Welcome to BIO-210

Applied software engineering for life sciences
November 18th 2024 — Lecture 10

Prof. Alexander MATHIS

EPFL

10
11
12
13
14

Date

09/09/2024
16/09/2024
23/09/2024
30/09/2024
07/10/2024
14/10/2024
21/10/2024
28/10/2024
04/11/2024
11/11/2024
18/11/2024
25/11/2024
02/12/2024
09/12/2024
16/12/2024

Topic

Python introduction I

Public holiday

Python introduction II

Git and GitHub (+installation VS Code)
Project introduction

Functionify

EPFL fall break

Visualization and documentation
Unit-tests, functional tests

Code refactoring

Profiling and code optimization
Object oriented programming
Model analysis and project report
Work on project

Wrap up

Software version Software releases Grading / Feedback

vl

\ vl

V3 v2 code review (API)
v4 V3

v5 v4 graded (tests)

V6 v5 code review

v7 V6 graded (speed)
v8 V7 code review (0O0)

v8 graded (project)

Status of your project

You have

= areadme with information on how to install the code and what it can do
= a module for relevant functions and utilities (e.g., plotting)

= tests to assess the correctness of the code (also for refactoring)

= we also gave you some test targets, so your functions should be correct

= scripts to reproduce various results

You may wonder ...

= what is the slowest part of my code?
= how often is a particular piece of code run?
= how long does it take?

= why does my code take so long ...

Profiling

Profiling addresses these questions and helps you optimize your code - so that you can make it faster.

To get the biggest speed improvement per coding hour, you should focus on the slowest part of your
program (in a typical use case).

Note the specific use-case, can also be user-specific and one can optimize for different target groups.

We’ll consider the following tools:
= cProfile
= timeit

= line profiler

Donald Knuth’s advice

From the Art of Programming:

“The real problem is that programmers have spent far too much time worrying about efficiency in the wrong

places and at the wrong times; premature optimization is the root of all evil (or at least most of it) in
programming.”

https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

Fastest code prize!

= we will assess speed of key functions (see problem set)

Note on the problem set

= you should use the different profiling tools I describe today

= you should release your fastest code as v6

= if your version has any special dependencies, make that clear in the readme

= if you develop variants that ultimately aren’t the fastest you can document it in Issues (for yourself & the
team); we won’t grade this, but it’s a good exercise to learn how to keep track of different variants.

= Typically, you would leave such variants as branches (if they are interesting enough)

P.S.: We will run your code on a machine with CPUs, not GPUs. So optimize for this setting. Note: the choice
of hardware can make different algorithms more efficient!

Built-in profilers: cProfile (and profile)

cProfile is recommended, as it is the C extension with less overhead than profile

m records total run time

= records the time taken by each function

—> This allows you to find which parts need optimization

= recorded data can be exported, looked at with the pstats module and visualized with the snakeviz module.

https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html#module-profile

cProfile syntax

1 import cProfile # import the module
2 cProfile.run(statement, filename=None)

= As ‘statement’ you can pass python code or a function (as a string).

= Qutput can be saved in filename (if passed)

A demo program

What does this program do and how should the profiling output look like?

1 import time

2

5 def shortbreak():

4 time.sleep(0.05)

5

6 def longbreak():

/ time.sleep(l)

3

9 def program():

10 print("Starting!")
11

12 for L in range(3):
13 shortbreak()
14

15 print("Now to the long break...")
16 Longbreak()

17

18 print("Done! ")

Adding cProfiler (when executed as script)

O oOoONOTULT DN WDN -

NNNRPRRPRRPRPRRPRPRRPRRLRR
NP OWOWONOCUNWNREO®

Script: cProfiler demo.py
import time

def shortbreak():
time.sleep(0.05)

def longbreak():
time.sleep(l)

def program():
print("Starting!")
for L in range(3):
shortbreak()

print("Now to the long break...")

Longbreak()
print("Done! ")

_EmporE_cPrafiLe o
profiler = cProfile.Profile()
profiler.runcall (program)

profiler.print stats()

Initializing a profiler instance
Run it on program()
Print runtime statistics

Running the script

O oOoONOTULT DN WDN -

N A N N = Y 2=
UV N WDNNEREROO

alexamac% python3 cProfiler demo.py

Starting!

Now to the Long break...

Done!

Ordered by: standard name

ncalls

P NWR R W

13 function calls in 1.161 seconds

tottime

ORrRPrOOO®

. 000
. 000
. 000
. 000
.161
. 000

percall

OO OO

. 000
. 000
. 000
. 000
. 290
. 000

cumtime

OrRrOFrRLrEFP,O

.160
. 000
.161
. 000
.161
. 000

percall

OO OO FrLrFP,O®

.053
. 000
.161
. 000
. 290
. 000

filename:lineno(function)
cProfiler demo.py:3(shortbreak)
cProfiler demo.py:6(longbreak)
cProfiler demo.py:9(program)
{built-1in method builtins.print}
{built-in method time.sleep}

{method 'disable' of

' Lsprof.Profiler' obj

What is summarized in the output?

Line #1: summary (# function calls and time)
Line #2: Ordered by: standard name (i.e. ordered by function name)

In the table:

= ‘ncalls :number of calls

= ‘tottime :total time spent in the given function (and excluding time spend in calls to sub-functions)

= ‘percall :ratio tottime/ncalls

= ‘cumtime :cumulative time spent in this function and all subfunctions (from invocation utill exit). This

figure is accurate even for recursive functions.

= ‘percall :cumtime/primitive calls [see later!]

= ‘filename:lineno : provides the respective data of each function

You can also store/load the stats

from cProfiler demo import program # importing the program from prior
import cProfile

You can also save stats, here to the file summary.stats
cProfile.run('program()', 'summary.stats')

import pstats
stats = pstats.Stats('summary.stats') # Load the stats
stats.print_stats() # Print them

O oOoONOTULT DN WDN -

Let’s store this as ‘cProfiler visualization.py'

Output of this program

O oOoONOTULT DN WDN -

PR R RPRRRPRRLRRRR
OCONOODUAWNRO®

alexamac% python3 cProfiler visualization.py
Starting!

Now to the Long break...

Done!

Thu Nov 14 17:21:34 2024 summary.stats

15 function calls in 1.170 seconds
Random listing order was used

ncalls tottime percall cumtime percall

1 0.000 0.000 1.170 1.170
3 0.000 0.000 0.000 0.000
4 1.169 0.292 1.169 0.292
1 0.000 0.000 0.000 0.000
1 0.000 0.000 1.004 1.004
1 0.000 0.000 1.170 1.170
3 0.000 0.000 0.165 0.055
1 0.000 0.000 1.170 1.170

filename:lineno(function)

{built-in method builtins.exec}

{built-in method builtins.print}

{built-in method time.sleep}

{method 'disable' of ' Llsprof.Profiler' obj
/Users/alex/Code/Teaching/profiling/cProfil
/Users/alex/Code/Teaching/profiling/cProfil
/Users/alex/Code/Teaching/profiling/cProfil
<string>:1(<module>)

You can sort the output

1
2

gives:

O oOoONOTULT DN WDN -

N A N N = Y 2=
UV N WDNNEREROO

stats.sort stats('calls')

stats.print stats()

Thu Nov 14 18:31:15 2024

sort it by calls (see link in title for more options)

summary.stats

15 function calls in 1.170 seconds

Ordered by: call count

ncalls

P PR, PR WNWA

tottime

OO OO

.170
. 000
. 000
. 000
. 000
. 000
. 000
. 000

percall

OO OO

.293
. 000
. 000
. 000
. 000
. 000
. 000
. 000

cumtime

P RPRPOFRPOO R

.170
. 000
.165
.170
. 000
.005
.170
.170

percall

P PRPOFPOCOS

.293
. 000
.055
.170
. 000
. 005
.170
.170

filename:lineno(function)

{built-in method time.sleep}

{built-in method builtins.print}
/Users/alex/Code/Teaching/profiling/cProfil
{built-1in method builtins.exec}

{method 'disable' of ' lsprof.Profiler' obj
/Users/alex/Code/Teaching/profiling/cProfil
/Users/alex/Code/Teaching/profiling/cProfil
<string>:1(<module>)

https://docs.python.org/3/library/profile.html#pstats.Stats.sort_stats

Visualization of the the cProfiler output

Snakeviz provides visualizations based on profiling output.

Snakeviz is a Python package and thus needs to be installed --> "pip install snakeviz®

The visualization is interactive, and available in the browser!

Can be used from the command line for profiling output (' summary.stats).

1 snakeviz summary.stats

Can also be used in IPython directly, see docs!

https://jiffyclub.github.io/snakeviz/
https://jiffyclub.github.io/snakeviz/

Visualization type 1 (icicle)

1 snakeviz summary.stats

Visualization type 2 (sunburst)

1 snakeviz summary.stats

| 0. ~:0(<built-in method builtins.exee>) |

Style: [Sunburst ¢]

pepen:

cutors: [1 ~ 100 %]

Name:

program
Cumulative Time:
1.17 s (100.00 %)
File:

cProfiler demo.py
Line:

9

Directory:
fUsers/alex/Code/Teaching/pr
ofiling/

Alternative use of cProfile

Running cProfile on a script (in the command line).

Here sorted by total-time, and stored in summary.txt

1 python -m cProfile -s tottime scriptlZprofile.py > summary.txt

Reminder: Fibonacci

A possible solution for Fibonacci:

O oOoONOTULT DN WDN -

10
11
12
13
14
15
16
17

number of fibonaccielements = 50
Initialization

X0 = 0

x1l =1

fibo list = [x0, x1]
i = 2

while i < number of fibonaccielements:

Updating

next x = x0 + x1 # computing sum
fibo list.append(next x) # data collection
x0 = x1 # updating 1

x1 = next X # updating 2
i+=1

print(fibo_list) # result

Note: Fo =0, Fy =1, F, = F,,_1 + F,,_sforn > 1

Python allows recursive functions
Fy=0F =1,

F, =F, 1+ F,_oforn >1

You can define this as follows:

1 def fib(n):

2 if n < 2:

3 return n

4 return fib(n-1) + fib(n-2)

What will ncalls be?

def fib(n):

if n < 2:

return n
return fib(n-1) + fib(n-2)
e L __main__":

import cProfile
profiler = cProfile.Profile() # Initializing a profiler instance
profiler.run('fib(32)"') # Run profiler on fib(32)
profiler.print stats() # Print stats

© VONOUTAWNE
|_I
Hh
)
Q
=
®
I
I

=

Profiling results for "fib(32)

1 7049158 function calls (4 primitive calls) in 1.148 seconds

2

5 Ordered by: standard name

4

5 ncalls tottime percall cumtime percall filename:lineno(function)

6 7049155/1 1.148 0.000 1.148 1.148 <ipython-input-14-cb3508afaaa3>:1(fib)

/7 1 0.000 ©.000 1.148 1.148 <string>:1(<module>)

3 1 ©.000 0.000 1.148 1.148 {built-in method builtins.exec}

9 1 0.000 0.000 0.000 0.000 {method 'disable' of ' lsprof.Profiler' obj

Note: primitive call counts calls excluding recursion.

cProfile may have a lot of overhead

when ncalls >> 1!

The recursive Fibonacci implementation nicely can illustrate the overhead costs of cProfile. Let’s measure it
it with timeit.repeat

adding to 1if
import timeit
print("Runtime:", timeit.repeat('fib(32)', \

setup="from _ main__ import fib",repeat= 5,number=1))

_name__ ==

B _main__

A WWNDNBE

returns (5 ‘repeats’ of the runtime as a list; number ' is # of iterations for the main loop to be carried out):

1 Runtime: [0.5889114580000125, 0.588767292, 0.5895812910000018,
0.5903672500000141, 0.5895792499999857]

which is about half as long!!! Thus,

= don’t use cProfile for estimating runtimes (per se)

= use it for assessing relative runtimes & bottlenecks

https://docs.python.org/3/library/timeit.html#timeit.repeat

Alternatives to cProfile: Statistical profiling

= Statical profiler do not track every call, but instead the call stack every 1ms

= this gives much lower overhead costs

= note that tracking profilers (such as cProfile) can distort the results (e.g. when there are lots of lots of
function calls)

= [fyou are interested, check out the statistical profiler Pyinstrument

Timeit is a lightweight alternative for us!

https://github.com/joerick/pyinstrument

Timeit: measure exection time for code snipplets

The Timeit module provides a simple way to time small bits of Python code (it is highly accurate and runs
code statements multiple times for robustness).

Simple example:

In import timeit
timeit.timeit

In
Summation takes

timelit.timelt

Timeit: measure exection time for code snipplets

The Timeit module provides a simple way to time small bits of Python code (it is highly accurate and runs
code statements multiple times for robustness).

Simple example:

testing timeit()
In [1]: import timeit

.... print(timeit.timeit('output = 30%*125'))
0.032772750000003015

NWN PR

In timelit.timelt
Summation takes

Timeit: measure exection time for code snipplets

The Timeit module provides a simple way to time small bits of Python code (it is highly accurate and runs
code statements multiple times for robustness).

Simple example:

testing timeit()
In [1]: import timeit
.... print(timeit.timeit('output = 30%*125'))
0.032772750000003015
Combining multiple lines with ;
In [2]: print("Summation takes ",timeit.timeit(stmt='x=123.3;y=0.245;sum=x+y'))
Summation takes 0.06631987499999/81

NONU1T A WNDN P

Timeit’s CLI

Timeit also has a convenient command line interface:

alex@mac% python -m timeit 'try:' ' str. Dbool ' 'except AttributeError:' ' pass'
1000000 lLoops, best of 5: 304 nsec per loop

alexg@mac% python -m timeit 'if hasattr(str, " bool_ "): pass'
2000000 lLoops, best of 5: 197 nsec per loop

un PP WD -

https://docs.python.org/3/library/timeit.html#command-line-interface

Another use case: timestamps

1 import numpy as np

2 import timeit

3

4 N=2%*5

5 print("Running test with N =", str(N))
6

/ start = timeit.default_timer()

g calltime=0

9

10 def fib(n):

11 global calltime

12 calltime+=1

13 if n < 2:

14 return n

15 return fib(n-1) + fib(n-2)

16

17 fibo _list=[fib(n) for n in range(N)]
18 stop = timeit.default timer()

19

20 print(fibo list)

21 print("Method recursion: ", round(stop - start,6),' seconds')
22 print("fib was called ", calltime, " times!'")

Output from this script

Running test with N = 32

(e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 98/, 159/, 2584, 4181,
6765, 10946, 17711, 28657, 46368, /5025, 121393, 196418, 317811, 514229, 832040, 1346269]
Method recursion: 1.60282/ seconds

fib was called 11405740 times!

un PP WD -

Quiz: How can we improve the speed of Fibonacci?

This recursive code is highly inefficient ...

def fib(n):
if n < 2:
return n
return fib(n-1) + fib(n-2)

A NN B

Let’s illustrate this for fib(6):

Reminder: Simple recursion implementation

1 N=2%%5

2 print("Running test with N =", str(N))

5 start = timeit.default_timer()

4 calltime=0

5 def fib(n):

6 global calltime

/ calltime+=1

3 if n < 2:

e return n

10 return fib(n-1) + fib(n-2)

11

12 fibo list=[fib(n) for n in range(N)]

15 stop = timeit.default_timer()

14 print(fibo list)

15 print("Method recursion: ", round(stop - start,6),' seconds')
16 print("fib was called ", calltime, " times!")

1 Running test with N = 32

2 (e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 98/, 159/, 2584, 4181, 6765
5 Method recursion: 1.60282/7 seconds

4 fib was called 11405740 times!

Simple memoization implementation

O oOoONOTULT DN WDN -

RPRPRRP R RPRLR R R
NOOuUuphWNEO

=

start = timeit.default_timer()
calltime=0
Fibs={0: 0, 1:1} # initialize memory as dictionary
def fib(n):
global calltime
calltime+=1

if n in Fibs.keys(): # if result in memory, look it up!
return Fibs[n]

else:
Fibs[n]=fib(n-1) + fib(n-2) # if result not in memory... compute...

return Fibs[n]

fibo list=[fib(n) for n in range(N)]
stop = timeit.default timer()

print("Method dictionary cache: ", round(stop - start,6),' seconds')
print("fib was called ", calltime, " times!")

Method dictionary cache: 6.5e-05 seconds
fib was called 92 times!

https://en.wikipedia.org/wiki/Memoization

Using built-in cache functools for memoization

1 from functools import lru_cache

2 start = timeit.default timer()

5 calltime=0

4 @lru_cache(maxsize=None)

5 def fib(n):

6 global calltime

/ calltime+=1

3 if n < 2:

9 return n
10 return fib(n-1) + fib(n-2)
11
12 fibo list = [fib(n) for n in range(N)]
15 stop = timeit.default_timer()
14 print('"Method cached: ", round(stop - start,6),' seconds')
15 print("fib was called ", calltime, " times!")
1 Method cached: 3.4e-05 seconds

2 fib was called 32 times!

Here, ‘@lru_cache " is a decorator to wrap a function with a memoizing callable that saves up to the
‘maxsize most recent calls; here LRU stands for least recently used.

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_LRU

Questions?

Clustering

Clustering is an important computational task to group data into different groups (called clusters).

Clustering has many applications. You’ll encounter it in many different classes in the future.

= genome analysis
= behavioral analysis

= social network analysis

Scikit-learn has many clustering algorithms implemented. Check them out, if you are interested!

https://scikit-learn.org/stable/modules/clustering.html
https://en.wikipedia.org/wiki/Cluster_analysis

Problem Setting

Imagine you have some data with different features (see the next slide for an example with 2 feature
dimensions). The ground truth labels are shown on the slide after that. However, how the data was
generated is unknown to us and for clusting, the goal is to assign each data point to one cluster so that the
assignment represents the data efficiently.

Today we will learn about one classic clustering algorithms, Kmeans. K-means is an iterative algorithm that

partitions the data into groups based on the distance between the centroids. The centroid, or cluster center,
is the mean of all the points within the cluster.

We pick this algorithm, as it is 1) fundamental algorithm that you should know (you will learn much more in
later classes at EPFL) and 2) can nicely be implemented in different ways to show profiling in action.

https://en.wikipedia.org/wiki/K-means_clustering

Example dataset (two features on x and y axis)

o
®
., ool

Example dataset (ground truth labels)

N
-
, ool

K-means

Here is a pseudo algorithm:

First: (randomly) pick centers
Then iterate:
1. assign data points to nearest center (this defines the clusters)

2. update the center to the mean of the points in each cluster

3. check convergence (stop if converged, otherwise goto 1)

Example dataset

®
®
Y

Initialize k-means

Initialization
L
*
o o 70
=l."':. o°
L N L
L
o ®
L]
L
® P

10

Assign label (iteration: 0)

Label assignment

® ®
bt [
6 » z. :f‘
-... :I"'ﬁ'. 'ﬂ..
* o0’ o °
A 4.
o
L] o ®
2
®
*® L]
0 ¢ -l: = }:'
®
-2 ’. b
e @

10

Update centers (iteration: 0)

Center update

6 *® . z. .
¥ o ;-f';'. ’
, °
0 e -l: .
4
-2

10

Assign label (iteration: 1)

Label assignment

. ®
*® .
6 : % lee
.-.I-I :I"'ﬁ" ®
L _+T.. b ‘
4 ..H ..’. e ™
o fooe 3°
®
L o ®
2
®
. L]
L]
0 i'i'
. se %-‘
’
-2
s @

10

Update centers (iteration: 1)

Center update

6 2t o ‘?.. {r‘
o** :l":' o °
= “: L R oo ' o
* o -f""
, 8
0 * -l: «
'
—2

10

Assign label (iteration: 2)

Label assignment

. ®
*® o ®
6 . "?’t +f‘
.-.I-I :I"ﬁ' ®
- +o °® %
4 ..H L e ®
o Fooe "3°
"
L o ®
2
®
* .
L]
0 * o %o
.
- $“
<
—2
e

10

Update centers (iteration: 2)

Center update

. ®
®
6 ® . O?p... _1:0‘!'
o** :l“: o °
® o0’ ® *
4 oy :fi:-.’ﬂ.: °
L ¢ o ®
2
‘i
0 . oo ¥
>y
-2

10

Assign label (iteration: 3)

Label assignment

® ®
o ol
< ’ "?’1 _ti'r‘
o*’ :": o
® o0t ® *
4 e :ft-.’ﬂ.: °
L] ¢ o ®
2
.
*® L]
W ®
0 > oe] f‘:
—2 ’. b
*

10

Update centers (iteration: 3)

=
6 *® o v
e ® e
" oo ®
4 ¢ o0) o :
. Pl
.
°
2
0
—2

Center update

‘e ®
L]
L]
[]

%

10

Assign label (iteration: 4)

Label assignment

"
ﬁ I. L ”
e ® e
" o0 ®
4 ¢ o0) o :
o Pl
"
°
2
0
-2

‘e ®
L]
L]
[]

%

10

Update centers (iteration: 4)

Center update

. ®
bt ®
o '?'+ e
o** :l“: o °
* 0 ® -
R % &
.
L o ®
2
‘i
0 . oo ¥
>y
-2

Assign label (iteration: 5)

Label assignment

® ®
*® .
° . '?'+ .1"‘
-'. :": ~'.
¢ o0) o :
) N XL S
.
L] o ®
2
*® L]
0 — -l: “ oo
»
-2

Update centers (iteration: 5); it converged

Center update

® ®
*® .
° . '?'Jr 2
o’ :*“: o °
¢ o0) o :
) N XL S
°
L] o ®
2
.
L . .
L
0 e %o .
® ®
[1) #" .
2 ; - o® L
L L ®

Example dataset (ground truth labels)

2 4 6 8 10

Side note: Of course, the specific label (here color) cannot be exactly recovered. K-means recovers three
reasonable clusters, but of course fails to accurately assign the datapoints where the blue and red clusters
mix. If you are interested in learning more, check out alternative clustering algorithms..

We will now return to our goal, profiling this algorithm!

https://scikit-learn.org/1.5/modules/clustering.html

K-means clustering algorithm

First: (randomly) pick centers

Then iterate:

1. assign data points to nearest center (this defines the clusters)
2. update the center to the mean of the points in each cluster

3. check convergence (stop if converged, otherwise goto 1)

Note: Code below adapted from Jake VanderPlas.

.

Background: zip / zip*

1 In [1]: list(zip((0,1,2),(5,3,6))) # combing two lists into lists of pairs
2 Out[1]: [(@, 5), (1, 3), (2, 6)]

5 In [2]: list(zip(*[(90,1,2),(3,4,5)])) # Unpacking triples into list of 3 tuples
4 Qut[2]: [(0, 3), (1, 4), (2, 5)]

5 In [3]: zip?

6 Init signature: zip(self, /, *args, **kwargs)

/ Docstring:

8 zip(*iterables) --> A zip object yielding tuples until an input is exhausted.
9

10 >>> list(zip('abcdefg', range(3), range(4)))

11 [('a', @, @), ('b', 1, 1), ('c', 2, 2)]

https://realpython.com/python-zip-function/#using-zip-in-python

Pure Python implementation: assigning labels

1 import math

2 def distance(v, w):

3 " Computes the Euclidean distance for vectors v and w"""

4 return math.sgrt(sum((vi - wi) ** 2 for vi, wi in zip(v, w)))
5

6

/ def assign_labels(data, centers):

3 """ Assign data to closest label (corresponding to centers)."""
9 lLabels = []

10 for item in data:

11 distances = [distance(item, center) for center in centers|
12 lLabels.append(distances.index(min(distances)))

13 return labels

OoOoONOTULT PN~ WDN -

NNNMNMNMNMNMNMNNRPRPRPPRPPRPPRPPRPRPRRERRER
LUV PN NPRFRPOOCVOONOTOCULIdDNUWNEEOO

def update centers(data, labels):
" Update centers of mass according to labels """
n_centers = len((set(labels)))
n_dims = len(data[@])
centers = [[Q for i in range(n_dims)] for j in range(n_centers)]
counts = [0 for j in range(n_centers)]

for label, item in zip(labels, data):
counts| label | += 1 # keeping count of # elements and summing per label:
centers|[label] = [ci + 1i for ci, 1i in zip(centers|[label |, item)]]

return [[x / count for x in center]| for center, count in zip(centers, counts) |

def kmeans(data, n_clusters):
centers = datal-n_clusters: |
iteration = 0
while True:
old centers = centers
labels = assign_labels(data, centers)
centers = update_centers(data, labels)

if centers == old _centers:
break

return labels

Setting up cProfile

1 ## Experiment:

2 import kmeans.utils, timeit

3

4 # Creating some data:

5 n_clusters = 10

6 n_dims = 10000

/ data, gt _labels = kmeans.utils.sampledata(n_dims, n_clusters, plotting=False)
3

9 from kmeans.kmeans python import kmeans

10

11 import cProfile

12

15 cProfile.run("kmeans(data,n _clusters)", "summary kmeans.stats")
14

15 import pstats

16 stats = pstats.Stats("summary kmeans.stats')

1/ stats.sort_stats('"calls")

18 stats.print_stats()

Output of cProfile

Thu Nov 14 18:54:52 2024

Ordered by: call count

ncalls
23400000
/800000
/800000
/800000
/80000
/80000
/80000
/80000
/80000
/80

156

/8

/8

/8

/8

1

1

tottime

O OO OO OO OO OO O WONNDN

.959
433
.504
. 269
.041
. 096
.199
.971
112
. 000
. 000
.462
. 000
. 000
.331
. 000
. 000

percall

QSR cv RN o RN Bl oS R oS RN O RS RN oS BN A BN BN OO R CS BN AN BN S B QS AN

. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 006
. 000
. 000
. 004
. 000
. 000

cumtime

2.
. 392
.504
.165
.041
.096
.199
.136
112
. 000
. 000
.934
. 000
. 000
. 445
. 380
. 000

N N

=
O FRP OO0 VWO LU

959

percall

=
OPFRP OO

. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
.140
. 000
. 000
. 006
. 380
. 000

summary_ kmeans.stats

50701252 function calls in 11.380 seconds

filename:lineno(function)
/Users/alex/Code/Teaching/profiling/kmeans/kmear
{built-in method builtins.sum}

{built-in method math.sqrt}
/Users/alex/Code/Teaching/profiling/kmeans/kmeart
{method 'append' of 'list' objects}

{method 'index' of 'list' objects}

{built-in method builtins.min}
/Users/alex/Code/Teaching/profiling/kmeans/kmear
/Users/alex/Code/Teaching/profiling/kmeans/kmear
/Users/alex/Code/Teaching/profiling/kmeans/kmear
{built-in method builtins.len}
/Users/alex/Code/Teaching/profiling/kmeans/kmear
/Users/alex/Code/Teaching/profiling/kmeans/kmear
/Users/alex/Code/Teaching/profiling/kmeans/kmear
/Users/alex/Code/Teaching/profiling/kmeans/kmear
{built-in method builtins.exec}

{method 'disable' of ' lsprof.Profiler' objects

Visualization type 1 (icicle)

1 snakeviz summary_ kmeans.stats

(Call Stack)

Style: [Icicle #]

-

catosz: (1 ~ 1000 4]

kmeans_python.py:9(assign_labels)
109s

kmeans_python.py:13(<listcomp=) I‘ I|
101 s

Visualization type 2 (sunburst)

1 snakeviz summary_ kmeans.stats

(Call Stack)

Style: [Sunburst ¢]

-

Cutoff: [1 -~ 1000 #]

Alternative profiling (line profiling)

Especially for numerical code, from the cProfile output it is

= not apparent what exactly is computed (without going back to the code)

= calls/times are grouped by function calls

What if much work happens in particular lines, e.g. loading data, diagonalizing a matrix ...

For instance, most calls are from this function:

1 ncalls tottime percall cumtime percall filename:lineno(function)
23400000 2.959 ©.000 2.959 0.000 /Users/alex/Code/Teaching/profiling/kmeans/kmean:

Line-by-line profiling

line profiler is a module for doing line-by-line profiling of functions. kernprof is a convenient script
for running either line profiler.

Here we will use it in ipython with magic commands

Installation:

1 pip install line profiler

https://github.com/pyutils/line_profiler
https://ipython.readthedocs.io/en/stable/interactive/magics.html

Demo code (LineProfiling.py)

import utils

n_clusters=10 # Initalizing data
n_dims =10000
data, gt labels = utils.sampledata(n_dims, n_clusters, plotting= False)

from kmeans python import kmeans
lLabels = kmeans(data, n_clusters) # Running our kmeans
utils.score(gt labels,labels) # Evaluating performance

O oOoONOTULT DN WDN -

OoOoONOTULT PN~ WDN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

In [1]: run LineProfiling.py
0.9191471147114711
In [2]: %load_ext line_profiler

In [3]: %lprun -f kmeans kmeans(data,n clusters)

Timer unit: le-06 s
Total time: 8.55269 s

File: /Users/alex/Code/Teaching/profiling/kmeans/kmeans_python.py

Function: kmeans at line 35

Line # Hits Time
35
36 1 30.0
37
38 1 2.0
39
40 41 31.0
41 41 7422540.0 1
42 41 1130007/ .0
43
44 41 81.0
45 1 1.0
46
47 1 0.0

We spend >86% in Line 41!!!

Per Hit

Q.
81037.
27561.

2.
1.

9.

(00)

(A RN AY)

% Time

386.
13.

A RN AY)
SO

N GO O

Line Contents

def kmeans(data, n_clusters):
centers = datal-n_clusters: |

iteration = 0

while True:
old centers = centers
Labels = assign_labels(data, cen
centers = update_ centers(data, L

if centers == old_centers:
break

return labels

Quiz: How can we make this faster?

def distance(v, w):
return math.sgrt(sum((vi - wi) ** 2 for vi, wi in zip(v, w)))

def assign labels(data, centers):
lLabels = []
for item in data:
distances = [distance(item, center) for center in centers|
lLabels.append(distances.index(min(distances)))
return labels

O oOoONOTULT DN WDN -

Numpy to the rescue!

1 def distance(v, w):
2 return math.sgrt(sum((vi - wi) ** 2 for vi, wi in zip(v, w)))
3
4 def assign_labels(data, centers):
5 Labels = []
6 for item in data:
/ distances = [distance(item, center) for center in centers|
3 lLabels.append(distances.index(min(distances)))
9 return labels
Numpy code:
1 def assign_labels(data, centers):
2 "M 3assign data to closest label (corresponding to centers)."""
3 differences = (np.array(data)[:, None, :] - np.array(centers)) ** 2
4 distances = np.sqrt(differences.sum(-1))
5 return distances.argmin(l)

Quick explanation:

1 In [1]: import numpy as np

2

5 In [2]: data = np.arange(6).reshape((3,2))

4

5 In [3]: centers = np.arange(2).reshape((1,2))

6

/ In [4]: data[:,None, : |-centers # introduces extra dimension in middle
8 Out[4]:

9 array([[[@, @]],

10

11 2, 271,

12

13 4, 411D

14

15 In [5]: np.sgrt(np.sum((data[:,None, :]-centers)**2,axis = 2))

16 Out[5]:

17 array([[9. 1, # is distance of (1,2) and (1,2)

18 2.828427127, # is distance of (3,4) and (1,2) = sqrt(8)
19 5.656854251]) # is the distance of (5,6) and (1,2)

Updated line profiling 8.5s ->

1 In [8]: %lprun -f kmeans kmeans(data,n_clusters)

2 Timer unit: le-06 s

3

4 Total time: 1.88813 s

5 File: /Users/alex/Code/Teaching/profiling/kmeans/kmeans numpyl.py

6 Function: kmeans at line 28

/

8 Line # Hits Time Per Hit % Time Line Contents

Q9 ==

10 28 def kmeans(data, n_clusters):

11 29 1 5.0 5.0 0.0 centers = datal-n_clusters: |

12 30

13 31 while True:

14 52 53 24 .0 0.5 0.9 old centers = centers

15 33 53 334932.0 6319.5 17.7 Labels = assign _labels(data, cen
16 34 53 1553147.0 29304.7 32.3 centers = update_ centers(data, L
17 35 53 27 .0 0.5 0.0 if centers == old_centers:

138 36 1 0.0 0.0 0.9 break

19 37

20 33 1 0.0 0.0 0.9 return labels

Now we spend >80% for updating centers!

Quiz: How can we improve this code?

1 def update centers(data, labels):

2 """ Update centers of mass according to labels """

3 n_centers = len((set(labels)))

4 n_dims = len(data[@])

5

6 centers = [[@ for 1 in range(n_dims)] for j in range(n_centers)]
7/ counts = [@ for j in range(n_centers)]

3

9 for label, item in zip(labels, data):

10 counts|label | += 1

11 centers|label | = [

12 ci + ii for ci, ii in zip(centers|[label |, item)

13] # summing, per label

14

15 return [[x / count for x in center| for center, count in zip(centers, counts)]

Numpy to the rescue, again!

1 def update centers(data, labels):

2 """ Update centers of mass according to labels """

3 n_centers = len((set(labels)))

4 n_dims = len(data[@])

5 centers = [[@ for i in range(n_dims)] for j in range(n_centers)]

6 counts = [0 for j in range(n_centers)]

7/ for label, item in zip(labels, data):

3 counts| label | += 1

9 centers|label | = [

10 ci + 11 for ci, ii in zip(centers[label |, item)

11] # summing, per label

12 return [[x / count for x in center]| for center, count in zip(centers, counts) |
Numpy code:

1 def update centers(data, labels):

2 """ Update centers of mass according to labels """

3 n_centers = len((set(labels)))

4 return np.array([data[labels == i].mean(®) for i in range(n_centers)]|)

Updated line-profiling results... 1.8s -->

O oOoONOTULT DN WDN -

NNNRPRRPRRPRRPRRRPRRRR
NFRPOWOWONOOCUNWNREO®

In [11]: %lprun -f kmeans kmeans(data,n_clusters)
Timer unit: le-06 s

Total time:

0.196476 s

File: /Users/alex/Code/Teaching/profiling/kmeans/kmeans numpyll.py
kmeans at line 17/

Function:

41
41
41

17.
122246.
63848 .

207 .
1.

9.

Per Hit

10147.0
10.0

0.4
2981.6
1557.3

5.0
1.0

0.0

% Time

N O

=

Line Contents

def kmeans(data, n_clusters):
data = np.array(data)
centers = datal-n_clusters: |

while True:
old centers = centers
Labels = assign_labels(data, cen
centers = update_centers(data, 1

if (centers == old_centers).all(
break

return labels

Quiz: What now?

Tip: use specialized functions!

from scipy.spatial .distance import cdist

def assign labels(data, centers):
""" assign data to closest label (corresponding to centers).'"""
distances = cdist(data, centers)
return distances.argmin(l)

ONU1T A WNDN -

for comparison:

def assign labels(data, centers):
""" assign data to closest label (corresponding to centers).'"""
differences = (np.array(data)[:, None, :] - np.array(centers)) ** 2
distances = np.sqrt(differences.sum(-1))
return distances.argmin(l)

un PP WD -

Updated line-profiling results... 0.19s -->

1 In [13]: %lprun -f kmeans kmeans(data,n_clusters)
Timer unit: le-06 s

Total time: 0.092516 s
File: /Users/alex/Code/Teaching/profiling/kmeans/kmeans scipyl.py
Function: kmeans at line 17/

Line # Hits Time Per Hit % Time Line Contents
17 def kmeans(data, n_clusters):
18 1 3087 .0 3087 .60 3.7 data = np.array(data)
19 1 11.0 11.0 0.0 centers = data[-n_clusters:]
20
21 while True:
22 36 18.0 0.5 0.0 old centers = centers
23 36 23362.0 648.9 25.3 Labels = assign_labels(data, centers
24 36 60846 .0 1690.2 65.8 centers = update_centers(data, Llabel:
25
26 36 191.0 5.3 0.2 if (centers == old _centers).all():
27 1 0.0 0.0 0.0 break
28

29 1 1.0 1.0 0.0 return labels

Method comparision

kmeans_python

35
=== kmeans_numpyl
== kmeans_numpyll
30 means_scipy
= sklearn
25
w
©
-
(@)
o 20
0
=
()
E 15
4
-
-
o
10
5
0 -
0 10000 20000 30000 40000 50000

Samples for k-means

Method comparison

Run time in seconds (log)

10!

10°

1071

1072

kmeans_python
kmeans_numpyl
kmeans_numpyll
kmeans_scipy
sklearn

102

103

Samples for k-means

104

Method comparison

W =E=5
5333
mel‘Dl’DfD

nds (log)

Run time in seco
=

~

Samples for k-means

Note:

= the run time depends on the number of samples
= indeed, our implementations monotonically got better for the different variants

= the variant from the sklearn library is faster for large numbers of samples.

Other tools to improve speed (see excercises)

= Detailed guide on Python - C++ interfacing

SciPy, etc.

= Numba for just-in-time compilation

https://realpython.com/python-bindings-overview/
https://cython.readthedocs.io/en/latest/index.html
https://numba.pydata.org/numba-doc/dev/index.html
https://numpy.org/doc/stable/f2py/

Questions?

Today’s summary

Always profile your code, before you optimize it!

How to profile?

= We discussed profiling tools cProfile, timeit, line_profiler incl. visualization methods
= We learned about one of the core clustering algorithms. It’s otherwise not important for this class, but I

think it’s algorithm you should know
How to optimize?

= Numpy is faster, always try to write vectorized code!

» Use existing, optimized and specialized functions (cdist, kmeans from a library, ...). This is also much
better maintained

= For specialized functions, consider writing them in Fortran, C++ and link

= We learned about memoization and functools: Iru cache

After lunch:

= Monday 13 - 15: exercises working on v6 of your project
= Monday 15:15 - 16: my office hours at SV 2811

