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QUANT 400 – Exam problems – Course edition 2022

These are 6 problems given in the exam of the 2022 edition. In the 2023 edition there will

be 5 problems based on the material taught this semester.



Problem 1. Module 1 - Zoe Holmes

(a) The Hadamard (H) and Phase (S) gates takes the form

H =
1√
2

(
1 1

1 −1

)
and S =

(
1 0

0 i

)
Show that,

i. X = HZH and Y = SHZHS†, where X, Y and Z are Pauli operators. (2 marks)

ii. Hence describe how to measure in the X basis and Y basis on a quantum computer

that can only measure in the computational (Z) basis. (2 marks)

(b) i. The circuit shown below is called the Hadamard test. Show that it can be used to

measure ℜ[⟨ψ|U |ψ⟩]. (3 marks)

ii. How can this circuit be modified to measure ℑ[⟨ψ|U |ψ⟩] ? (Please draw your

proposed circuit). (3 marks)

(c) Suppose you know how to prepare |ϕ1⟩ and |ϕ2⟩, i.e. you know circuits Rϕ1 and Rϕ2

such that Rϕ1|0⟩ = |ϕ1⟩ and Rϕ2|0⟩ = |ϕ2⟩, but are interested in computing ⟨χ|M |χ⟩
for |χ⟩ = α|ϕ1⟩+ β|ϕ2⟩ (for any real α and β) where M is an arbitrary observable.

i. Show that ⟨χ|M |χ⟩ = α2⟨ϕ1|M |ϕ1⟩+ β2⟨ϕ2|M |ϕ2⟩+ 2αβ ℜ[⟨ϕ2|M |ϕ1⟩]. (1 mark)

ii. How could you compute the terms ⟨ϕ1|M |ϕ1⟩ and ⟨ϕ2|M |ϕ2⟩ on a quantum com-

puter? You may assume you know a circuit RM to rotate M into the computational

basis, e.g. M = RMZR
†
M . (1 mark)

iii. How could you compute ℜ[⟨ϕ2|M |ϕ1⟩] on a quantum computer? You may assume

that you know how to decomposeM into a sum of unitary operators, e.g. M =
∑

j cjUj

where the {cj} are scalars and the {Uj} are a set of unitaries. (3 marks).

iv. Hence sketch the circuit diagrams required to compute ⟨χ|M |χ⟩ when |ϕ1⟩ = |++⟩,
|ϕ2⟩ = |00⟩, M = Z ⊗ Y , α = 2 and β = 7. (No need to decompose the required gates

into basic single and two qubit gates). (3 marks)

(d) Suggest a possible application of the Hadamard test and comment on the suitability

of the Hadamard test for near-term quantum computers. (2 marks)

Figure 1: Hadamard Test
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Solution to Problem 1:

(a) i.

HZH =
1

2

(
1 1

1 −1

)(
1 0

0 −1

)(
1 1

1 −1

)
=

(
0 1

1 0

)
= X .

(1 mark)

SHZHS† = SXS† =

(
1 0

0 i

)(
0 1

1 0

)(
1 0

0 −i

)
=

(
0 −i
i 0

)
= Y .

(1 marks)

ii. ⟨ψ|X|ψ⟩ = ⟨ψ|HZH|ψ⟩. Hence, it is possible to measure in the X basis by first

applying H and then measuring in the computational basis. (1 mark)

Similarly, ⟨ψ|Y |ψ⟩ = ⟨ψ|SHZHS†|ψ⟩. It is possible to measure in the Y basis by

first applying the inverse of the phase gate S†, then H and then measuring in the

computational basis. (1 mark)

(b) i. |0ψ⟩ → |+ ψ⟩ → 1√
2
(|0ψ⟩+ U |1ψ⟩) := |ψout⟩. (1 mark)

The circuit measures

⟨ψout|X|ψout⟩ =
1

2

(
⟨0|1⟩+ ⟨1|0⟩+ ⟨0|0⟩⟨ψ|U |ψ⟩+ ⟨1|1⟩⟨ψ|U †|ψ⟩

)
=

1

2

(
⟨ψ|U |ψ⟩+ ⟨ψ|U †|ψ⟩

)
= ℜ[⟨ψ|U |ψ⟩]

(2 marks)

ii. The trick is to work the previous calculation backwards.

ℑ[⟨ψ|U |ψ⟩] = 1

2

(
⟨ψ|U |ψ⟩ − ⟨ψ|U †|ψ⟩

)
=

1

2

(
⟨0|1⟩+ ⟨1|0⟩+ ⟨0|0⟩⟨ψ|U |ψ⟩ − ⟨1|1⟩⟨ψ|U †|ψ⟩

)
= ⟨ψout|M |ψout⟩

with

M =

(
0 1

−1 0

)
= −iY .

(2 marks)

Hence it is possible to measure ℑ[⟨ψ|U |ψ⟩] by applying H to the ancilla and then C−U
as in the original Hadamard test but then measuring Y . That is, running the standard

Hadamard test but replacing the final Hadamard gate with S†H. (1 marks).
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(c) i. By basic linear algebra we have

⟨χ|M |χ⟩ = α2⟨ϕ1|M |ϕ1⟩+ β2⟨ϕ2|M |ϕ2⟩+ 2ℜ[αβ⟨ϕ2|M |ϕ1⟩]
= α2⟨ϕ1|M |ϕ1⟩+ β2⟨ϕ2|M |ϕ2⟩+ 2αβ ℜ[⟨ϕ2|M |ϕ1⟩]

(1 mark)

ii. The term ⟨ϕ1|M |ϕ1⟩ can be measured simply by preparing |ϕ1⟩ and then measuring

M (e.g. by applying R†
M then measuring in the computational basis). Measuring the

term ⟨ϕ2|M |ϕ2⟩ is entirely analogous. (1 mark)

iii. To see how to measure the term ℜ[⟨ϕ2|M |ϕ1⟩] note that

ℜ[⟨ϕ2|M |ϕ1⟩] =
∑
j

cjℜ[⟨0|R†
ϕ2
UjRϕ1|0⟩] .

Each of the terms ℜ[⟨0|R†
ϕ2
UjRϕ1 |0⟩] can be measured using a Hadamard test. (3

marks.)

ii. The circuits that need to be run in this case are:

(I ⊗HS†)(H ⊗H)|00⟩,

(I ⊗HS†)|00⟩,

(H ⊗ I ⊗ I) C−(HZ ⊗HY ) (H ⊗ I ⊗ I)|000⟩

(followed by computational basis measurements). Then we can compute ⟨χ|M |χ⟩ using
post processing.

(3 marks)

(d) Potential applications: Computing the inner product between a pair of states. Sim-

ulating a linear combination of quantum states, this could be useful to model more

complex quantum states that are hard to prepare on a quantum computer or to sim-

ulate non-physical states (e.g. non-normalized states). (Or anything sensible). (1

mark)

It only requires one ancilla unitary but implementing controlled unitaries such as C−U
can require a large number of two qubit gates (depending on the depth/structure of

U). (Or other sensible comments demonstrating an understanding of the constraints

of near-term hardware). (1 mark)
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Problem 2. Module 1 - Nicolas Macris

The problem has two independent parts.

Part 1: imperfect BB84. (10 marks) We let |α⟩ = cosα |0⟩+sinα |1⟩, |α⊥⟩ = − sinα |0⟩+

cosα |1⟩, and H = 1√
2

(
1 1

1 −1

)
the Hadamard matrix. Alice and Bob use the BB84 protocol

to generate a one-time pad, but they do not know that their respective encoding and decoding

basis are misaligned by a (small) angle α. We remind the first steps of the protocol:

• Alice generates two independent random bit sequences xi and ei, i = 1, . . . , n. Each

sequence is i.i.d with uniform probabilities 1/2 for each bit. If ei = 0 she sends (to

Bob) a qubit in state |xi⟩. If ei = 1 she sends a qubit in state H |xi⟩.

• Bob generates a random sequence d1 . . . dN of i.i.d bits with uniform probabilities 1/2.

If di = 0 Bob measures the received state with the basis |α⟩, |α⊥⟩, and if d = 1 he

measures with the basis H |α⟩, H |α⊥⟩. When measurements output |α⟩ or H |α⟩ he

registers yi = 0, and when measurements output |α⊥⟩ or H |α⊥⟩ he registers yi = 1.

(a) Compute P(xi = yi|ei = di = 0, xi = 0); P(xi = yi|ei = di = 0, xi = 1); and

P(xi = yi|ei = di = 1, xi = 0); P(xi = yi|ei = di = 1, xi = 1). Deduce P(xi = yi|ei = di)

(b) Explain the rest of the protocol and in particular explain how Alice and Bob can

evaluate the misalignment of their basis thanks to the security test (assuming for some

reason they know the protocol is noiseless and there is no eavesdropper).

Part 2: imperfect dense coding. (10 marks) Alice and Bob use dense coding to commu-

nicate 2 classical bits. But they dont know they share state |S⟩ = 1√
3
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗

|1⟩B+ |0⟩A⊗|1⟩B) instead of the usual Bell state. We recall the steps used by Alice and Bob:

• In order to send message ij ∈ {00, 01, 10, 11} Alice applies the unitary Zi
AX

j
A to her

qubit and then sends it to Bob. We recall X =

(
0 1

1 0

)
and Z =

(
1 0

0 −1

)
.

• Once in possession of the pair Bob performs a measurement in the Bell basis |Ψ±⟩ =
1√
2
(|00⟩ ± |11⟩, |Φ±⟩ = 1√

2
(|01⟩ ± |10⟩. Bob’s decoding map is |Ψ+⟩ → 00, |Φ+⟩ → 01,

|Ψ−⟩ → 10, |Φ−⟩ → 11.

(a) Prove that |S⟩ is an entangled state.

(b) For each message ij, what is the state of the pair of qubits in Bob’s lab just after

receiving Alice’s qubit?

(c) Suppose now Alice intends to send message 10. What are the possible measurement

outcomes of Bob and their respective probabilities?

(d) Still assuming Alice’s message is 10, what is the probability of a transmission error?
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Solution to Problem 2:

Part 1

(a) • For ei = 0 Alice sends qubits |xi⟩ = |0⟩ , |1⟩. And for di = 0 Bob’s measurement

basis is |α⟩ , |α⊥⟩. Thus applying Born’s rule:

P (xi = yi|ei = di = 0, xi = 0) = | ⟨α| |0⟩ |2 = (cosα)2

P (xi = yi|ei = di = 0, xi = 1) = | ⟨α⊥| |1⟩ |2 = (cosα)2

• Similarly, for ei = 1 Alice sends qubits H |xi⟩ = |+⟩ , |−⟩. And for di = 1 Bob’s

measurement basis is H |α⟩ , H |α⊥⟩. Thus applying Born’s rule:

P (xi = yi|ei = di = 1, xi = 0) = | ⟨α|H†H |0⟩ |2 = (cosα)2

P (xi = yi|ei = di = 1, xi = 1) = | ⟨α⊥|H†H |1⟩ |2 = (cosα)2

Therefore since P (xi = 0) = P (xi = 1) = 1/2

P (xi = yi|ei = di = 0) =
1

2
(cosα)2 +

1

2
(cosα)2 = (cosα)2

and

P (xi = yi|ei = di = 1) =
1

2
(cosα)2 +

1

2
(cosα)2 = (cosα)2

Finally,

P (xi = yi|ei = di) = P (xi = yi|ei = di, ei = 0)P (ei = 0) + P (xi = yi|ei = di, ei = 1)P (ei = 1)

=
1

2
(cosα)2 +

1

2
(cosα)2 = (cosα)2

We check that when α = 0 this probability is one (ideal BB84). Other sanity checks

are for α = π/2 this prob is zero and for α = π/4 this prob is 1/2 (should be intuitive).

(b) Once the quantum communication and measurement phases are finished, Alice and

Bob reveal on a public channel their basis choices ei and di. Each time ei ̸= di they

discard bits xi and yi. The set P of other bits forms their one-time pad. They check

agreement xi = yi with security test: they reveal on a public channel a small fraction

of bits in P and (assuming the protocol is noiseless and there is no eavesdropper) the

fraction of tested bits which agree is (cosα)2 ≈ 1 − α2/2 (for α small). From this

fraction they get an estimate of α.
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Part 2

(a) Proof by contradiction: suppose |S⟩ is not entangled:

|S⟩ =
(
a |0⟩+ b |1⟩

)
⊗

(
c |0⟩+ d |1⟩

)
= ac |00⟩+ ad |01⟩+ bc |10⟩+ bd |11⟩ .

Then ac = ad = bd = 1√
3
and bc = 0. This implies b ̸= 0 since bd ̸= 0; and c = 0

since b ̸= 0 and bc = 0. But then ac = 0 and since we also have ac = 1
3
we find a

contradiction. In conclusion |S⟩ must be entangled.

(b) Here are the states in Bob’s lab once he receives Alice’s qubit:

• Alice’s message 00: Bob gets |S⟩ = 1√
3

(
|00⟩+ |11⟩+ |01⟩

)
• Alice’s message 01: Bob gets X |S⟩ = 1√

3

(
|10⟩+ |01⟩+ |11⟩

)
• Alice’s message 10: Bob gets Z |S⟩ = 1√

3

(
|00⟩ − |11⟩+ |01⟩

)
• Alice’s message 11: Bob gets ZX |S⟩ = 1√

3

(
− |10⟩+ |01⟩ − |11⟩

)
(c) Alice sends 10 so Bob possesses the pair

Z |S⟩ = 1√
3

(
|00⟩ − |11⟩+ |01⟩

)
.

The measurement outcomes and probabilities for Bob are

• |Ψ+⟩ with probability | ⟨Ψ+|Z |S⟩ |2 = 1
2
· 1
3
(1− 1)2 = 0

• |Ψ−⟩ with probability | ⟨Ψ−|Z |S⟩ |2 = 1
2
· 1
3
(1 + 1)2 = 2

3

• |Φ+⟩ with probability | ⟨Φ+|Z |S⟩ |2 = 1
2
· 1
3
(1)2 = 1

6

• |Φ−⟩ with probability | ⟨Φ−|Z |S⟩ |2 = 1
2
· 1
3
(1)2 = 1

6

Note that probabilities indeed sum to one.

(d) According to the decoding map of Bob:

P (transmission error) = P (Bob doesnt getΨ−) = 0 +
1

6
+

1

6
=

1

3
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Problem 3. Module 2 - Giuseppe Carleo

Consider the following Hamiltonian defined on two qubits:

Ĥ = σ̂x
1 σ̂

x
2 + σ̂y

1 σ̂
y
2 ,

where we use the standard definition for the Pauli matrices:

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0

0 −1

)
.

1. Write Ĥ as a 4x4 matrix in the standard basis |0, 0⟩, |0, 1⟩, |1, 0⟩, |1, 1⟩. Find the

smallest eigenvalue and the corresponding eigenstate.

2. Consider the problem of simulating quantum dynamics starting from the initial state

|0, 0⟩ using a quantum computer. Show that the FSIM(θ, ϕ) gate (as implemented

on Google hardware, for example) can be used to obtain |ψ(t)⟩ = exp(−itĤ)|0, 0⟩.
Determine what values of θ and ϕ are necessary. Recall that the FSIM gate is defined

as

FSIM(θ, ϕ) =


1 0 0 0

0 cos(θ) −i sin(θ) 0

0 −i sin(θ) cos(θ) 0

0 0 0 eiϕ


3. Now consider the problem of approximating the ground state of Ĥ using a variational

ansatz. We will consider the ansatz

|Ψ(γ1, γ2)⟩ = CNOT× RY1(γ1)× RY2(γ2)|0, 0⟩

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


and

RY(γ) = exp(−iσ̂yγ/2) =

[
cos(γ/2) − sin(γ/2)

sin(γ/2) cos(γ/2)

]
Find the expression of the energy as a function of the parameters γ1 and γ2. For what

values of the parameters do you recover the exact ground-state energy computed at

point 1?
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Solution to problem 3:

1. We have that

Ĥ =


0 0 0 0

0 0 2 0

0 2 0 0

0 0 0 0


The matrix has a non-zero block among the states |0, 1⟩ and |1, 0⟩. In this subspace, it

coincides with 2σ̂x, thus we have two eigenvalues, −2 and 2. The eigenvalue −2 thus

corresponds to the eigenstate |0,1⟩−|1,0⟩√
2

.

2. We have that

exp(−itĤ) =


1 0 0 0

0 cos(2t) −i sin(2t) 0

0 −i sin(2t) cos(2t) 0

0 0 0 1


thus it can be simulated with FSIM(θ = 2t, ϕ = 0).

3. The expected value of the energy reads

E(γ1, γ2) = 2 sin(γ1/2)
2 sin(γ2),

thus it attains the ground-state energy for E(γ1 = π, γ2 = 3/2π) = −2.
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Problem 4. Module 2 - Pasquale Scarlino

Superconducting qubits (10 marks)

1. General questions (try to give short answers and go straight to the point)

(a) Why can’t we use a harmonic oscillator as a qubit? (1 mark)

(b) Explain briefly what is a Cooper Pair Box (CPB) qubit. Draw its circuit schematic

and the profile of the two lowest energy levels. (1 mark)

(c) What is the main issue of the CPB qubit? How can we partially improve its

coherence time? (1 mark)

2. Exercise

Single-qubit gates are generally performed by driving a qubit (for example with a

laser) close to resonance. A drive with Rabi frequency Ω is detuned by δ from the

qubit transition. The resulting Hamiltonian (in the rotating frame of the drive) is

given by:

H̃ =

(
1
2
ℏδ 1

2
ℏΩ

1
2
ℏΩ −1

2
ℏδ

)
The corresponding propagator is given by:

Ũ = exp[−i
(

1
2
δ 1

2
Ω

1
2
Ω −1

2
δ

)
t]

which can be simplified to

Ũ =

(
cos (Ωδt/2)− i(δ/Ωδ) sin (Ωδt/2) −i(Ω/Ωδ) sin (Ωδt/2)

−i(Ω/Ωδ) sin (Ωδt/2) cos (Ωδt/2) + i(δ/Ωδ) sin (Ωδt/2)

)
where Ωδ =

√
Ω2 + δ2 is known as the generalised Rabi frequency.

(a) An initial state |0⟩ =
(
1

0

)
evolves under H̃. Calculate the probability P1(t, δ) to

find the system in the state |1⟩ =
(
0

1

)
after a time t. (2 marks)

Hint: P1(t, δ) =
∣∣∣⟨1| Ũ |0⟩

∣∣∣2
(b) Plot P1(t, δ) for δ = 0. At what time t is P1 maximum ? (1 mark)

(c) For any δ, what is the maximum value P1 can achieve? What is the name of this

probability distribution? Draw it and compute its full-width at half-maximum

(FWHM). (2 marks)
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(d) We wish to use this drive to apply a single-qubit X gate, which flips |0⟩ → |1⟩.
A laser is available which has a sufficient intensity to give a Rabi frequency Ω =

2π× 1 MHz for the transition. The qubit can be prepared in the lower state with

very close to 100% reliability. How precisely must the laser frequency be tuned

to the atomic resonance if the final population of state |1⟩ is above 99.99%.

Hint : Use the result of the previous questions. (2 marks)

Spin Qubits in Semiconductor Quantum Dots (10 marks)

1. General Questions (try to give short answers and go straight to the point)

(a) What is a 2-dimension electron gas (2-DEG)? Illustrate briefly at least one solid

state platform that can host a 2-DEG. (1 mark)

(b) Suppose the 2-DEG is self-accumulated in such a platform. This means that no

(positive) voltages are needed to accumulate the 2-DEG, which is already present.

What is needed to confine electrons in all the 3 dimensions?

Sketch a possible design (top view) of a device where electrons can be confined in

a single Quantum Dot (QD). (1 mark)

(c) Illustrate at least one possible computational basis which can be used to imple-

ment a spin qubit in semiconductor QDs. To operate with QDs as spin qubits

is necessary to locally tune the energy of the confined electrons. How can this

aspect be implemented experimentally? Refer also to the sketch of the previous

point. (1 mark)

2. Exercise

During the exercise session we ended up with two useful expressions for the total change

in electrostatic energy, respectively when injecting one electron from the source into

the dot and from the dot into the drain (for VDS > 0):

∆Etot,S→dot =
e

Cdot

((N +
1

2
)e− CGVG − C2VDS),

∆Etot,dot→D =
e

Cdot

(−(N − 1

2
)e+ CGVG − (C1 + CG)VDS),

where CG, C1, C2, Cdot are respectively the gate, dot-to-source, dot-to-drain and total

dot capacitance, VG and VDS the gate and drain-to-source (bias) voltage, e the electron

charge (absolute value) and N the number of electrons inside the dot.

(a) From the two expressions above, find for which values of VDS is energetically

favorable to inject one electron from the source into the dot and from the dot into

the drain, as a function of VG, N and all the different capacitances. (2 marks)
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Figure 2: Charge stability diagram of a single QD for an arbitrary number of electrons N .

(b) Which energy contributions from the two equations above represent the variation

of charging energy ∆EC? Find an expression for the (N-independent) charging

energy EC . (2 marks)

(c) Focus now on one diamond from the ones shown in Figure 2. Estimate the charg-

ing energy and the lever arm α of the gate VG. Remember : α = e CG

Cdot
. (1 mark)

Now, a static external magnetic field is applied along the z-direction to split the elec-

trons energy levels into two sub-levels spin-up and -down. The Hamiltonian of an

electron inside a magnetic field can be written as follows:

H = gµBB⃗ · S⃗,

where B⃗ =

Bx

By

Bz

 is the magnetic field and S⃗ = 1
2

σ̂xσ̂y
σ̂z

 the spin matrices.

(d) In order to manipulate the qubit state, a time-varying magnetic field with fre-

quency ω and phase ϕ is applied. The AC magnetic field is directed along the

x-direction, whereas the static one always along z. Write down the full Hamilto-

nian of the system in matrix form (in the lab frame). (1 mark)

(e) In the rotating frame of the drive, the Hamiltonian reads exactly as the one in

the Exercise of the superconducting part. At resonance, find the expression of the

time length of the pulse to apply to flip the population from ground to excited

state. (1 mark)
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Solution to problem 4: Superconducting qubits

1. General questions

(a) Why can’t we use a harmonic oscillator as a qubit? (1 mark)

(b) Explain briefly what is a Cooper Pair Box (CPB) qubit. Draw its circuit schematic

and the profile of the two lowest energy levels. (1 mark)

(c) What is the main issue of the CPB qubit? How can we partially improve its

coherence time? (1 mark)

2. Exercise

(a) The probability is defined as, P1(t, δ) =
∣∣∣⟨1| Ũ |0⟩

∣∣∣2, we can simply brute-force

apply it:

P1(t, δ) =
∣∣∣⟨1| Ũ |0⟩

∣∣∣2
=

∣∣∣∣⟨1|(cos (Ωδt/2)− i(δ/Ωδ) sin (Ωδt/2) −i(Ω/Ωδ) sin (Ωδt/2)

−i(Ω/Ωδ) sin (Ωδt/2) cos (Ωδt/2) + i(δ/Ωδ) sin (Ωδt/2)

)(
1

0

)∣∣∣∣2
=

∣∣∣∣⟨1|(cos (Ωδt/2)− i(δ/Ωδ) sin (Ωδt/2)

−i(Ω/Ωδ) sin (Ωδt/2)

)∣∣∣∣2
=

∣∣∣∣(0 1
)(cos (Ωδt/2)− i(δ/Ωδ) sin (Ωδt/2)

−i(Ω/Ωδ) sin (Ωδt/2)

)∣∣∣∣2
= |−i(Ω/Ωδ) sin (Ωδt/2)|2

= (Ω/Ωδ)
2 sin2 (Ωδt/2)

Figure 3: Rabi oscillations at δ = 0
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(b) At resonance, P1(t, 0) = sin2 (Ωt/2). P1(t) is maximum when, t = (n+ 1) π
Ω
.

(c) The maximum value P1 can achieve is 1. The name of this probability distribution

is a Lorentzian.

!!!ADD DRAWING !!!

The Half Width at Half Maximum (HWHM), is defined as: P1(t, δ) = 1/2.

In this case, we have:

Ω2

Ω2 + δ2
=

1

2

2Ω2 = Ω2 + δ2

Ω2 = δ2

Hence, the FWHM is 2Ω.

(d)

Ω2

Ω2 + δ2
= 0.9999

Ω2(1− 0.9999) = 0.9999δ2

Ω21− 0.9999

0.9999
= δ2

δ =

√
1− 0.9999

0.9999
Ω

δ = 10 kHz

Spin Qubits in Semiconductor Quantum Dots

1. General questions

(a) What is a 2-dimension electron gas (2-DEG)? Illustrate briefly at least one solid

state platform that can host a 2-DEG. (1 mark)

(b) Suppose the 2-DEG is self-accumulated in such a platform. This means that no

(positive) voltages are needed to accumulate the 2-DEG, which is already present.

What is needed to confine electrons in all the 3 dimensions?

Sketch a possible design (top view) of a device where electrons can be confined in

a single Quantum Dot (QD). (1 mark)

(c) Illustrate at least one possible computational basis which can be used to imple-

ment a spin qubit in semiconductor QDs. To operate with QDs as spin qubits

is necessary to locally tune the energy of the confined electrons. How can this

aspect be implemented experimentally? Refer also to the sketch of the previous

point. (1 mark)
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2. Exercise

(a)

∆Etot,S→dot < 0 → VDS > −CG

C2

VG + (N +
1

2
)
e

C2

. (1)

∆Etot,dot→D < 0 → VDS >
CG

C1 + CG

VG − (N − 1

2
)

e

C1 + CG

. (2)

(b) The charging energy is represented by the two terms: ∆EC,S→dot =
e2

Cdot
(N + 1

2
)

and ∆EC,dot→D = − e2

Cdot
(N − 1

2
), which indicate the energy to be overcome in

order to respectively inject one extra electron from the source into the dot, if N

electrons are already present into the dot, and to inject one electron from the dot

into the drain (always if N electrons are present into the dot). This is due to

Coulomb repulsion and these energies are provided by the two generators VG and

VDS, which constitute the remaining terms of ∆Etot,S→dot and ∆Etot,dot→D.

EC = ∆EC,S→dot(N + 1)−∆EC,S→dot(N) =
e2

Cdot

. (3)

(Or alternatively: EC = ∆EC,dot→D(N)−∆EC,dot→D(N − 1) = e2

Cdot
).

(c) The charging energy can be read directly from the height of one of the Coulomb

diamonds. In fact, the energy provided by the voltage generator VDS is converted

directly in energy for the electrons in the dot: EC = eVDS. If students do not

remember this from the exercise class, they can easily verify it by expressing

Eq.(1) and (2) as a function of VG and then equating them. On the other hand,

the energy provided by the voltage generator VG is converted in electrons energy

through the lever arm α = e CG

Cdot
= e2/∆VG

e2/EC
= EC

∆VG
.

Focusing on the central diamond gives:

EC ≈ e · 30 mV ≈ 30 meV and α ≈ 30 meV
300 mV

≈ 0.1 meV/mV .

(d)

H = gµBB⃗ · S⃗ =
1

2
gµB(Bzσz +Bxcos(ωt+ ϕ)σx) =

=
1

2
gµB

(
Bz Bxcos(ωt+ ϕ)

Bxcos(ωt+ ϕ) −Bz

)
.

(e) Since in the rotating frame of the drive the Hamiltonian reads exactly like the

one of the superconducting part, we can recycle the result of the previous part

and write directly that, at zero detuning δ, the probability of being in the excited

state is maximum when: Ωt = π. From which:

t =
π

Ω
=

π
1
2
gµBBx

ℏ

=
h

gµBBx

. (4)
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Problem 5. Module 3 - Adrian Ionescu

Questions 1 and 2 below are ”Multiple Choice Questions” where you have to select the correct

statements. Every good answer selection is +1pt and every wrong answer selection is -1pt.

In each question, if the selected bad answers are more than the good ones, you will get 0

(zero) points. Your final score is then calibrated on a total of 10+10 = 20 marks.

Question 1: Single Electron Transistors (SET) are a discrete charge tunneling

devices using a conductive nanodot as central island and three other electrodes

as source, drain and gate to control the tunneling barriers. Choose the correct

properties and characteristics of this device among the following statements.

1. The Coulomb gap in the output characteristics, Id−Vd, of a SET transistor correspond

to the region of drain voltages where the device is in off state; this region of drain

voltages is dependent on the applied gate voltage;

2. The same SET device can have both positive and negative transconductance

(gm = dId/dVg), depending only on the value of applied gate voltage, at same drain

voltage value, therefore one can built a complementary logic using the same device for

the equivalent n- and p-type as for instance, building the functionality of an inverter;

3. The background charge effect on SET can affect the periodicity of the SET transfer

characteristics.

4. The theoretical R-SET (R=resistive) device, exploiting a stronger electrical potential

coupling of the gate to the island, is expected to have increased background charge

effect.

5. Under the effect of Coulomb blockade, the transfer characteristics, Id − Vg, of a SET

transistor are periodic, with a period equal to e2/CΣ, where CΣ is the total SET

capacitance to the ground and e is the elementary charge.

6. If one is using a metallic central island of 1 nm radius surrounded by three metal

electrodes (gate, source and drain) with similar radius size, the resulting SET shows

Coulomb blockade is expected to be effective at room temperature (T = 300K) to

build a SET inverter.

7. The intrinsic frequency operation (dictating the speed of the intrinsic device) of a SET

can be higher that GHz because of the very fast tunneling processes.

8. An inverter based on two SETs is consuming both static and dynamic power, which is

dependent on temperature.

9. One can engineer with controlled strain induced by thermal oxidation silicon gated

nanowires to build SET devices without physical oxide barriers between the central

island and the drain and source contacts.
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10. SETMOS is hybrid equivalent device, made out of a SET and MOSFET achieving high

peaks of the current (micro-Amps) with periodic Id − Vg transfer characteristics due

to Coulomb blockade.

Question 2: Select the correct statements about the semiconducting Tunnel

FETs using quantum mechanical band-to-band tunneling conduction mecha-

nisms, from the list below.

1. Tunnel FETs inherit some technology booster (technological parameters that can im-

prove their switch performance) from MOSFETs; among these, one can cite: use of

high-k dielectrics, abrupt junctions and thinner semiconducting device bodies.

2. At low voltage and low current levels Tunnel FETs can offer higher analog amplification

than MOSFET due to the smaller subthreshold slope.

3. A Tunnel FET with a silicon channel and a germanium source is a heterojunction

tunneling device.

4. Trap-Assisted Tunneling (TAT) is a phenomenon that depends on temperature.

5. Trap-Assisted Tunneling (TAT) is a phenomenon that depends on the density of

electrically-active traps at both at the tunneling junctions and the oxide-to-channel

interfaces.

6. Trap-Assisted Tunneling (TAT) is reduce significantly when the temperature is increas-

ing.

7. Tunnel FET can be used to design more energy efficient hybrid CMOS-TFET multi-

core processor architecture. For instance, the computing tasks assigned to Tunnel

FETs are the ones requiring high-performance (HP) (faster operation) specifications.

8. The leakage current, Ioff , of Tunnel FETs decreases at cryogenic (sub-77K) tempera-

tures.

9 In an ideal tunnel FET where the Band-to-Band Tunneling is largely predominant

over the trap-Assisted tunneling, the device subthreshold slope is expected to be of

60mV/decade at room temperature (300K).

10. One can build a Single Electron Transistor using Band-to-Band tunneling junctions.
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Solution to problem 5:
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Problem 6. Module 3 - Edoardo Charbon

Di Vincenzo Criteria and the quantum stack (10 marks)

Figure 4: Quantum stack.

1. General questions:

(a) Describe the first five criteria and provide an example of a quantum algorithm (1

mark)

(b) What do you need to ensure during the algorithm’s completion? (1 mark)

(c) How do you implement a quantum algorithm in hardware using qubits of your

choice? (1 mark)

(d) What is the purpose of the QEX unit in the quantum stack? (1 mark)

2. Exercise: In a quantum processor, individual qubits may be accessed using a variety

of techniques involving radiofrequency signals applied to the qubits through a passive

circuit operating partially at high temperatures and partially at cryogenic tempera-

tures.

(a) Explain the components of the passive circuit and their function. Identify their

preferred temperature of operation. (2 marks)

(b) Explain the purpose and implementation of thermalization in the above scheme.

(1 mark)

(c) How do you perform simultaneous control of multiple qubits maintaining speci-

ficity? (1 mark)

(d) Can you propose a block diagram that enables to achieve this functionality at

cryogenic temperature? (1 mark)

(e) For a total bandwidth of 1GHz how many qubits can you control individually

assuming a minimum frequency separation of 100MHz between qubits? How can

you relate the spectral purity to the fidelity of the control of the qubits? (1 mark)
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Cryo-CMOS electronics (10 marks)

1. General questions:

(a) What is the cause of the change in mobility in silicon as a function of temperature?

(0.5 marks)

(b) What are the other effects on transistors and why? (0.5 marks)

(c) In digital circuits, what are the consequences of these changes? (1 mark)

(d) In analog circuits, what are the consequences of these changes? (1 mark)

2. Exercise:

(a) Write the equation of the gain in a single-ended amplifier, assuming harmonic

distortion. Assume the input is sinusoidal. Write second harmonic distortion

(HD2) as a function of the harmonic components of your gain equation. (1.5

marks)

(b) How does the THD relate to HD2? (1 mark)

(c) Why is intermodulation important? How do you compute IM3 based on the

components of the gain equation? (0.5 marks)

(d) Consider the plot of Figure 5. Is the N-well resistive increase a problem for the

correct behavior of a transistor? If so, what happens to an inverter based on such

transistor? (1 mark)

Figure 5: Plot 1.

(e) Consider Figure 6. Identify the pros and cons for each of the two amplifier front-

ends when operated at cryogenic temperature? (1 mark)

(f) Using the same harmonic components of the gain equation, explain which compo-

nent(s) will be suppressed and what consequences you expect for HD2 and HD3.

(0.5 marks)
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(g) Which of the amplifier front-ends is better suited for low IM3? Why? (0.5 marks)

Figure 6: Amplifier front-end: single-ended (left) and differential (right).

(h) What is the dominant source of the input-referred noise in the two amplifier front-

ends? Which amplifier front-end will have more noise, assuming identical sizing

of the transistors? (1 mark)
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Solution to problem 6:
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