Introduction to Quantum Science and Technology

Final exam Assignment date: January 17, 2023, 9h15
Fall term 2022 Due date: January 17, 2023, 12h15

QUANT 400 — Exam problems — Course edition 2022

These are 6 problems given in the exam of the 2022 edition. In the 2023 edition there will
be 5 problems based on the material taught this semester.



Problem 1. Module 1 - Zoe Holmes

(a)

The Hadamard (H) and Phase (S) gates takes the form
1 /1 1 10
H = — =
5 (1 _1) and S (0 z)
Show that,

i. X=HZH and Y = SHZHST, where X, Y and Z are Pauli operators. (2 marks)

ii. Hence describe how to measure in the X basis and Y basis on a quantum computer
that can only measure in the computational (Z) basis. (2 marks)

i. The circuit shown below is called the Hadamard test. Show that it can be used to
measure R[(|U]Y)]. (3 marks)

ii. How can this circuit be modified to measure I[(¢|U)] ? (Please draw your
proposed circuit). (3 marks)

Suppose you know how to prepare |¢;) and |¢q), i.e. you know circuits Ry, and Ry,
such that Ry, |[0) = |¢1) and Ry,|0) = |¢2), but are interested in computing (x|M|x)
for |x) = a|é1) + B|pa) (for any real a and ) where M is an arbitrary observable.

i. Show that (x|M|[x) = a*(¢1|M|¢1) + B*(¢2|M|¢2) + 208 R[(d2|M]é1)]. (1 mark)

ii. How could you compute the terms (¢1|M|¢p1) and (pa| M |p2) on a quantum com-
puter? You may assume you know a circuit Ry, to rotate M into the computational
basis, e.g. M = Ry ZR!,. (1 mark)

iii. How could you compute R[{¢2|M|¢;)] on a quantum computer? You may assume

that you know how to decompose M into a sum of unitary operators, e.g. M = Zj c;U;
where the {c;} are scalars and the {U;} are a set of unitaries. (3 marks).

iv. Hence sketch the circuit diagrams required to compute (x|M|x) when |¢;) = |++),
lp2) =100), M = Z®Y, a=2and §="7. (No need to decompose the required gates
into basic single and two qubit gates). (3 marks)

Suggest a possible application of the Hadamard test and comment on the suitability
of the Hadamard test for near-term quantum computers. (2 marks)

Figure 1: Hadamard Test



Solution to Problem 1:

(a) i

1.

(1 mark)

1 0\ /0 1 1 0 0 —1
T: T: pum— =
suzns~sxst - (V) (O ) (1 0) (0 ) oy

(1 marks)

ii. (Y| X)) = (W|HZH|¢). Hence, it is possible to measure in the X basis by first
applying H and then measuring in the computational basis. (1 mark)

Similarly, (¥|Y|¢)) = (Y|SHZHSTb). Tt is possible to measure in the Y basis by
first applying the inverse of the phase gate ST, then H and then measuring in the
computational basis. (1 mark)

i [0¥) = | +1) = Z5(109) + U19)) = [thou). (1 mark)

The circuit measures
({O[1) + (1]0) + (0]0) (¢ [U])) + (1[1)(|UT|¢))
((@IU) + @[UT[) = R[(|U )]

<¢out |X |1/}out> -

N~ Do~

(2 marks)

ii. The trick is to work the previous calculation backwards.

S0 1] = 5 (WIUT) — (IU])
= 2 (011) + (110) + (010) (U1 — (LILYWI 1)) = (Whur| M e
with
= (8 )=
(2 marks)

Hence it is possible to measure S[(¢|U|¢)] by applying H to the ancilla and then C—U
as in the original Hadamard test but then measuring Y. That is, running the standard
Hadamard test but replacing the final Hadamard gate with STH. (1 marks).



(c)

i. By basic linear algebra we have

(XIM|x) = &®(¢1| M| 1) + 5> (p2| M| 2) + 2R[ov3(ho| M | 1))
= (1| M|d1) + B (p2| M| ) + 206 R[ (2| M|6b1)]

(1 mark)

ii. The term (¢1|M|¢p1) can be measured simply by preparing |¢;) and then measuring
M (e.g. by applying R}, then measuring in the computational basis). Measuring the
term (¢po|M|¢po) is entirely analogous. (1 mark)

iii. To see how to measure the term R[(¢p2|M|¢1)] note that

R[(d2|Mp1)] =D ¢;R[(O|R],U; Ry, 0)] -

J
Each of the terms %[<O|RLQUjR¢1|O)] can be measured using a Hadamard test. (3
marks.)
ii. The circuits that need to be run in this case are:
(I ® HST)(H ® H)|00),
(I ® HST)|00),
(Hl®Il)C-(HZ® HY)(H @ I ® 1)]000)

(followed by computational basis measurements). Then we can compute (x|M|y) using
post processing.

(3 marks)

Potential applications: Computing the inner product between a pair of states. Sim-
ulating a linear combination of quantum states, this could be useful to model more
complex quantum states that are hard to prepare on a quantum computer or to sim-
ulate non-physical states (e.g. non-normalized states). (Or anything sensible). (1
mark)

It only requires one ancilla unitary but implementing controlled unitaries such as C'—U
can require a large number of two qubit gates (depending on the depth/structure of
U). (Or other sensible comments demonstrating an understanding of the constraints
of near-term hardware). (1 mark)



Problem 2. Module 1 - Nicolas Macris
The problem has two independent parts.
Part 1: imperfect BB84. (10 marks) We let |a) = cosar [0) +sina [1), |ay ) = —sina |0) +

1 1

_ 1
cosa|1), and H = 7 (1 4
to generate a one-time pad, but they do not know that their respective encoding and decoding

basis are misaligned by a (small) angle . We remind the first steps of the protocol:

) the Hadamard matrix. Alice and Bob use the BB84 protocol

e Alice generates two independent random bit sequences x; and e;, « = 1,...,n. Each
sequence is i.i.d with uniform probabilities 1/2 for each bit. If e; = 0 she sends (to
Bob) a qubit in state |z;). If e; = 1 she sends a qubit in state H |z;).

e Bob generates a random sequence d; . .. dy of i.i.d bits with uniform probabilities 1/2.
If d; = 0 Bob measures the received state with the basis |a), |ay), and if d = 1 he
measures with the basis H |a), H |ay). When measurements output |a) or H |a) he
registers y; = 0, and when measurements output |, ) or H |a ) he registers y; = 1.

(a) Compute P(z; = yile; = d; = 0,2; = 0); P(z; = ysle; = d; = 0,2; = 1); and
P(z; = yile; = di = 1,2; = 0); P(v; = yile; = d; = 1,2, = 1). Deduce P(z; = yile; = d;)

(b) Explain the rest of the protocol and in particular explain how Alice and Bob can
evaluate the misalignment of their basis thanks to the security test (assuming for some
reason they know the protocol is noiseless and there is no eavesdropper).

Part 2: imperfect dense coding. (10 marks) Alice and Bob use dense coding to commu-
nicate 2 classical bits. But they dont know they share state |S) = \%(]O)A ®10) 5+ (1), ®
11) 5 +10) ,®|1) ) instead of the usual Bell state. We recall the steps used by Alice and Bob:

e In order to send message ij € {00,01,10,11} Alice applies the unitary Zin‘ to her

qubit and then sends it to Bob. We recall X = ((1) é) and Z = ((1) _01)

e Once in possession of the pair Bob performs a measurement in the Bell basis |U*) =
75(100) £[11), [@*) = 5(]01) £ [10). Bob’s decoding map is [¥*) — 00, [&*) — 01,
W) — 10, |[&7) — 11.

(a) Prove that |S) is an entangled state.

(b) For each message ij, what is the state of the pair of qubits in Bob’s lab just after
receiving Alice’s qubit?

(c) Suppose now Alice intends to send message 10. What are the possible measurement
outcomes of Bob and their respective probabilities?

(d) Still assuming Alice’s message is 10, what is the probability of a transmission error?



Solution to Problem 2:
Part 1

(a) e For e; = 0 Alice sends qubits |x;) = |0),|1). And for d; = 0 Bob’s measurement,
basis is |a) , |ay ). Thus applying Born’s rule:

P(z; = yiles = d; = 0,2, = 0) = | (a| |0) |* = (cos )?
P(z; = yiles =d; = 0,2, = 1) = | {a||1) |* = (cos a)?

e Similarly, for e; = 1 Alice sends qubits H |z;) = |+),|—). And for d; = 1 Bob’s
measurement basis is H |a) , H |« ). Thus applying Born’s rule:

P(x; = yile; = d; = 1,2; = 0) = | (a| HTH |0) |? = (cos ar)?
Plr;=yles=di =12, =1) = [ {a | H'H 1) |* = (cos a)?

Therefore since P(x; =0) = P(z; =1) =1/2

1 1
P(x; = yile; =d; =0) = é(cos a)® + 5(005 a)? = (cos a)?
and
1 2, 1 2 2
Pz, =yle; =d;=1) = E(cosa) + é(cosa) = (cos )
Finally,

1 1
= 5(005 a)? + 5(005 a)? = (cos a)?
We check that when o = 0 this probability is one (ideal BB84). Other sanity checks
are for a = 7 /2 this prob is zero and for a = 7/4 this prob is 1/2 (should be intuitive).

(b) Once the quantum communication and measurement phases are finished, Alice and
Bob reveal on a public channel their basis choices e; and d;. Each time e; # d; they
discard bits x; and y;. The set P of other bits forms their one-time pad. They check
agreement x; = y; with security test: they reveal on a public channel a small fraction
of bits in P and (assuming the protocol is noiseless and there is no eavesdropper) the
fraction of tested bits which agree is (cosa)? ~ 1 — a?/2 (for o small). From this
fraction they get an estimate of a.



Part 2

(a) Proof by contradiction: suppose |S) is not entangled:
1S) = (a|0) +b|1)) ® (c|0) + d|1) ) = ac|00) 4+ ad|01) + bc|10) + bd |11) .

Then ac = ad = bd = \/ig and bc = 0. This implies b # 0 since bd # 0; and ¢ = 0

since b # 0 and bc = 0. But then ac = 0 and since we also have ac = % we find a

contradiction. In conclusion |S) must be entangled.

(b) Here are the states in Bob’s lab once he receives Alice’s qubit:

e Alice’s message 00: Bob gets |S) = \%( 00) + |11) + |01))

e Alice’s message 01: Bob gets X |S) = \/Lg( |10) + |01) + |11))

e Alice’s message 10: Bob gets Z |S) = \/lg( 00) — [11) +]01))

e Alice’s message 11: Bob gets ZX |S) = \/Lg( — |10) + |01) — [11))
(c) Alice sends 10 so Bob possesses the pair
1
V3

The measurement outcomes and probabilities for Bob are

Z|S) = —(]00) — [11) + [01) ).

o |UF) with probability | (UF|Z|S)[?=35-3(1—-1)>=0
e |U) with probability [ (¥~ Z[S) [P =5 5(1+1)* =2
e |®T) with probability | (P Z|S) > =5 - 3(1)* = §
e |®7) with probability | (P~ Z|S) > =5 - 5(1)* = ¢

Note that probabilities indeed sum to one.

(d) According to the decoding map of Bob:

1

1 1
P(transmission error) = P(Bobdoesntget W) =0+ 6 + 63



Problem 3. Module 2 - Giuseppe Carleo

Consider the following Hamiltonian defined on two qubits:

Y ATaT | AUy
H = 6705 + 0703,

where we use the standard definition for the Pauli matrices:

o (01 ., (0 =i\ ., (10
o~ = ,0' = . 7O' = .
10 v 0 0 -1

1. Write H as a 4x4 matrix in the standard basis [0,0), [0,1), |1,0), |1,1). Find the
smallest eigenvalue and the corresponding eigenstate.

2. Consider the problem of simulating quantum dynamics starting from the initial state
|0,0) using a quantum computer. Show that the FSIM(0, ¢) gate (as implemented
on Google hardware, for example) can be used to obtain [¢(t)) = exp(—it#)|0,0).
Determine what values of € and ¢ are necessary. Recall that the FSIM gate is defined
as

1 0 0 0
0 cos(f) —isin(f) O
0 —isin(f) cos(d) 0O
0 0 0 et

FSIM(6, ¢) =

3. Now consider the problem of approximating the ground state of H using a variational
ansatz. We will consider the ansatz

|W(y1,72)) = CNOT x RY1(71) x RY2(72)[0, 0)

1 000
0100
NOT =
CNO 0001
0010

and
. cos(y/2) —sin(vy/2)
RY (v) = exp(—iaYv/2) =
D= Lna/2) costy/2)
Find the expression of the energy as a function of the parameters v; and 5. For what
values of the parameters do you recover the exact ground-state energy computed at
point 17



Solution to problem 3:

1. We have that

L

I
o o oo
o v o o
o oo
o o oo

The matrix has a non-zero block among the states |0, 1) and |1,0). In this subspace, it

coincides with 26%, thus we have two eigenvalues, —2 and 2. The eigenvalue —2 thus
|0’1>7|170>

corresponds to the eigenstate 7

2. We have that

1 0 0

0 cos(2t) —isin(2t)
0 —isin(2t)  cos(2t)
0 0 0

exp(—itH) =

_— o O O

thus it can be simulated with FSIM(0 = 2t, ¢ = 0).

3. The expected value of the energy reads
E(v1,72) = 2sin(y1/2)* sin(1),

thus it attains the ground-state energy for E(y; = 7,7 = 3/2w) = —2.



Problem 4. Module 2 - Pasquale Scarlino

Superconducting qubits (10 marks)

1. General questions (try to give short answers and go straight to the point)

(a) Why can’t we use a harmonic oscillator as a qubit? (1 mark)

(b) Explain briefly what is a Cooper Pair Box (CPB) qubit. Draw its circuit schematic
and the profile of the two lowest energy levels. (1 mark)

(¢) What is the main issue of the CPB qubit? How can we partially improve its

coherence time? (1 mark)

2. Exercise
Single-qubit gates are generally performed by driving a qubit (for example with a
laser) close to resonance. A drive with Rabi frequency €2 is detuned by ¢ from the
qubit transition. The resulting Hamiltonian (in the rotating frame of the drive) is

-~ (ihs 1)
=2 2
(%hQ —%M)

The corresponding propagator is given by:

2 (36 30
U:exp[—z(gQ 215)t]

given by:

which can be simplified to

U _ (COS (Qgt/?) — Z((S/Q(g) sin (Qgt/2) —Z(Q/Qg) sin (Q5t/2) )
—i(2/Qs) sin (Qst/2) cos (2st/2) 4+ 1(5/25) sin (Qst/2)

where Q5 = v/Q2 + §2 is known as the generalised Rabi frequency.
(a) An initial state |0) = ((1)) evolves under H. Calculate the probability Pi(t,d) to
find the system in the state |1) = (?) after a time ¢. (2 marks)

Hint: Py(t,8) = )<1| 0 [0)
(b) Plot Pi(t,0) for 6 = 0. At what time ¢ is P, maximum ? (1 mark)

‘ 2

(c) For any ¢, what is the maximum value P; can achieve? What is the name of this
probability distribution? Draw it and compute its full-width at half-maximum
(FWHM). (2 marks)

10



(d) We wish to use this drive to apply a single-qubit X gate, which flips |[0) — |1).
A laser is available which has a sufficient intensity to give a Rabi frequency 2 =
21 x 1 MHz for the transition. The qubit can be prepared in the lower state with
very close to 100% reliability. How precisely must the laser frequency be tuned
to the atomic resonance if the final population of state |1) is above 99.99%.
Hint: Use the result of the previous questions. (2 marks)

Spin Qubits in Semiconductor Quantum Dots (10 marks)

1. General Questions (try to give short answers and go straight to the point)

(a) What is a 2-dimension electron gas (2-DEG)? Illustrate briefly at least one solid
state platform that can host a 2-DEG. (1 mark)

(b) Suppose the 2-DEG is self-accumulated in such a platform. This means that no
(positive) voltages are needed to accumulate the 2-DEG, which is already present.
What is needed to confine electrons in all the 3 dimensions?

Sketch a possible design (top view) of a device where electrons can be confined in
a single Quantum Dot (QD). (1 mark)

(c) Hlustrate at least one possible computational basis which can be used to imple-
ment a spin qubit in semiconductor QDs. To operate with QDs as spin qubits
is necessary to locally tune the energy of the confined electrons. How can this
aspect be implemented experimentally? Refer also to the sketch of the previous
point. (1 mark)

2. Exercise
During the exercise session we ended up with two useful expressions for the total change
in electrostatic energy, respectively when injecting one electron from the source into
the dot and from the dot into the drain (for Vpgs > 0):

e 1
AFEior §—sdot = a((N + 5)6 — CaVe — CyVps),
ot
e 1
AEtot,doHD = C, (—(N - 5)6 +CaVe — (01 + CG)VDS)a
ot

where Cg, C1, Cy, Cy are respectively the gate, dot-to-source, dot-to-drain and total
dot capacitance, Vi and Vpg the gate and drain-to-source (bias) voltage, e the electron
charge (absolute value) and N the number of electrons inside the dot.

(a) From the two expressions above, find for which values of Vpg is energetically
favorable to inject one electron from the source into the dot and from the dot into
the drain, as a function of Vi, N and all the different capacitances. (2 marks)

11
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Figure 2: Charge stability diagram of a single QD for an arbitrary number of electrons N.

(b) Which energy contributions from the two equations above represent the variation
of charging energy AEc? Find an expression for the (N-independent) charging
energy Ec. (2 marks)

(c) Focus now on one diamond from the ones shown in Figure 2. Estimate the charg-

ing energy and the lever arm « of the gate Vi;. Remember: o = e%. (1 mark)

Now, a static external magnetic field is applied along the z-direction to split the elec-
trons energy levels into two sub-levels spin-up and -down. The Hamiltonian of an
electron inside a magnetic field can be written as follows:

H=gupB- S,
B, O
where B = | B, | is the magnetic field and S = % oy | the spin matrices.
B, 0,

(d) In order to manipulate the qubit state, a time-varying magnetic field with fre-
quency w and phase ¢ is applied. The AC magnetic field is directed along the
x-direction, whereas the static one always along z. Write down the full Hamilto-
nian of the system in matrix form (in the lab frame). (1 mark)

(e) In the rotating frame of the drive, the Hamiltonian reads exactly as the one in
the Exercise of the superconducting part. At resonance, find the expression of the
time length of the pulse to apply to flip the population from ground to excited
state. (1 mark)

12



Solution to problem 4: Superconducting qubits

1. General questions

(a) Why can’t we use a harmonic oscillator as a qubit? (1 mark)

(b) Explain briefly what is a Cooper Pair Box (CPB) qubit. Draw its circuit schematic
and the profile of the two lowest energy levels. (1 mark)

(¢) What is the main issue of the CPB qubit? How can we partially improve its

coherence time? (1 mark)

2. Exercise

2
, we can simply brute-force

(a) The probability is defined as, Pi(t,6) = )<1| U |0)
apply it:

Py(t,6) = | (1] U |0)

. <1| (COS (Qgt/?) — Z((S/Q(;) sin (Qgt/2) —Z(Q/Q(;) sin (Qgt/?)
—i(2/Qs) sin (Qst/2) cos (Q2st/2) 4+ 1(5/25) sin (st /2)
(

B cos (Qt/2) — i(5/Q) sin (st /2)\ |”
B <1‘( —i(Q/Qs) sin (Qst/2) )

“lo 1) <cos (Qst/2) — i(6/€s) sin (Q(;t/2)>

‘ 2

2

—i(/Qy) sin (Qt/2)
= |—1(2/%) s.in(Q(;t/Q)]2
= (/95)?sin® (Qst/2)
1.0 A
0.8
S 06
50.4
0.2
0.0 4 — 6=0
0.0 05 10 15 2.0 25 30

Time
Figure 3: Rabi oscillations at 6 =0
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(b)
()

At resonance, Pi(t,0) = sin® (Q¢/2). Pi(t) is maximum when, ¢t = (n + 1)%.

The maximum value P; can achieve is 1. The name of this probability distribution
is a Lorentzian.

MMADD DRAWING !!!

The Half Width at Half Maximum (HWHM), is defined as: Pi(t,0) = 1/2.

In this case, we have:

Q1
02462 2
202 = 0% + 62
Q2 — 52
Hence, the FWHM is 2€).
Q2
e 0.9999
Q%(1 —0.9999) = 0.99995>
21 —0.9999 _
0.9999
/1-0.
5 0.9999
0.9999
§ = 10 kHz

Spin Qubits in Semiconductor Quantum Dots

1. General questions

(a)

(b)

What is a 2-dimension electron gas (2-DEG)? Illustrate briefly at least one solid
state platform that can host a 2-DEG. (1 mark)

Suppose the 2-DEG is self-accumulated in such a platform. This means that no
(positive) voltages are needed to accumulate the 2-DEG, which is already present.
What is needed to confine electrons in all the 3 dimensions?

Sketch a possible design (top view) of a device where electrons can be confined in
a single Quantum Dot (QD). (1 mark)

[llustrate at least one possible computational basis which can be used to imple-
ment a spin qubit in semiconductor QDs. To operate with QDs as spin qubits
is necessary to locally tune the energy of the confined electrons. How can this
aspect be implemented experimentally? Refer also to the sketch of the previous
point. (1 mark)

14



2. Exercise

(a)

(b)

C 1. e
AEot,5-d0t <0 — Vpg > _FjVG + (N + 5)52 (1)
CG 1 e
AFE;ot do 00—V, — Ve —(N— =) —————. 2
tot,dot—D < U — DS>01+CGG ( 2)01+CG (2)

The charging energy is represented by the two terms: AE¢ g i = %(N + %)
and AE¢ got—p = —Cejt(N — %), which indicate the energy to be overcome in

order to respectively inject one extra electron from the source into the dot, if N

electrons are already present into the dot, and to inject one electron from the dot
into the drain (always if N electrons are present into the dot). This is due to
Coulomb repulsion and these energies are provided by the two generators Vi and
Vbs, which constitute the remaining terms of AE;y; s_yq0t and AEyor got—p-

e2

Ec = AEcsa0t(N +1) — AEc s a0t(N) = o (3)

(Or alternatively: Ec = AE¢ go—p(N) — AEc gou—sp(N — 1) = Cejt>‘

The charging energy can be read directly from the height of one of the Coulomb
diamonds. In fact, the energy provided by the voltage generator Vpg is converted
directly in energy for the electrons in the dot: Eo = eVpg. If students do not
remember this from the exercise class, they can easily verify it by expressing
Eq.(1) and (2) as a function of Vi; and then equating them. On the other hand,

the energy provided by the voltage generator Vi is converted in electrons energy
Cqg _ ¢/AVe _ Eg

Caot ~ €*/Ec ~— AVg’

Focusing on the central diamond gives:

Ec =~ e-30mV =30 meV and a ~ 352 ~ 0.1 meV/mV.

through the lever arm a = e

|
H =gugB-S = §g,uB(Bzaz + Bycos(wt + ¢)o,) =

1 B, B,cos(wt + ¢)
B,cos '

— Qi (wt + ¢) _B.

Since in the rotating frame of the drive the Hamiltonian reads exactly like the
one of the superconducting part, we can recycle the result of the previous part
and write directly that, at zero detuning ¢, the probability of being in the excited
state is maximum when: ¢t = 7. From which:

t_7r_ ™  h
- Q lemBe o gupB

(4)

15



Problem 5. Module 3 - Adrian Ionescu

Questions 1 and 2 below are ”Multiple Choice Questions” where you have to select the correct
statements. Every good answer selection is +1pt and every wrong answer selection is -1pt.
In each question, if the selected bad answers are more than the good ones, you will get 0
(zero) points. Your final score is then calibrated on a total of 10+10 = 20 marks.

Question 1: Single Electron Transistors (SET) are a discrete charge tunneling
devices using a conductive nanodot as central island and three other electrodes
as source, drain and gate to control the tunneling barriers. Choose the correct
properties and characteristics of this device among the following statements.

1. The Coulomb gap in the output characteristics, I;— Vg, of a SET transistor correspond
to the region of drain voltages where the device is in off state; this region of drain
voltages is dependent on the applied gate voltage;

2. The same SET device can have both positive and negative transconductance
(gm = dl4/dVy), depending only on the value of applied gate voltage, at same drain
voltage value, therefore one can built a complementary logic using the same device for
the equivalent n- and p-type as for instance, building the functionality of an inverter;

3. The background charge effect on SET can affect the periodicity of the SET transfer
characteristics.

4. The theoretical R-SET (R=resistive) device, exploiting a stronger electrical potential
coupling of the gate to the island, is expected to have increased background charge
effect.

5. Under the effect of Coulomb blockade, the transfer characteristics, I — Vj, of a SET
transistor are periodic, with a period equal to e?/Cs, where Cy is the total SET
capacitance to the ground and e is the elementary charge.

6. If one is using a metallic central island of 1 nm radius surrounded by three metal
electrodes (gate, source and drain) with similar radius size, the resulting SET shows
Coulomb blockade is expected to be effective at room temperature (7' = 300K) to
build a SET inverter.

7. The intrinsic frequency operation (dictating the speed of the intrinsic device) of a SET
can be higher that GHz because of the very fast tunneling processes.

8. An inverter based on two SETSs is consuming both static and dynamic power, which is
dependent on temperature.

9. One can engineer with controlled strain induced by thermal oxidation silicon gated
nanowires to build SET devices without physical oxide barriers between the central
island and the drain and source contacts.

16



10.

SETMOS is hybrid equivalent device, made out of a SET and MOSFET achieving high
peaks of the current (micro-Amps) with periodic I; — V, transfer characteristics due
to Coulomb blockade.

Question 2: Select the correct statements about the semiconducting Tunnel

FETs using quantum mechanical band-to-band tunneling conduction mecha-

nisms, from the list below.

10.

. Tunnel FETs inherit some technology booster (technological parameters that can im-

prove their switch performance) from MOSFETSs; among these, one can cite: use of
high-k dielectrics, abrupt junctions and thinner semiconducting device bodies.

. At low voltage and low current levels Tunnel FETS can offer higher analog amplification

than MOSFET due to the smaller subthreshold slope.

A Tunnel FET with a silicon channel and a germanium source is a heterojunction
tunneling device.

Trap-Assisted Tunneling (TAT) is a phenomenon that depends on temperature.

Trap-Assisted Tunneling (TAT) is a phenomenon that depends on the density of
electrically-active traps at both at the tunneling junctions and the oxide-to-channel
interfaces.

Trap-Assisted Tunneling (TAT) is reduce significantly when the temperature is increas-
ing.

Tunnel FET can be used to design more energy efficient hybrid CMOS-TFET multi-
core processor architecture. For instance, the computing tasks assigned to Tunnel
FETSs are the ones requiring high-performance (HP) (faster operation) specifications.

The leakage current, I, of Tunnel FETs decreases at cryogenic (sub-77K) tempera-
tures.

In an ideal tunnel FET where the Band-to-Band Tunneling is largely predominant
over the trap-Assisted tunneling, the device subthreshold slope is expected to be of
60mV /decade at room temperature (300K).

One can build a Single Electron Transistor using Band-to-Band tunneling junctions.
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Solution to problem 5:
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Problem 6. Module 3 - Edoardo Charbon

Di Vincenzo Criteria and the quantum stack (10 marks)
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Figure 4: Quantum stack.
1. General questions:

(a) Describe the first five criteria and provide an example of a quantum algorithm (1
mark)

(b) What do you need to ensure during the algorithm’s completion? (1 mark)

(c) How do you implement a quantum algorithm in hardware using qubits of your
choice? (1 mark)

(d) What is the purpose of the QEX unit in the quantum stack? (1 mark)

2. Exercise: In a quantum processor, individual qubits may be accessed using a variety
of techniques involving radiofrequency signals applied to the qubits through a passive

circuit operating partially at high temperatures and partially at cryogenic tempera-
tures.

(a) Explain the components of the passive circuit and their function. Identify their
preferred temperature of operation. (2 marks)

(b) Explain the purpose and implementation of thermalization in the above scheme.
(1 mark)

(¢) How do you perform simultaneous control of multiple qubits maintaining speci-
ficity? (1 mark)

(d) Can you propose a block diagram that enables to achieve this functionality at
cryogenic temperature? (1 mark)

(e) For a total bandwidth of 1GHz how many qubits can you control individually
assuming a minimum frequency separation of 100MHz between qubits? How can
you relate the spectral purity to the fidelity of the control of the qubits? (1 mark)
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Cryo-CMOS electronics (10 marks)

1. General questions:
(a) What is the cause of the change in mobility in silicon as a function of temperature?
(0.5 marks)
(b) What are the other effects on transistors and why? (0.5 marks)
(c) In digital circuits, what are the consequences of these changes? (1 mark)

(d) In analog circuits, what are the consequences of these changes? (1 mark)

2. Exercise:

(a) Write the equation of the gain in a single-ended amplifier, assuming harmonic
distortion. Assume the input is sinusoidal. Write second harmonic distortion

(HDs) as a function of the harmonic components of your gain equation. (1.5
marks)

(b) How does the T'H D relate to HDy? (1 mark)

(¢) Why is intermodulation important? How do you compute IM; based on the
components of the gain equation? (0.5 marks)

(d) Consider the plot of Figure 5. Is the N-well resistive increase a problem for the
correct behavior of a transistor? If so, what happens to an inverter based on such
transistor? (1 mark)
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Figure 5: Plot 1.

(e) Consider Figure 6. Identify the pros and cons for each of the two amplifier front-
ends when operated at cryogenic temperature? (1 mark)

(f) Using the same harmonic components of the gain equation, explain which compo-

nent(s) will be suppressed and what consequences you expect for H Dy and H Dj.
(0.5 marks)
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(g) Which of the amplifier front-ends is better suited for low IM3? Why? (0.5 marks)

VDD
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Figure 6: Amplifier front-end: single-ended (left) and differential (right).

(h) What is the dominant source of the input-referred noise in the two amplifier front-
ends? Which amplifier front-end will have more noise, assuming identical sizing
of the transistors? (1 mark)
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Solution to problem 6:
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