users/alex/Code/Teaching/profiling/kmeans/kmean
 780000 0.041 0.000 0.041 0.000 {method 'append' of 'list' objects}
 780000 0.096 0.000 0.096 0.000 {method 'index' of 'list' objects}
 780000 0.199 0.000 0.199 0.000 {built-in method builtins.min}
 780000 0.971 0.000 10.136 0.000 /Users/alex/Code/Teaching/profiling/kmeans/kmean
 780000 0.112 0.000 0.112 0.000 /Users/alex/Code/Teaching/profiling/kmeans/kmean
 780 0.000 0.000 0.000 0.000 /Users/alex/Code/Teaching/profiling/kmeans/kmean
 156 0.000 0.000 0.000 0.000 {built-in method builtins.len}
 78 0.462 0.006 10.934 0.140 /Users/alex/Code/Teaching/profiling/kmeans/kmean
 78 0.000 0.000 0.000 0.000 /Users/alex/Code/Teaching/profiling/kmeans/kmean
 78 0.000 0.000 0.000 0.000 /Users/alex/Code/Teaching/profiling/kmeans/kmean
 78 0.331 0.004 0.445 0.006 /Users/alex/Code/Teaching/profiling/kmeans/kmean
 1 0.000 0.000 11.380 11.380 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

Visualization type 1 (icicle)
1 snakeviz summary_kmeans.stats

Visualization type 2 (sunburst)
1 snakeviz summary_kmeans.stats

Alternative profiling (line_profiling)

not apparent what exactly is computed (without going back to the code)

calls/times are grouped by function calls

What if much work happens in particular lines, e.g. loading data, diagonalizing a matrix …

For instance, most calls are from this function:

Especially for numerical code, from the cProfile output it is

1 ncalls tottime percall cumtime percall filename:lineno(function)
23400000 2.959 0.000 2.959 0.000 /Users/alex/Code/Teaching/profiling/kmeans/kmeans

Line-by-line profiling

Here we will use it in ipython with magic commands

Installation:

line_profiler is a module for doing line-by-line profiling of functions. kernprof is a convenient script
for running either line_profiler.
` `

1 pip install line_profiler

https://github.com/pyutils/line_profiler
https://ipython.readthedocs.io/en/stable/interactive/magics.html

Demo code (LineProfiling.py)
1 import utils
2
3 n_clusters=10 # Initalizing data
4 n_dims =10000
5 data, gt_labels = utils.sampledata(n_dims, n_clusters, plotting= False)
6
7 from kmeans_python import kmeans
8 labels = kmeans(data, n_clusters) # Running our kmeans
9 utils.score(gt_labels,labels) # Evaluating performance

We spend >86% in Line 41!!!

1 In [1]: run LineProfiling.py
2 0.9191471147114711
3 In [2]: %load_ext line_profiler
4 In [3]: %lprun -f kmeans kmeans(data,n_clusters)
5 Timer unit: 1e-06 s
6 Total time: 8.55269 s
7 File: /Users/alex/Code/Teaching/profiling/kmeans/kmeans_python.py
8 Function: kmeans at line 35
9
10 Line # Hits Time Per Hit % Time Line Contents
11 ==
12 35 def kmeans(data, n_clusters):
13 36 1 30.0 30.0 0.0 centers = data[-n_clusters:]
14 37
15 38 1 2.0 2.0 0.0 iteration = 0
16 39 while True:
17 40 41 31.0 0.8 0.0 old_centers = centers
18 41 41 7422540.0 181037.6 86.8 labels = assign_labels(data, cen
19 42 41 1130007.0 27561.1 13.2 centers = update_centers(data, l
20 43
21 44 41 81.0 2.0 0.0 if centers == old_centers:
22 45 1 1.0 1.0 0.0 break
23 46
24 47 1 0.0 0.0 0.0 return labels

Quiz: How can we make this faster?
1 def distance(v, w):
2 return math.sqrt(sum((vi - wi) ** 2 for vi, wi in zip(v, w)))
3
4 def assign_labels(data, centers):
5 labels = []
6 for item in data:
7 distances = [distance(item, center) for center in centers]
8 labels.append(distances.index(min(distances)))
9 return labels

Numpy to the rescue!

Numpy code:

1 def distance(v, w):
2 return math.sqrt(sum((vi - wi) ** 2 for vi, wi in zip(v, w)))
3
4 def assign_labels(data, centers):
5 labels = []
6 for item in data:
7 distances = [distance(item, center) for center in centers]
8 labels.append(distances.index(min(distances)))
9 return labels

1 def assign_labels(data, centers):
2 """ assign data to closest label (corresponding to centers)."""
3 differences = (np.array(data)[:, None, :] - np.array(centers)) ** 2
4 distances = np.sqrt(differences.sum(-1))
5 return distances.argmin(1)

Quick explanation:
1 In [1]: import numpy as np
2
3 In [2]: data = np.arange(6).reshape((3,2))
4
5 In [3]: centers = np.arange(2).reshape((1,2))
6
7 In [4]: data[:,None,:]-centers # introduces extra dimension in middle
8 Out[4]:
9 array([[[0, 0]],
10
11 [[2, 2]],
12
13 [[4, 4]]])
14
15 In [5]: np.sqrt(np.sum((data[:,None,:]-centers)**2,axis = 2))
16 Out[5]:
17 array([[0.], # is distance of (1,2) and (1,2)
18 [2.82842712], # is distance of (3,4) and (1,2) = sqrt(8)
19 [5.65685425]]) # is the distance of (5,6) and (1,2)

Updated line profiling 8.5s -> 🙉

Now we spend >80% for updating centers!

1 In [8]: %lprun -f kmeans kmeans(data,n_clusters)
2 Timer unit: 1e-06 s
3
4 Total time: 1.88813 s
5 File: /Users/alex/Code/Teaching/profiling/kmeans/kmeans_numpyI.py
6 Function: kmeans at line 28
7
8 Line # Hits Time Per Hit % Time Line Contents
9 ==
10 28 def kmeans(data, n_clusters):
11 29 1 5.0 5.0 0.0 centers = data[-n_clusters:]
12 30
13 31 while True:
14 32 53 24.0 0.5 0.0 old_centers = centers
15 33 53 334932.0 6319.5 17.7 labels = assign_labels(data, cen
16 34 53 1553147.0 29304.7 82.3 centers = update_centers(data, l
17 35 53 27.0 0.5 0.0 if centers == old_centers:
18 36 1 0.0 0.0 0.0 break
19 37
20 38 1 0.0 0.0 0.0 return labels

Quiz: How can we improve this code?
1 def update_centers(data, labels):
2 """ Update centers of mass according to labels """
3 n_centers = len((set(labels)))
4 n_dims = len(data[0])
5
6 centers = [[0 for i in range(n_dims)] for j in range(n_centers)]
7 counts = [0 for j in range(n_centers)]
8
9 for label, item in zip(labels, data):
10 counts[label] += 1
11 centers[label] = [
12 ci + ii for ci, ii in zip(centers[label], item)
13] # summing, per label
14
15 return [[x / count for x in center] for center, count in zip(centers, counts)]

Numpy to the rescue, again!

Numpy code:

1 def update_centers(data, labels):
2 """ Update centers of mass according to labels """
3 n_centers = len((set(labels)))
4 n_dims = len(data[0])
5 centers = [[0 for i in range(n_dims)] for j in range(n_centers)]
6 counts = [0 for j in range(n_centers)]
7 for label, item in zip(labels, data):
8 counts[label] += 1
9 centers[label] = [
10 ci + ii for ci, ii in zip(centers[label], item)
11] # summing, per label
12 return [[x / count for x in center] for center, count in zip(centers, counts)]

1 def update_centers(data, labels):
2 """ Update centers of mass according to labels """
3 n_centers = len((set(labels)))
4 return np.array([data[labels == i].mean(0) for i in range(n_centers)])

Updated line-profiling results… 1.8s --> 🙉
1 In [11]: %lprun -f kmeans kmeans(data,n_clusters)
2 Timer unit: 1e-06 s
3
4 Total time: 0.196476 s
5 File: /Users/alex/Code/Teaching/profiling/kmeans/kmeans_numpyII.py
6 Function: kmeans at line 17
7
8 Line # Hits Time Per Hit % Time Line Contents
9 ==
10 17 def kmeans(data, n_clusters):
11 18 1 10147.0 10147.0 5.2 data = np.array(data)
12 19 1 10.0 10.0 0.0 centers = data[-n_clusters:]
13 20
14 21 while True:
15 22 41 17.0 0.4 0.0 old_centers = centers
16 23 41 122246.0 2981.6 62.2 labels = assign_labels(data, cen
17 24 41 63848.0 1557.3 32.5 centers = update_centers(data, l
18 25
19 26 41 207.0 5.0 0.1 if (centers == old_centers).all(
20 27 1 1.0 1.0 0.0 break
21 28
22 29 1 0.0 0.0 0.0 return labels

Quiz: What now?

Tip: use specialized functions!

for comparison:

1 from scipy.spatial.distance import cdist
2
3 def assign_labels(data, centers):
4 """ assign data to closest label (corresponding to centers)."""
5 distances = cdist(data, centers)
6 return distances.argmin(1)

1 def assign_labels(data, centers):
2 """ assign data to closest label (corresponding to centers)."""
3 differences = (np.array(data)[:, None, :] - np.array(centers)) ** 2
4 distances = np.sqrt(differences.sum(-1))
5 return distances.argmin(1)

Updated line-profiling results… 0.19s --> 🙉
1 In [13]: %lprun -f kmeans kmeans(data,n_clusters)
Timer unit: 1e-06 s

Total time: 0.092516 s
File: /Users/alex/Code/Teaching/profiling/kmeans/kmeans_scipyI.py
Function: kmeans at line 17

Line # Hits Time Per Hit % Time Line Contents
==
 17 def kmeans(data, n_clusters):
 18 1 8087.0 8087.0 8.7 data = np.array(data)
 19 1 11.0 11.0 0.0 centers = data[-n_clusters:]
 20
 21 while True:
 22 36 18.0 0.5 0.0 old_centers = centers
 23 36 23362.0 648.9 25.3 labels = assign_labels(data, centers)
 24 36 60846.0 1690.2 65.8 centers = update_centers(data, labels
 25
 26 36 191.0 5.3 0.2 if (centers == old_centers).all():
 27 1 0.0 0.0 0.0 break
 28
 29 1 1.0 1.0 0.0 return labels

Method comparision

Method comparison

Method comparison

Note:

the run time depends on the number of samples

indeed, our implementations monotonically got better for the different variants

the variant from the sklearn library is faster for large numbers of samples.

Other tools to improve speed (see excercises)
Detailed guide on Python - C++ interfacing

Cython python-like Code at C-like speeds; recommended for operations that cannot be done in NumPy,

SciPy, etc.

Numba for just-in-time compilation

f2py call Fortran code

https://realpython.com/python-bindings-overview/
https://cython.readthedocs.io/en/latest/index.html
https://numba.pydata.org/numba-doc/dev/index.html
https://numpy.org/doc/stable/f2py/

Questions?

Today’s summary

How to profile?

We discussed profiling tools cProfile, timeit, line_profiler incl. visualization methods

We learned about one of the core clustering algorithms. It’s otherwise not important for this class, but I

think it’s algorithm you should know

How to optimize?

Numpy is faster, always try to write vectorized code!

Use existing, optimized and specialized functions (cdist, kmeans from a library, …). This is also much

better maintained

For specialized functions, consider writing them in Fortran, C++ and link

We learned about memoization and functools: lru_cache

Always profile your code, before you optimize it!

After lunch:
Monday 13 - 15: exercises working on v6 of your project

Monday 15:15 - 16: my office hours at SV 2811

