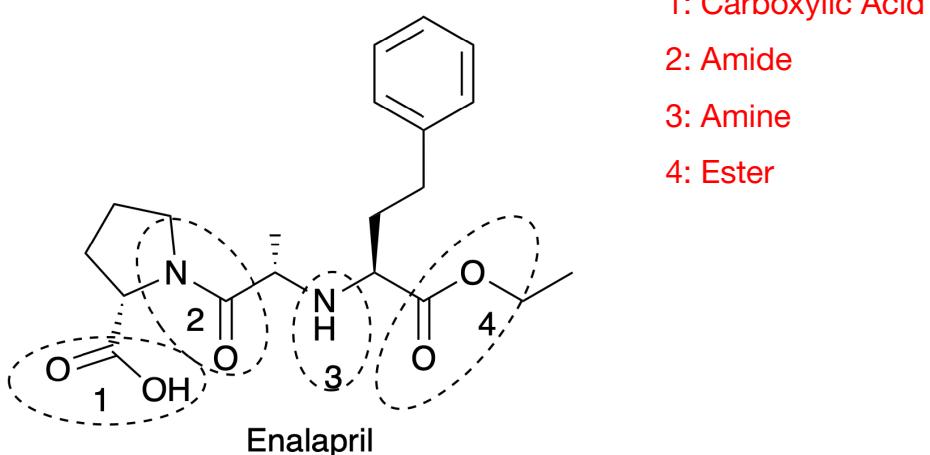


Solutions Mock Exam

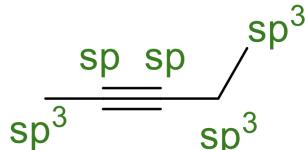
BIO-110: Bio-Organic Chemistry (2024)


Important: This Exam will NOT be corrected individually. It serves simply as a guidance for students to get an overview of the exam concept. The topics covered in the mock exam do not necessarily reflect what will be asked in the final exam. Ultimately, it is a selection of exercises from the pool of topics we covered during the course, the exercise sessions and discussions.

Good Luck! :)

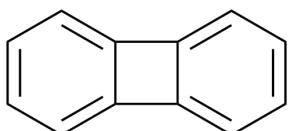
1. Structure & Bonding

1.1. Functional Groups

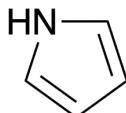

Name all functional groups of Enalapril. (Circled with dashed lines)

1.2. Hybridization

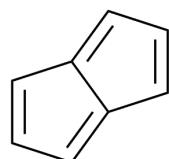
Indicate the hybridization of all atoms except hydrogen for the following molecules.


sp^2

1.3. Aromaticity


Classify the following as aromatic, non-aromatic or anti-aromatic.

1


- aromatic
- non-aromatic
- anti-aromatic

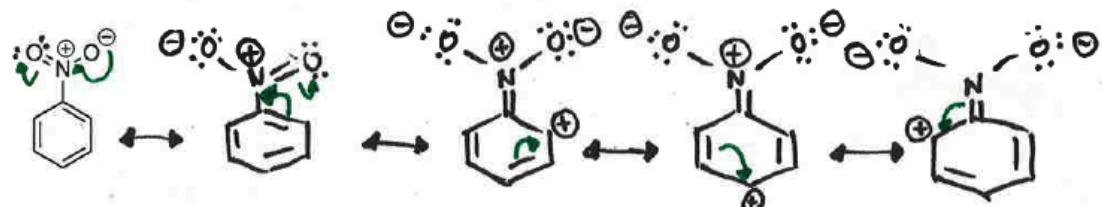
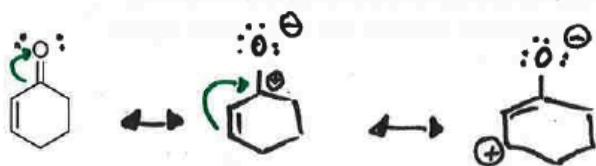
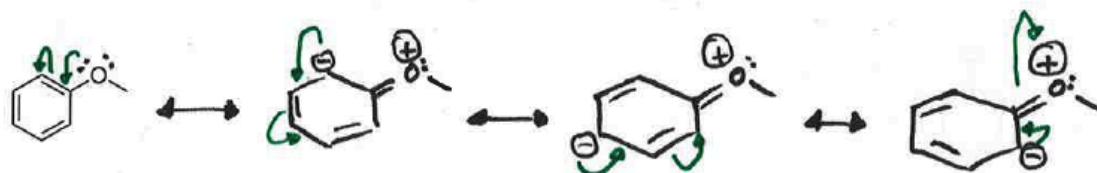
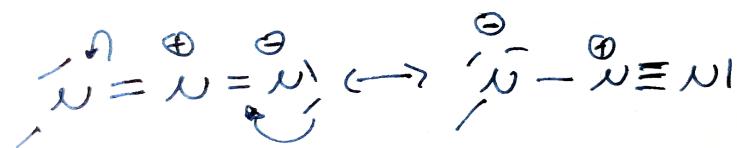
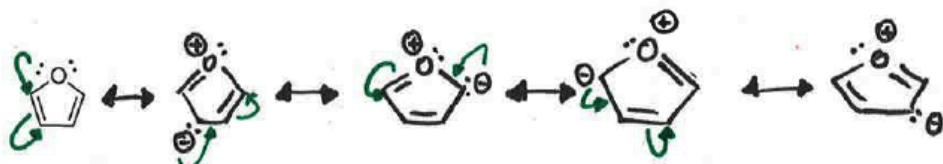
2

- aromatic
- non-aromatic
- anti-aromatic

3

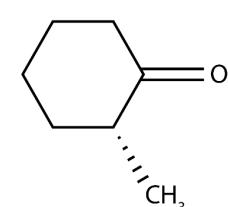
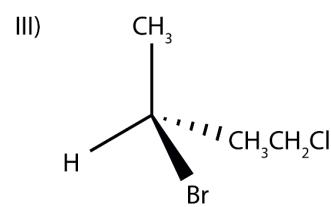
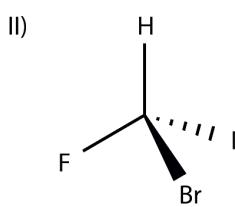
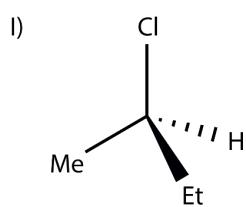
- aromatic
- non-aromatic
- anti-aromatic

1: **Anti-aromatic**, there are 12p electrons






2: **Aromatic**, lone pair is delocalized in the cycle \rightarrow 6p electrons

3: **Anti-aromatic**, there are 8p electrons

2. Conformation & Stereochemistry

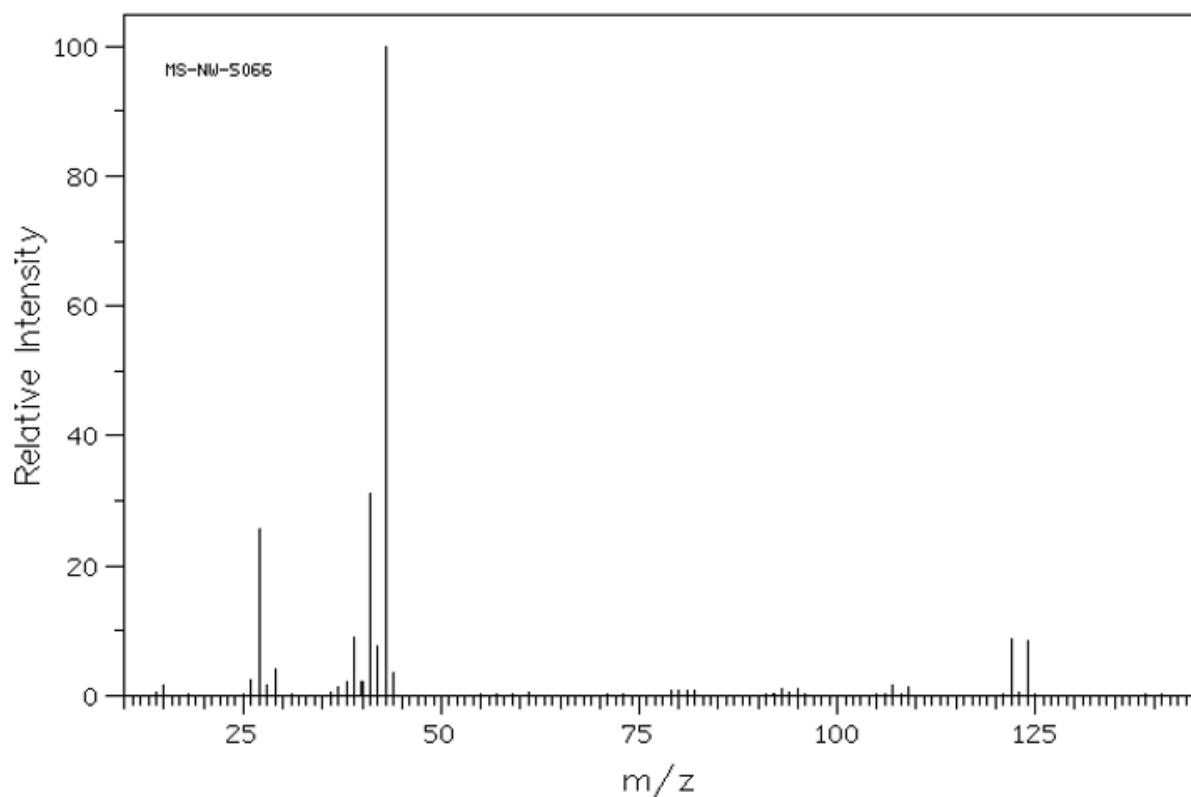




2.1. Resonance structures

Draw the Lewis structure of each resonance contributor for the following molecules.

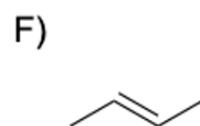
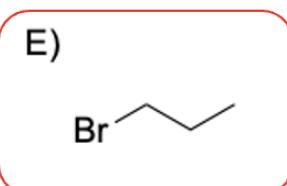
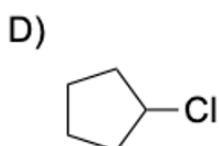
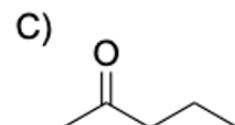
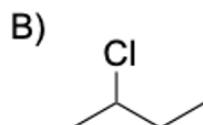
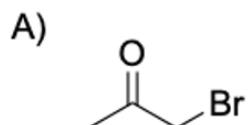
2.2. Chirality

Assign the chiral center as R or S.

I) R
II) S
III) S
IV) R


3. IR & NMR & MS**3.1 MS**

a) From the spectra below indicate the m/z number corresponding to the base peak, the parent peak and the $M+2$ peak.







Base peak: 43 m/z

Parent peak: 122 m/z

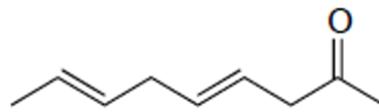
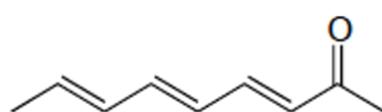
$M+2$ peak: 124 m/z

b) Which of the following compounds correspond to the spectra shown above:

The M and M+2 peak are almost identical in intensity, which tells us that the molecule must contain Br. If we then calculate the Mw of the two compounds that contain Br and compare it to the M peak in the spectra, it becomes evident that it must be E.

$$\text{Mw A): } (3 \times 12 \text{ Da}) + (1 \times 16 \text{ Da}) + (5 \times 1 \text{ Da}) + (79 \text{ Da}) = 136 \text{ Da}$$

$$\text{Mw E): } (3 \times 12 \text{ Da}) + (7 \times 1 \text{ Da}) + (79 \text{ Da}) = 122 \text{ Da}$$

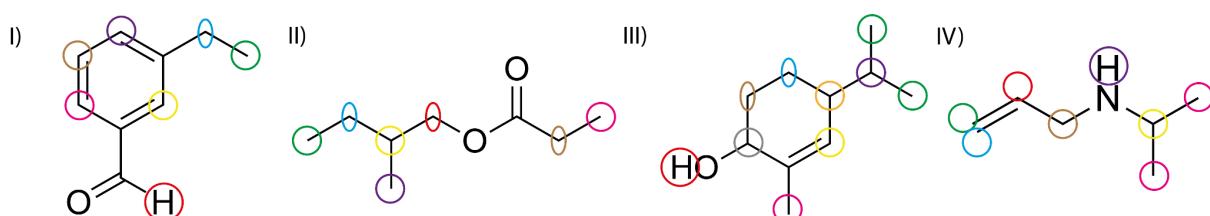


3.2 UV-VIS and IR

a) Which would be more useful in distinguishing the two compounds shown below: IR or UV spectroscopy?

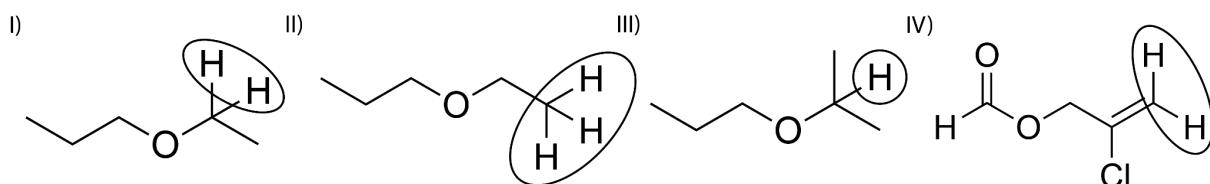
One would use UV, as they have different extended conjugated systems and will therefore absorb at different wavelengths.

IR would not tell us much as they both have a carbonyl as a functional group.

b) Which molecule absorbs at a longer wavelength?

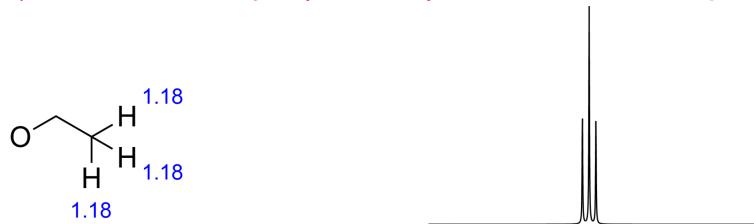


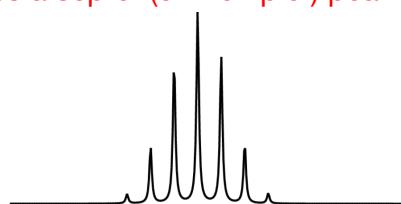
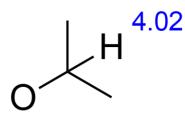
A>B: In general, the longer the system of conjugated pi-bonds the longer the wavelength it absorbs, as the energetic HOMO-LUMO gap shrinks. A has the longer conjugated system, while B does have two isolated, non-conjugated double bonds.

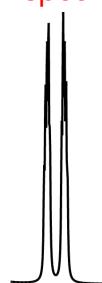
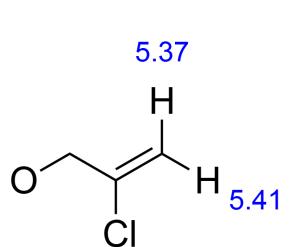

3.3 NMR

a) For each of the structures indicate the chemically equivalent protons and how many peaks would be found in the ^1H NMR spectrum. Additionally, indicate for each structure which peak you expect to have the highest PPM.

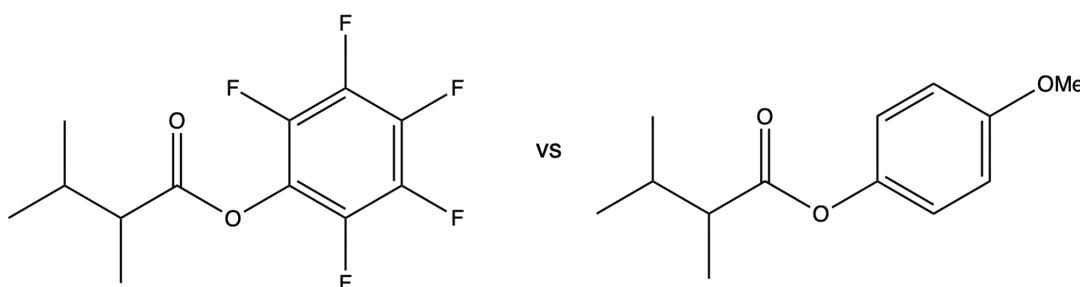
I) 7 peaks, the one with highest PPM is the one closest to the oxygen (in red).
 II) 7 peaks, the one with highest PPM is the one closest to the oxygen (in red).
 III) 9 peaks, the one with highest PPM is the one closest to the oxygen (in red).
 IV) 7 peaks, highest peak is from one of the hydrogens attached to the double bond (in red/green/blue).


b) Sketch $^1\text{H-NMR}$ peak shapes for the circled protons in the following partial structures.



I) Two chemically equivalent protons with three neighbors show as a quartet peak.

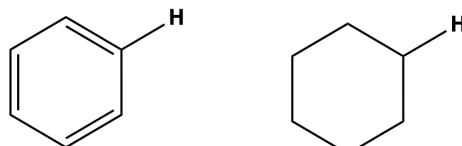


II) Three chemically equivalent protons with two neighbors give a triplet peak.

III) One proton with six neighbors gives a septet (or multiplet) peak.

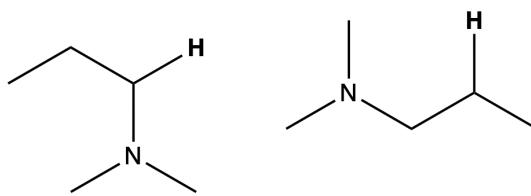

IV) These two protons are not chemically equivalent! Both have no neighbors hence we will see two singlet peaks on the 1H NMR spectrum.

4. Organic Reactivity

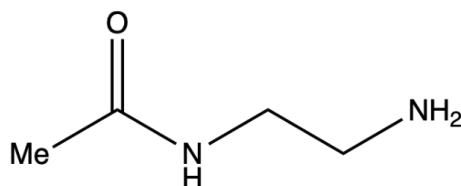
4.1. Reactivity


a) Compare the reactivity of the following compounds towards benzylamine. Which one would you expect to react faster and why?

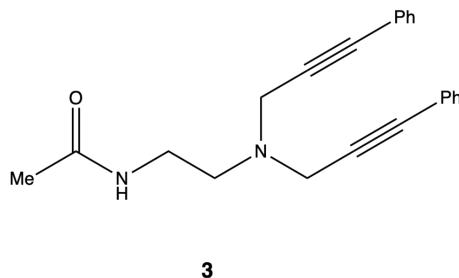
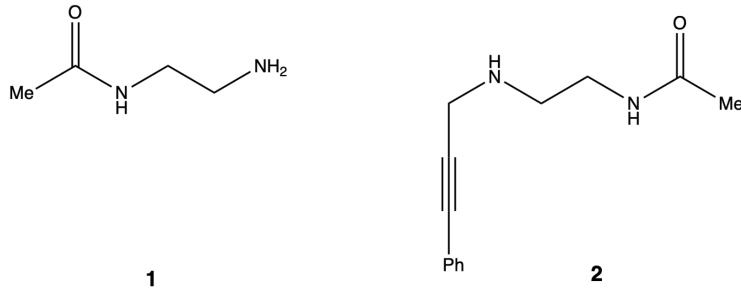
The compound on the left is expected to react faster. The carbonyl carbon is more electrophilic due to the many electronegative fluorines on the aromatic substituent. An alternative explanation would be that the negative charge on either leaving group would be stabilized by fluorine, while it is destabilized by the pi donating methoxy group.


b) Compare the highlighted protons and determine which one is more acidic. Give a brief explanation.

i)


The proton on the left side is more acidic. Protons on sp³-hybridised carbons are less acidic than on sp²-hybridised carbons. Higher s-character stabilizes negative charges.

ii)



The proton on the left compound is more acidic due to the electron withdrawing effect of the nitrogen, which would be closer to the negative charge.

c) Order the heteroatoms in the compound below from least to most basic.

The amide nitrogen is the least basic. Its lone pair is delocalized to the oxygen and hence well stabilized. The oxygen is very electronegative and hence also not as basic as the primary amine. The primary amine's nitrogen is the most basic.

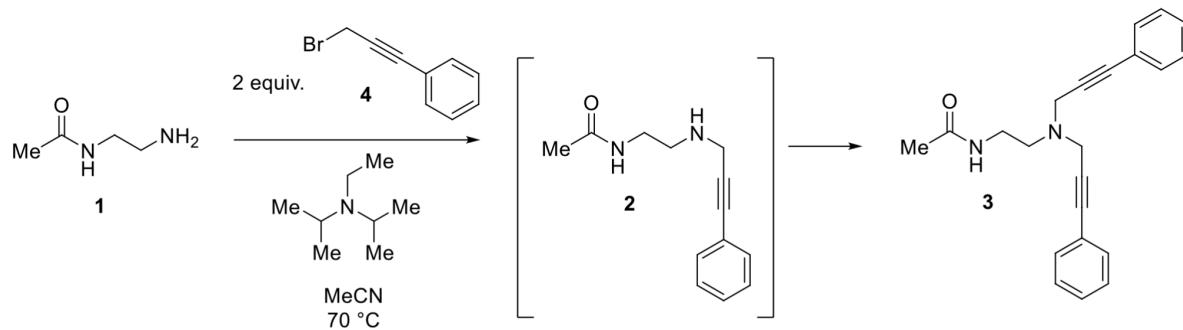
d) Order compounds 1, 2, 3 from least to most basic. Explain your answer.

Alkylgroups are donors that stabilize the positive charge resulting from protonation. Hence: (most basic) 3 > 2 > 1 (least basic)

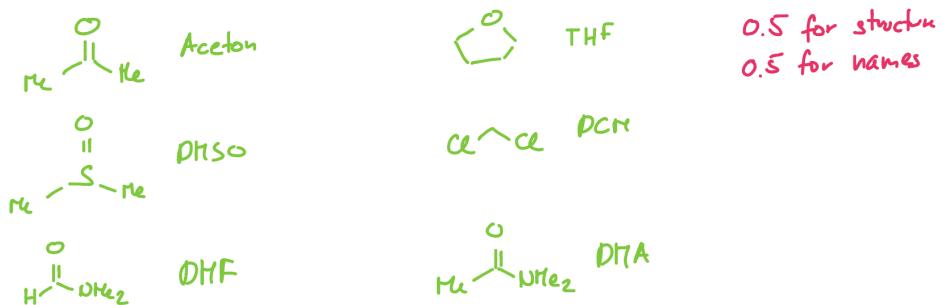
5. Nucleophilic Substitutions & Eliminations

5.1. Reaction Control

Answer the following questions by ticking the corresponding correct answers. Wrong answers will result in a deduction of points, no less than 0 points can be achieved.


a) Tick the factors that clearly favor the S_N1 mechanism over the S_N2 mechanism:

- i) good nucleophile
- ii) presence of a strong base
- iii) large steric demands of the substrate
- iv) strong electron-donor substituents at the reactive center
- v) good leaving group
- vi) basic leaving group

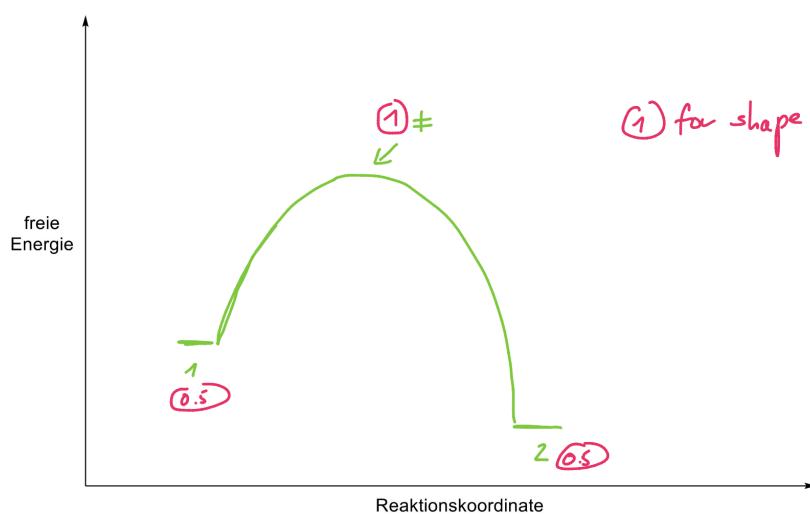

b) Tick the factors that clearly favor the S_N2 mechanism over the E2 elimination mechanism:

- i) good nucleophile
- ii) strong π acceptors close to the reactive center
- iii) lower temperature
- iv) good leaving group
- v) absence of a strong base
- vi) possibility of anti-arrangement of leaving group and proton

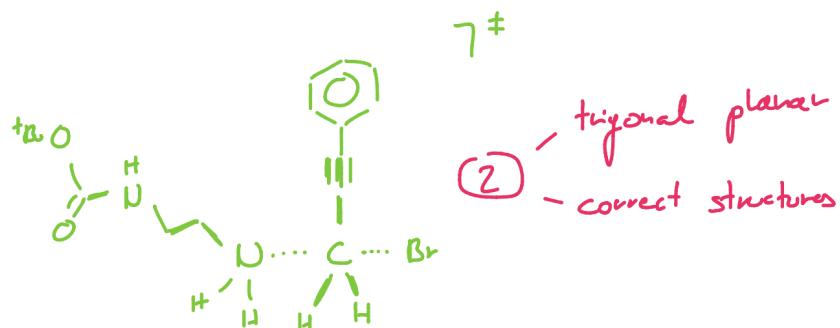
5.2. Reaction Mechanisms



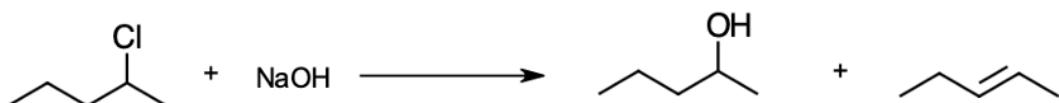
a) The reaction shown above takes place in MeCN (acetonitrile), a polar, aprotic solvent. Give one further example of a polar, aprotic solvent including its structures (you may use the common abbreviations for the names of the solvents).

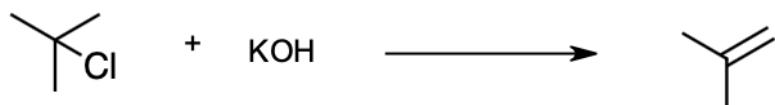


b) What kind of reaction is this? Which of the molecules shown below reacts as a nucleophile and which as an electrophile? Circle the nucleophilic and electrophilic sites in the molecules (only those sites that take part in the reaction).

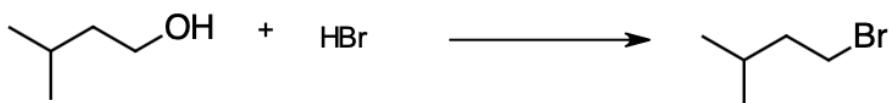

Sp2 (1)

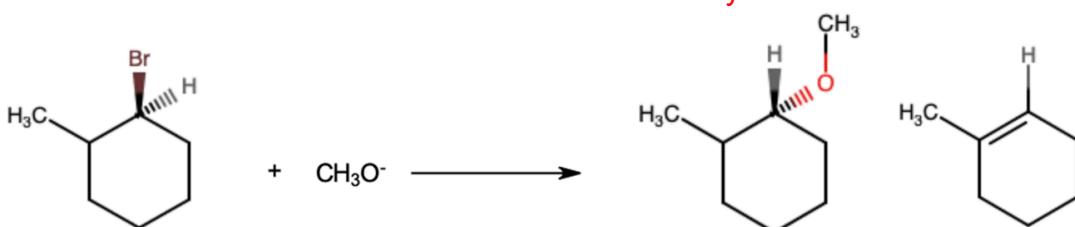
c) Sketch the reaction diagram (free energy versus reaction coordinate) for the reaction from 1 to 2. State the energy levels of the reactants, any intermediates and products. Draw in your diagram where the rate-determining transition state is.


d) Draw the structure of the rate-determining transition state from 1 to 2.

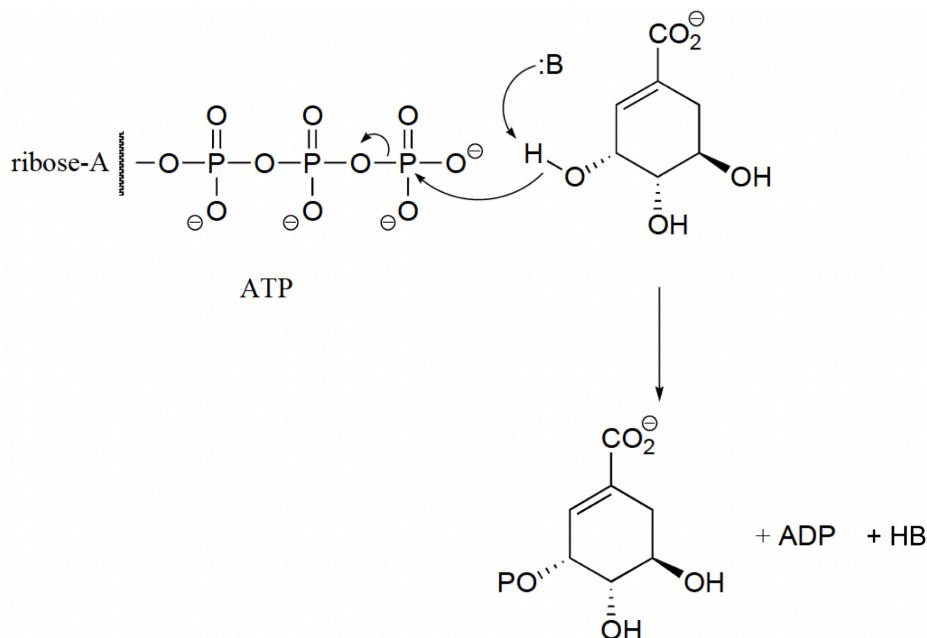

5.3 Substitution vs Elimination

Predict the mechanism (SN1, SN2, E1, or E2) and draw the organic product(s) for each reaction. Account for any regioselectivity and stereoselectivity where relevant.


a) SN2 and E2 reactions: secondary (2°) substrate; Cl^- is a good leaving group; OH^- is a strong base and a strong nucleophile.


b) E2: tertiary (3°) substrate; Cl^- is a good leaving group; OH^- is a strong base and a strong nucleophile.

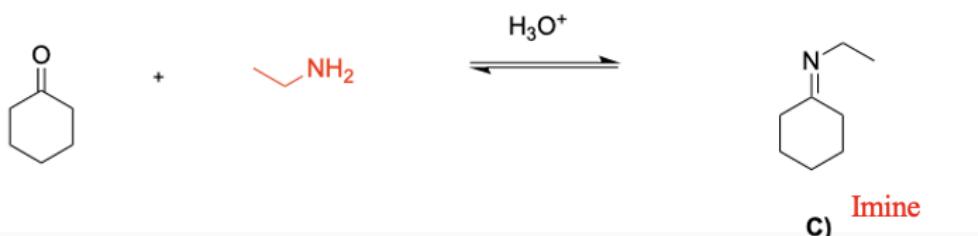
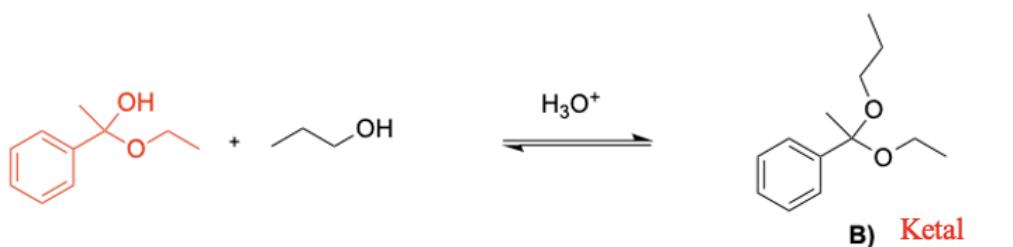
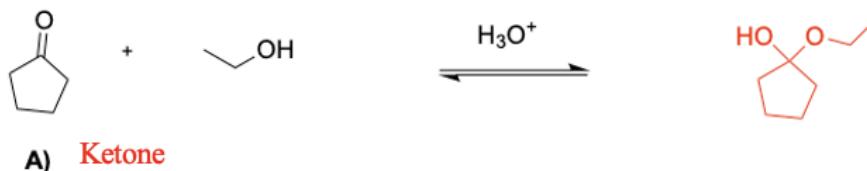
c) SN2: primary (1°) substrate; OH^- in acidic environment can get protonated and become H_2O , which is a good leaving group; Br^- is a strong nucleophile.



d) SN2 and E2: secondary (2°) substrate; Br^- is a good leaving group; CH_3O^- is a strong base and a strong nucleophile. SN2 mechanism leads to the inversion of stereochemistry.

6. Phosphate Transfer Reactions

Draw a likely mechanism for reaction catalyzed by shikimate kinase in the aromatic amino acid biosynthesis pathway. Stereochemistry of the product is not indicated in the figure below - in your mechanism, show the stereochemistry of the product, and explain how you are able to predict it from your knowledge of kinase reactions.

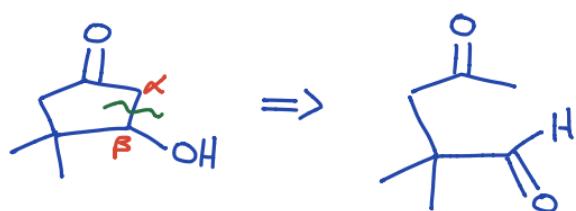
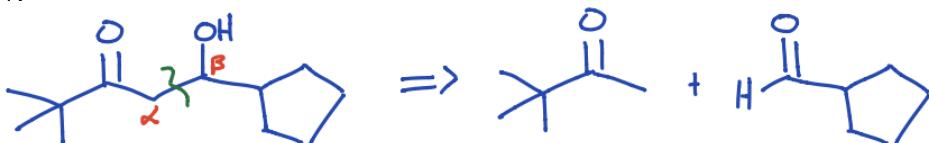




7. Carbonyl Chemistry I

7.1. Reactions

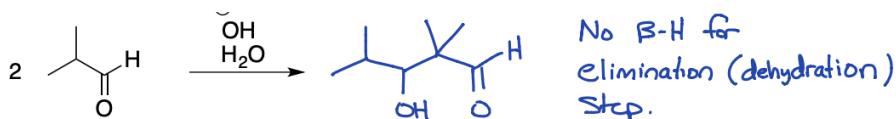
a) For the following 3 reactions, categorize the functional group of compounds A), B), C), as a hemiacetal, hemiketal, acetal, ketal, aldehyde, ketone or imine.

b) Draw the missing reactants/products of the reactions depicted below.



c) Indicate if the following statements are right or wrong (no negative points).

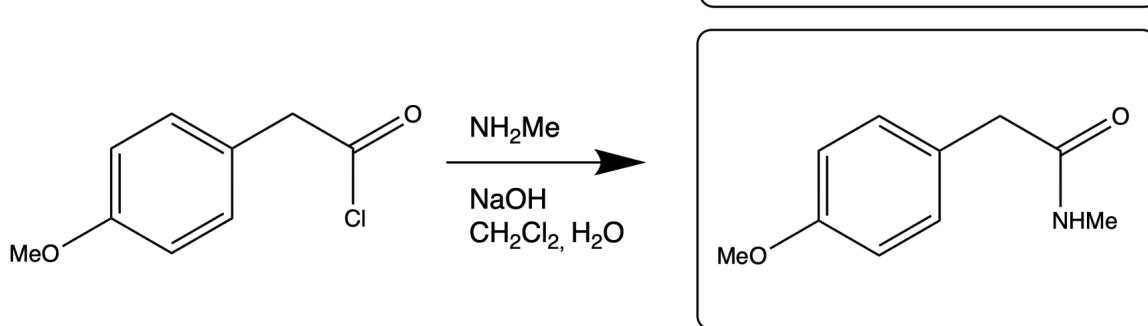
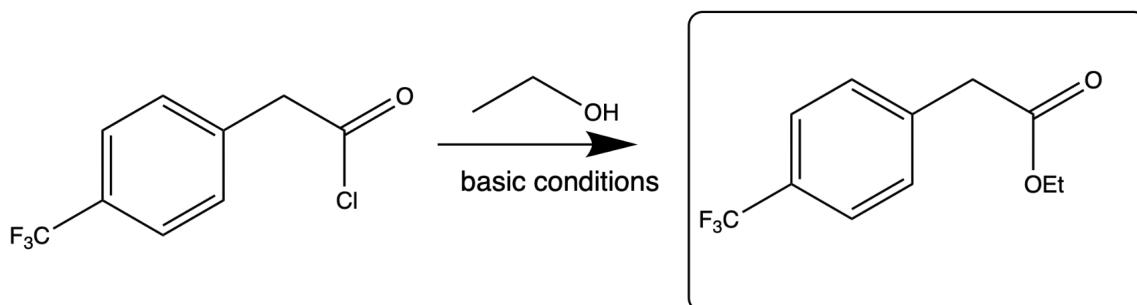
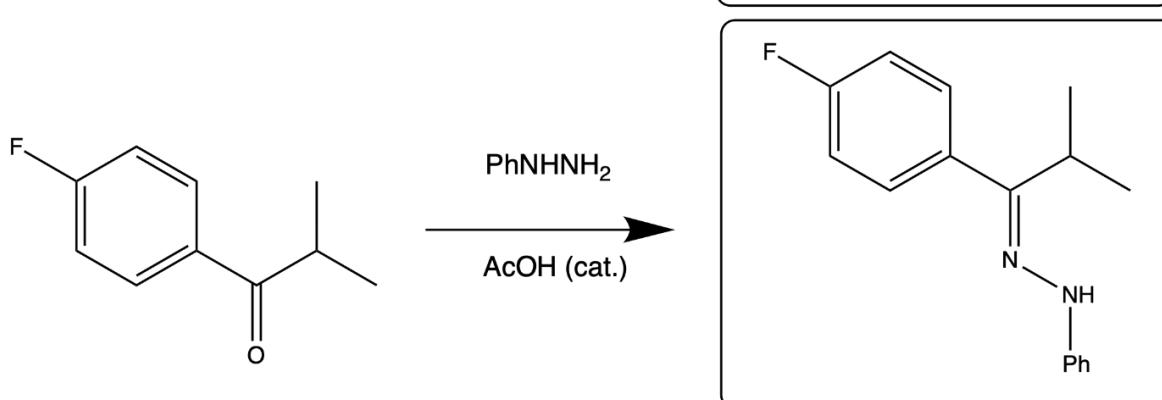
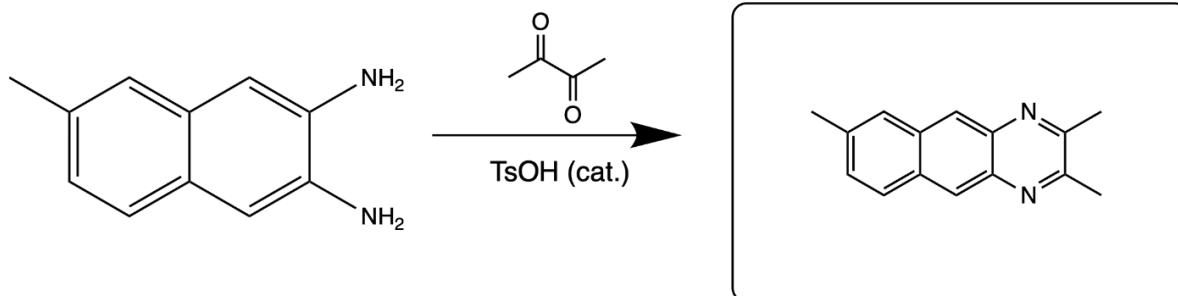
A. In a non-enzymatic addition reaction to a carbonyl the resulting product will be a 50/50 mixture of the two enantiomers (racemate).	<i>Right</i>	<i>Wrong</i>
B. The carbon of a carbonyl group is a good nucleophile.	<i>Right</i>	<i>Wrong</i>
C. Hydrolysis of a hemiacetal leads to an aldehyde.	<i>Right</i>	<i>Wrong</i>
D. A ketone can never be transformed into an imine.	<i>Right</i>	<i>Wrong</i>

8. Carbonyl Chemistry II


8.1. Retro Aldol Reaction

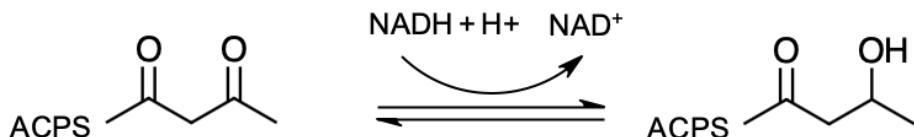
What starting material(s) is/are needed to prepare each compound below via an aldol reaction?

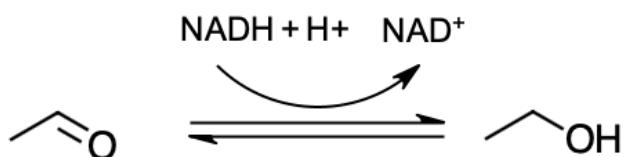
8.2. Aldol Reaction





Draw the product formed in the aldol reactions below. If multiple products are possible, explain why your choice is the preferred product.

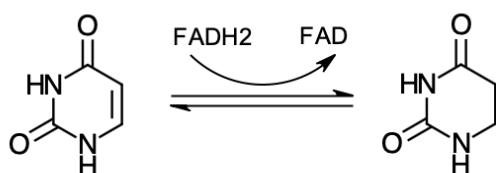
For the second reaction: Intramolecular Aldol only works well with reactions that form 5-6 rings. -> Stable ring pushes reaction

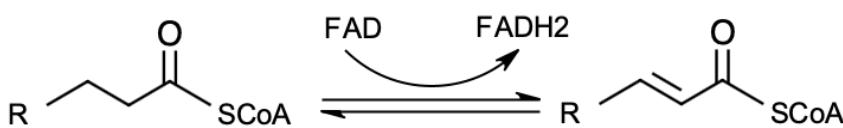
8.3 Reactions


Draw the main product for each of the following reactions in the corresponding empty box. (Hint: Ph = Phenyl, Me = Methyl, Ac = Acetyl, TsOH = Tosylic acid)


9. Oxidations & Reductions

Complete the redox reactions, indicating hydride ion movement and identifying which compound undergoes oxidation and which undergoes reduction.


a) Hydride ion (H-) from NADH is transferred to the electrophilic carbonyl carbon (C=O) of the substrate's ketone group. NADH undergoes oxidation and substrate undergoes reduction.


b) Hydride ion (H-) from NADH is transferred to the electrophilic carbonyl carbon (C=O) of the substrate's ketone group. NADH undergoes oxidation and substrate undergoes reduction.

c) A hydride ion (H^-) from $FADH_2$ is transferred to the electrophilic β -carbon ($C\beta$) of the substrate's α,β -unsaturated carbonyl compound (or simply to the alkene). $FADH_2$ undergoes oxidation, and the substrate undergoes reduction.

d) Hydride ion (H^-) from substrate is transferred to the nitrogen atom of FAD. Substrate undergoes oxidation and FAD undergoes reduction.

The Periodic Table of the Elements

1	H	Hydrogen 1.00794
3	Li	Lithium 6.941 9.012182
4	Be	Beryllium 9.012182
11	Na	Sodium 22.989770 24.3050
12	Mg	Magnesium 24.3050
19	K	potassium 39.0983 40.078
20	Ca	Calcium 44.955910
21	Sc	Scandium 47.667
22	Ti	Titanium 50.9415
23	V	Vanadium 51.9961
24	Cr	Chromium 54.938049
25	Mn	Manganese 55.845
26	Fe	Iron 55.845
27	Co	Cobalt 58.933200
28	Ni	Nickel 58.6934
29	Cu	Copper 63.546
30	Zn	Zinc 65.39
31	Al	Aluminum 10.811 12.0107
32	Si	Silicon 12.981358 14.00674
33	P	Phosphorus 28.0855 30.973761
34	S	Sulfur 32.0666 33.0666
35	Cl	Chlorine 35.4527 37.9448
36	Ar	Argon 39.948
37	Rb	Rubidium 65.4678 87.62
38	Sr	Samarium 88.909385
39	Y	Yttrium 91.224
40	Zr	Zirconium 92.906358
41	Nb	Nobium 93.8055
42	Mo	Molybdenum 95.934
43	Tc	Rhenium 101.07
44	Ru	Ruthenium 102.90550
45	Rh	Rhodium 106.42
46	Pd	Palladium 107.8682
47	Ag	Silver 112.411
48	Cd	Cadmium 113.818
49	In	Inert 114.818
50	Ga	Gallium 115.73
51	Ge	Germanium 116.73
52	As	Arsenic 118.710
53	Se	Selenium 121.760
54	Xe	Xenon 126.90447 131.29
55	Cs	Cesium 132.90545 137.327
56	Ba	Barium 138.9055
57	La	Lanthanum 178.49
58	Hf	Hafnium 180.9479
59	Ta	Tantalum 183.84
60	W	Tungsten 186.207
61	Re	Rhenium 190.23
62	Os	Osmium 193.217
63	Pt	Platinum 195.078
64	Au	Gold 196.9655
65	Hg	Mercury 200.59
66	Dy	Dysprosium 204.3333
67	Ho	Holmium 207.2
68	Tm	Thulium 208.98038
69	Yb	Ytterbium (209)
70	Lu	Lutetium (210)
71	Yt	Yttrium (212)
72	Fr	Francium (223)
73	Ra	Radium (226)
74	Ac	Actinium (227)
75	Rf	Rutherfordium (261)
76	Ds	Dubnium (262)
77	Bh	Berkeleyium (263)
78	Mt	Mendeleyevium (265)
79	Hs	Hassium (266)
80	Bh	Berkelium (267)
81	Ts	Tsungsten (268)
82	It	Itinerium (269)
83	Tl	Thulium (270)
84	Po	Polonium (271)
85	At	Astatine (272)
86	Rn	Radon (273)

58	Ce	Cerium 140.116
59	Pr	Praseodymium 140.90765
60	Nd	Neodymium 144.24
61	Pm	Promethium (145)
62	Eu	Europium 150.36
63	Sm	Samarium 151.964
64	Gd	Gadolinium 157.25
65	Tb	Terbium 162.40
66	Dy	Dysprosium 164.93032
67	Ho	Holmium 167.26
68	Er	Erbium 168.93421
69	Tm	Thulium 173.04
70	Yb	Ytterbium 174.067
71	Lu	Lutetium 175.04
72	Yt	Yttrium 176.94421
73	Fr	Francium 180.95552
74	Ra	Radium 186.96257
75	Ac	Actinium 196.97257
76	Rf	Rutherfordium 209.98421
77	Ds	Dubnium 210.98421
78	Bh	Berkeleyium 211.98421
79	Ts	Tsungsten 212.98421
80	It	Itinerium 213.98421
81	Tl	Thulium 214.98421
82	Po	Polonium 215.98421
83	At	Astatine 216.98421
84	Rn	Radon 217.98421
85	At	Astatine 218.98421
86	Rn	Radon 219.98421

1995 IUPAC names and Approved Names from <http://www.chem.qmul.ac.uk/iupac/ATW/>
112 from <http://www.ESI-Live.com>
113 from <http://www.ESI-Live.com>

Compound	pK_a
H-Cl	-7
Carboxylic acids*	R-CO-H
β-Dicarbonyls*	$\text{RC-CO-H}_2\text{-CR'}$
β-Ketoesters*	$\text{RC-CO-H}_2\text{-COR'}$
β-Diesters *	$\text{RO-CO-H}_2\text{-COR'}$
Water	HO-H
Alcohols	RCH_2OH
Acid chlorides*	$\text{RCH}_2\text{-CO-Cl}$
Aldehydes*	$\text{RCH}_2\text{-CO-H}$
Ketones*	$\text{RCH}_2\text{-CO-R'}$
Esters*	$\text{RCH}_2\text{-CO-R'}$
Terminal alkynes	$\text{RC}\equiv\text{C-H}$
LDA	$\text{H-N}(i\text{-C}_3\text{H}_7)_2$
Terminal alkenes	$\text{R}_2\text{C}=\text{C-H}$
Alkanes	$\text{CH}_3\text{CH}_2\text{-H}$

Source: <https://keski.condesan-ecoandes.org/organic-chemistry-pka-chart/>