
Chapter 3

The quantum one-body problem

3.1 The time-independent 1D Schrödinger equation

We start the numerical solution of quantum problems with the time-independent one-
dimensional Schrödinger equation for a particle with mass m in a Potential V (x). In
one dimension the Schrödinger equation is just an ordinary di↵erential equation

� 1

2

@2 (x)

@x2
+ V (x) (x) = E (x), (3.1)

where we have taken units in which ~ = m = 1.
In order to e�ciently solve this problem on a computer, in the great majority of

numerical approaches it is necessary to introduce some discretization of the problem.
The simplest discretization we can perform consists in discretizing the space. We then
consider x 2 [x0, xp] living in a finite interval, and a discretization of the space into a
mesh of uniform spacing �. The points on the mesh are such that

xn = n� + x0, (3.2)

where x0 is the starting point of the interval and the wave function at these points is
denoted by

 n = (xn). (3.3)

In the following we will assume that the mesh contains a total of p + 1 points, thus
implying that the last point in the interval is

xp = p� + x0. (3.4)

3.1.1 Discretizing the Hamiltonian

The previous discussion has introduced a simple strategy to represent the wave function
as a finite-size vector of components n. In order to solve Schroedinger’s equation, it is
now necessary also to have finite-sized description of the Hamiltonian. This must be a
matrix acting on the same vector space of the discretized state n. The potential energy

17

term in the hamiltonian is diagonal in the position basis and it is easily discretized into
a diagonal matrix with diagonal entries Vn:

V (x) ! Vn ⌘ V (xn). (3.5)

The kinetic energy term is o↵-diagonal in the position basis and we can also expect that
its matrix representation is o↵ diagonal. In order to find an explicit representation, we
can use a finite-di↵erence approximation of the derivative:

@2

@x2
f(xn) '

1

�2
(f(xn�1)� 2f(xn) + f(xn+1)) +O(�2). (3.6)

Using this discretization, the action of the hamiltonian on the wave function is written
as

hxn|Ĥ| i = � 1

2�2
(n�1 � 2 n + n+1) + Vn n +O(�2). (3.7)

The right-hand side of this equation contains only linear combinations of the vector
 n and it is thus linear operator that corresponds to the discretization of the original
Hamiltonian. It is easy to see that this linear operator is a matrix :

Ĥ� =

0

BBBBB@

. . . � 1

2�2
0 0 . . .

� 1

2�2
Vn�1 +

1

�2
� 1

2�2
0 . . .

0 � 1

2�2
Vn +

1

�2
� 1

2
1

2�2
. . .

0 0 � 1

2�2
Vn+1 +

1

�2
. . .

. . . 0 0

1

CCCCCA
(3.8)

Notice that we explicitly omitted, for the moment, the value of the matrix on the
boundary. This is because the second-order finite di↵erence scheme we have chosen
would act also on (x0 � �) ⌘ �1 and on (xp + �) ⌘ p+1, but these are beyond the
discretized region we have chosen for the vector n.

In the following we will concentrate on the conceptually easy (and practically rel-
evant) case in which we have a bound state, thus the wave-function goes to zero at
infinity. In this case, we can always choose an interval [x0, xp] large enough such that,
to good approximation �1 = p+1 = 0. In this case then the matrix above is exactly
tridiagonal, since it is safe to just ignore the extra-boundary points �1, p+1.

For bound states then, finding solutions to the time-independent Schroedinger equa-
tion is a simple as diagonalizing the finite-dimensional matrix Ĥ�, and find the eigen-
vectors and eigen-energies

Ĥ�| ki = Ek| ki.

An interesting property of the matrix Ĥ� is that it is tridiagonal, and it can be very
e�ciently diagonalized, as you will see more in detail in the exercises.

3.2 The time-independent Schrödinger equation in
higher dimensions

In higher dimensions, in most common cases it is possible to reduce the problem to a one-
dimensional problem. This happens if the problem, because of symmetries, factorizes.

18

3.2.1 Factorization along coordinate axis

A first example is a three-dimensional Schrödinger equation in a cubic box with potential
V (~r) = V (x) + V (y) + V (z) with ~r = (x, y, z). Using the product ansatz

 (~r) = x(x) y(y) z(z) (3.9)

the Schroedinger’s equation factorizes into three one-dimensional equations which can
be solved as above.

3.2.2 Potential with spherical symmetry

Another famous trick is possible for spherically symmetric potentials with V (~r) = V (|~r|)
where an ansatz using spherical harmonics

 l,m(~r) = l,m(r, ✓,�) =
u(r)

r
Ylm(✓,�) (3.10)

can be used to reduce the three-dimensional Schrödinger equation to a one-dimensional
one for the radial wave function u(r):


� ~2
2µ

d2

dr2
+

~2l(l + 1)

2µr2
+ V (r)

�
u(r) = Eu(r) (3.11)

where we have called the particle mass µ (to avoid confusion with magnetic quantum
number m in the spherical harmonics). This is again a one-dimensional Schrödinger
equation, with a modified e↵ective potential

Vl(r) = V (r) +
~2
2µ

l(l + 1)

r2
(3.12)

and with the radial wave-function defined in the interval [0,1[. In practice, for regular
potentials we always have u(0) = u(xi) = 0 and it is always possible to find a point
xp � 1 such that, with good approximation, u(xp) = 0.

3.2.3 Finite di↵erence methods in higher dimension

In higher dimension we can still discretize the space on a regular grid (for example,
on a square grid in two dimensions). By doing so, we obtain once more a matrix
representation of the kinetic energy. The Laplacian in two dimensions for example
takes this form

r2 (xn, yn) =
1

�2
[(xn+1, yn)� 2 (xn, yn) + (xn�1, yn)] +

+
1

�2
[(xn, yn+1)� 2 (xn, yn) + (xn, yn�1)] (3.13)

While the resulting discretized Hamiltonian in general will not be of tridiagonal form
as in the 1d case, it is essential to realize that the matrices produced by the discretization
of the Schrödinger equation are still very sparse, meaning that only a small fraction of

19

the matrix entries are non zero. For these sparse systems of equations, optimized
iterative numerical algorithms exist1 and are implemented in numerical libraries such
as in the EIGEN library (C++) 2 or in SciPy (Python) 3. To calculate bound states,
an eigenvalue problem has to be solved. For small problems, where the full matrix can
be stored in memory, Mathematica or the dsyev eigensolver in the LAPACK library
can be used. For bigger systems, sparse solvers such as the Lanczos algorithm (which
will be discussed in detail in the following lectures) are best. Again there exist e�cient
implementations of iterative algorithms for sparse matrices.

3.3 The time-dependent Schrödinger equation

We now move to the problem of solving the time-dependent Schrödinger equation

i
@

@t
 (x, t) = �1

2

@2 (x, t)

@x2
+ V (x) (x, t), (3.14)

with given initial condition (x, t0).

3.3.1 Spectral methods

By introducing a basis and solving for the complete spectrum of energy eigenstates
we can directly solve the time-dependent problem in the case of a stationary (time-
independent) Hamiltonian. This is a consequence of the linearity of the Schrödinger
equation.

To calculate the time evolution of a state | (t0)i from time t0 to t we first solve
the stationary eigenvalue problem Ĥ|�i = E|�i and calculate the eigenvectors |�ni and
eigenvalues ✏n. Next we represent the initial wave function | i by a spectral decompo-
sition

| (t0)i =
X

n

cn|�ni. (3.15)

Since each of the |�ni is an eigenvector of Ĥ, the time evolution e�iĤ(t�t0) is trivial and
we obtain at time t:

| (t)i =
X

n

cne
�i✏n(t�t0)|�ni. (3.16)

This approach is, however, only useful for very small problems since the e↵ort of
diagonalizing the matrix is huge. A better method is direct numerical integration,
discussed in the next subsections.

1R. Barret, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for

Iterative Methods (SIAM, 1993)
2https://eigen.tuxfamily.org/
3https://docs.scipy.org/, the relevant routines are contained in scipy.sparse.linalg

20

3.3.2 Direct numerical integration

If the number of basis states is too large to perform a complete diagonalization of the
Hamiltonian, or if the Hamiltonian changes over time, instead of the spectral method
it is more convenient to perform a direct integration of the Schrödinger equation. Like
other initial value problems of partial di↵erential equations the Schrödinger equation can
be solved by the method of lines. After choosing a set of basis functions or discretizing
the spatial derivatives we obtain a set of coupled ordinary di↵erential equations which
can be evolved for each point along the time line (hence the name) by standard ODE
solvers.

In the remainder of this chapter we use the symbol Ĥ� to refer the representation
of the Hamiltonian in the chosen finite basis. A simple ODE integration scheme is the
forward Euler scheme

| (tn+1)i = | (tn)i � i�tĤ�| (tn)i. (3.17)

However, this method is not only numerically unstable, but it also violates the conser-
vation of the norm of the wave function h (t)| (t)i = 1, since

(1� i�tĤ�)
⇣
1� i�tĤ�

⌘†

= 1 + �2
t
Ĥ2 6= 1.

The exact quantum evolution

| (t+ �t)i = e�iĤ��t | (t)i (3.18)

is however clearly unitary and thus conserves the norm, we therefore want to look for a
unitary approximation as integrator. Instead of using the forward Euler method (3.17)
which is just a first order Taylor expansion of the exact time evolution

e�iH�t = 1� i�tĤ� +O(�2
t
), (3.19)

we reformulate the time evolution operator as

e�iH�t =
�
eiH�t/2

��1

e�iH�t/2 =

✓
1 +

i�t
2
Ĥ�

◆�1 ✓
1� i�t

2
Ĥ�

◆
+O(�3

t
), (3.20)

therefore

| (t+ �t)i =
✓
1 +

i�t
2
Ĥ�

◆�1 ✓
1� i�t

2
Ĥ�

◆
| (t)i, (3.21)

It is possible to check that the propagation scheme defined above is unitary (for example,
showing that the two terms appearing commute with one another), thus we have a small
time-step approach that is both unitary and second-order in �t. Equivalently, we can
write it as ✓

1 +
i�t
2
Ĥ�

◆
| (t+ �t)i =

✓
1� i�t

2
Ĥ�

◆
| (t)i, (3.22)

which shows more explicitly that, unfortunately this is an implicit integrator, since the
value of | (t+ �t)i is not a simple linear combination of the wave-function values at the
previous time-steps.

21

3.3.2.1 Practical implementations of the implicit scheme

Despite its implicit nature, this integrator can be still be used e�ciently. Concentrating
again on the 1d case, we have seen previously that if we discretize our problem on a
mesh xn = n� + x0, that the Hamiltonian becomes a simple tridiagonal matrix. The
implicit equation 3.22 then becomes a linear system of the form Ây = b, where the

matrix Â =
⇣
1 + i�t

2
Ĥ�

⌘
, the right hand side is bn =

�
1� i�t

2

�
 n(t) and the unknown

vector yn = n(t+ �t).
At each time step, one can therefore solve this linear system of equations and find

explicitly n(t + �t). Because of the tridiagonal structure, very e�cient tridiagonal
solver can be used.

In higher dimensions the matrix H will no longer be simply tridiagonal but still very
sparse and we can use iterative algorithms, similar to the Lanczos algorithm for the
eigenvalue problem. For details about these algorithms we refer to the nice summary at
http://mathworld.wolfram.com/topics/Templates.html and especially the bicon-
jugate gradient (BiCG) algorithm. Implementations of this algorithm are available, e.g.
in the EIGEN Library C++, or in SciPy, for a Python version.

3.4 Appendix: The split operator method

An alternative to the unitary, implicit method described in the main text exists, and
we discuss it as an optional argument for the interested reader. An explicit and unitary
method is possible for a quantum particle in the real space picture with the “standard”
Schrödinger equation for non-relativistic particles in continuous space. Writing the
Hamiltonian operator as

H = T̂ + V̂ (3.23)

with

T̂ =
1

2m
p̂2 (3.24)

V̂ = V (~x) (3.25)

it is easy to see that V̂ is diagonal in position space while T̂ is diagonal in momentum
space.

Indeed if we consider a d-dimensional particle, its wave-function in momentum space
is obtained through the Fourier transform:

 ̃(~k) =

✓
1p
2⇡

◆d Z 1

�1

 (~x)e�i~k·xd~x (3.26)

and the inverse Fourier transform yields

 (~x) =

✓
1p
2⇡

◆d Z 1

�1

 ̃(~k)ei
~k·xd~k. (3.27)

It is then easy to check that ̃(~k) is an eigenstate of the kinetic operator T , and
that T ̃(~k) = ||~k||2 ̃(~k)/2.

22

If we split the time evolution as

e�i�tH/~ = e�i�tV̂ /2~e�i�tT̂ /~e�i�tV̂ /2~ +O(�3

t
) (3.28)

we can perform the individual time evolutions e�i�tV̂ /2~ and e�i�tT̂ /~ exactly:
h
e�i�tV̂ /2~| i

i
(~x) = e�i�tV (~x)/2~ (~x) (3.29)

h
e�i�tT̂ /~| i

i
(~k) = e�i�t~||~k||2/2m (~k) (3.30)

in real space for the first term and momentum space for the second term.
Propagating for a time t = N�t, two consecutive applications of e�i�tV̂ /2~ can

easily be combined into a propagation by a full time step e�i�tV̂ /~, resulting in the
propagation:

e�iHt/~ =
⇣
e�i�tV̂ /2~e�i�tT̂ /~e�i�tV̂ /2~

⌘N

+O(�2

t
)

= e�i�tV̂ /2~
h
e�i�tT̂ /~e�i�tV̂ /~

iN�1

e�i�tT̂ /~e�i�tV̂ /2~ (3.31)

In practice, in order to obtain e�cient representations of the wave-functions both
in real and momentum space we still need to discretize the real space with a suitable
mesh of size �x, for a total of P points per spatial direction. As a consequence of this
discretization, the continuous Fourier transform becomes a discrete Fourier transform
defined on the discrete set of wave-vectors kn = 2⇡

n
P , for each spatial direction, with

n = 0, 1, . . . P � 1. Changing from real space to momentum space then requires the
application of the discrete Fourier transform and of its inverse when going back from
momentum space to real space. This can be e�ciently accomplished numerically thanks
to the Fast Fourier Transform (FFT) algorithm, which performs the discrete Fourier
transform in only O(P log(P)) operations.

The discretized algorithm then starts as

 1(~x) = e�i�tV (~x)/2~ 0(~x) (3.32)

 1(~k) = F 1(~x) (3.33)

where F denotes the Fourier transform and F�1 will denote the inverse Fourier trans-
form. Next we propagate in time using full time steps:

 2n(~k) = e�i�t~||~k||2/2m 2n�1(~k) (3.34)

 2n(~x) = F�1 2n(~k) (3.35)

 2n+1(~x) = e�i�tV (~x)/~ 2n(~x) (3.36)

 2n+1(~k) = F 2n+1(~x) (3.37)

except that in the last step we finish with another half time step in real space:

 2N+1(~x) = e�i�tV (~x)/2~ 2N(~x) (3.38)

This is a fast and unitary integrator for the Schrödinger equation in real space. It could
be improved by replacing the locally third order splitting (3.28) by a fifth-order version
involving five instead of three terms.

23

24

Chapter 4

Exact diagonalization of many-body
problems

4.1 Quantum spin models

After learning how to solve the 1-body Schrödinger equation, let us next generalize to
more particles. If a single body quantum problem is described by a Hilbert space H
of dimension dimH = d then N distinguishable quantum particles are described by the
tensor product of N Hilbert spaces

H(N) ⌘ H⌦N ⌘
NO

i=1

H (4.1)

with dimension dN .
In this Chapter we will specifically focus on quantum spin-1/2 particles. A single

spin-1/2 has a Hilbert space H = C2 of dimension 2, but N spin-1/2 have a Hilbert
space H(N) = C2

N

of dimension 2N . This exponential scaling of the Hilbert space
dimension with the number of particles is a big challenge. The basis for N = 30 spins
is already of size 230 ⇡ 109. A single complex vector needs 16 GByte of memory and
may just barely fit into the memory of your personal computer.

For small and moderately sized systems of up to about 30 spin-1/2 we can calculate
exactly the ground state, low-lying spectrum, and time evolution by direct calculations.
For more than 30 spins we cannot apply exact diagonalization techniques anymore, and
this will be the subject of several methods we will study in the next chapters.

4.1.1 Hamiltonian Matrix

As we have seen already in the previous Chapter, to perform exact diagonalization
to find eigenstates of a given Hamiltonian, Ĥ, or study its dynamics, it is important
to come up with a concrete representation of the Hamiltonian matrix that can be
e�ciently manipulated on a computer. One common feature of many-body quantum
models is that the matrix representation of their hamiltonian is sparse. For example,
taking again the case of quantum spins, one can see that the total number of non-zero
elements in the matrix representation of the Hamiltonian is at most k⇥ 2N , where k is

25

typically a small value (in most cases, k ⇠ N). This is to be contrasted to a general,
full matrix, that instead contains O(2N ⇥ 2N) elements. Sparsity–a generalization of
the simple pattern of non-zero elements seen in tridiagonal matrices in the previous
Chapter– can be exploited by exact diagonalization methods in di↵erent ways, both
to find eigenvalues and eigenvectors of the Hamiltonian and to study its dynamics.
Before seeing how sparsity can be exploited, we will first analyze a few prototypical
spin models, in order to better understand where the sparse nature of the Hamiltonian
matrix comes from. In all cases we will analyze in this Chapter we will consider the
simple, and widely adopted, basis of eigenstates of �̂z. Specifically, each many-spin
state is written as a linear combination of 2N basis states:

| i =
X

s1s2...sN

cs1s2...sN |s1s2 . . . sNi, (4.2)

where

|s1s2 . . . sNi = |s1i ⌦ |s2i ⌦ . . . |sNi (4.3)

are eigen-kets of the �̂z Pauli matrix:

�̂z

i
|s1s2 . . . sNi = si|s1s2 . . . sNi, (4.4)

for si = ±1.

4.1.2 Example: the transverse-field Ising model

The simplest quantum spin model is probably the quantum transverse field Ising model
(TFIM), which adds a magnetic field in the x direction to a lattice of spin-1/2 particles
coupled by an Ising interaction:

Ĥ =
X

hi,ji

Jij�̂
z

i
�̂z

j
� �

X

i

�̂x

i
. (4.5)

Here the symbol hi, ji denotes a sum over all bonds in the lattice. In the absence of the
second term, the first term is nothing but a classical Ising model and can be solved by
your favorite method of simulating the Ising model. The second term does not exist in
classical Ising models, where the spins point only in the z direction. Considering that
the Pauli �̂x matrix is

�̂x =

✓
0 1
1 0

◆
(4.6)

we see that this term flips an " spin to a # spin, and thus introduces quantum fluctua-
tions to the classical Ising model.

The way of writing the hamiltonian as above is nothing but a short-hand for the
more laborious (but more precise) notation with tensor products, that in this case would
imply for example that a spin operator in the direction ↵ = (x, y, z) and acting on spin
i is in reality the following 2N ⇥ 2N matrix:

�̂↵

i
⌘ Î ⌦ Î ⌦ . . . Î| {z }

i�1 times

⌦�̂↵ ⌦ Î ⌦ · · ·⌦ Î| {z }
N�i times

(4.7)

= Î(2i�1)⌦ �̂↵ ⌦ Î(2N�i), (4.8)

26

where Î(n) are identity matrices of dimension n, and the ⌦ product here denotes Kro-
necker product between matrices.

We can readily verify that this Hamiltonian is sparse. For example, let’s start
computing the diagonal matrix elements in the basis specified above:

hs1s2 . . . sN |Ĥ|s1s2 . . . sNi =
X

hi,ji

Jijsisj, (4.9)

which is the familiar classical Ising interaction term. Thus we have found the first 2N

(in general) non-zero matrix elements, corresponding to the diagonal of Ĥ. The o↵-
diagonal terms can be readily found noticing that the action of the �̂x

i
operator is just

to flip a spin:

�̂x

i
|s1 . . . si . . . sNi = |s1 · · ·� si . . . sNi, (4.10)

thus there is only one non-zero matrix element per �̂x

i
term:

hs0
1
s0
2
. . . s0

N
|�̂x

i
|s1s2 . . . sNi = �s01,s1 . . . �s0i�si

. . . �s0
N
,sN

(4.11)

implying that, at fixed |s1s2 . . . sNi, there is a total of N non zero matrix elements for
the Hamiltonian. In total, therefore, we have that the TFI Hamiltonian contains “only”
(N + 1)⇥ 2N non-zero elements.

4.2 Finding Ground States

We start with the problem of finding the lowest eigenvector (and its energy) of the
Hamiltonian, the so-called ground state. This task is realized by using an iterative
matrix eigensolver. These solvers exploit the fact that computing the product of the
Hamiltonian matrix with an arbitrary vector can be done e�ciently. While for a generic
matrix of size M ⇥ M a product Â|vi can be computed in O(M2) time, for a matrix
M ⇥M , in the case of Hamiltonians we are considering here this product is computable
in only O(M) = O(N↵ ⇥ 2N), where ↵ is in general a small exponent (↵ = 1, for the
TFIM, as seen before).

4.2.1 Power Method

The power method is the simplest iterative solver we can use to find ground-states of
many-body Hamiltonians that exploits sparseness. This method generates a sequence
of P vectors k = 1, . . . P by repeated application of the Hamiltonian:

|uk+1i =
⇣
⇤Î � Ĥ

⌘
|uki, (4.12)

where ⇤ is a suitable constant, and the initial state |u0i is given as starting condition
for the algorithm. This sequence of vectors converges to the ground-state of the Hamil-
tonian under reasonable assumptions. To see this, let us formally expand the initial
vector in terms of the eigen-states of the Hamiltonian:

|u0i =
X

l

cl|Eli, (4.13)

27

with E0  E1  . . . EM , thus the last state is

|uP i =
⇣
⇤Î � Ĥ

⌘P

|u0i, (4.14)

=
X

l

(⇤� El)
P cl|Eli, (4.15)

and the overlap with the ground state is

hE0|uP i = (⇤� E0)
P c0. (4.16)

We notice however that the state |uP i is not normalized in general, thus the probability
amplitude of being in the ground-state after k iterations is

|hE0|uP i|2
huP |uP i

=
(⇤� E0)

2P |c0|2

(⇤� E0)
2P |c0|2 + (⇤� E1)

2P |c1|2 + . . .
(4.17)

=
1

1 + (⇤�E1)
2P

(⇤�E0)
2P

|c1|
2

|c0|
2 + . . .

. (4.18)

From this expression we can see that a suitable choice of ⇤ can force the state |uP i
have a probability amplitude of being in the ground state that is exponentially close to
1. Specifically, if we impose ⇤ > EM , we have that

lim
P!1

(⇤� El)
2P

(⇤� E0)
2P

= 0, (4.19)

for any excited state l such that El > E0. In the limit of large P we therefore have that

|hE0|uP i|2
huP |uP i

' 1� (⇤� E1)
2P

(⇤� E0)
2P

|c1|2
|c0|2

, (4.20)

and the correction can be made arbitrarily (and exponentially) small by increasing the
number of steps P . We also see that for the exponential convergence to be true we
need to have that the initial state has some finite overlap with the exact ground state,
namely |c0|2 6= 0. This can be achieved, for example, starting the iterations from a
random vector.

The power method is therefore a very simple, yet exponentially converging method,
to find the ground state of the Hamiltonian. If, for example, the Hamiltonian is stored
in memory as a sparse matrix, then by simple iterative applications one can find the
ground state. In practice, it is convenient to keep the state |uki normalized at each
step, to avoid an exponential increase of the coe�cients appearing in the vector |uki.

4.2.2 The Lanczos Method

The Lanczos algorithm is an important improvement over the power method, that allows
to reconstruct not only the ground state wave function, but also excited states. The
Lanczos algorithm builds an orthogonal basis {v1, v2, . . . , vP} for the Krylov-subspace

28

KP = span{u1, u2, . . . , uP}, which is constructed by P iterations of the power method.
This is achieved by the following iterations:

�n+1|vn+1i = Ĥ|vni � ↵n|vni � �n|vn�1i, (4.21)

where
↵n = hvn|Ĥ|vni, �n = |hvn|Ĥ|vn�1i|. (4.22)

Since the orthogonality condition

hvi|vji = �ij (4.23)

does not determine the phases of the basis vectors, the �i can be chosen to be real
and positive. It can be shown that we only need to keep three vectors of size M in
memory, which makes the Lanczos algorithm very e�cient, when compared to dense
matrix eigen-solvers which require storage of order M2 (see Table 4.1 for a summary of
the complexity of matrix operations).

In the Krylov basis the matrix Ĥ is approximated by the following tridiagonal matrix

T̂ (n) .
=

2

6666664

↵1 �2 0 · · · 0

�2 ↵2

.
...

0
. 0

...
. �n

0 · · · 0 �n ↵n

3

7777775
, (4.24)

and it can also been shown that the eigenvalues {⌧1, . . . , ⌧M} of T̂ are good approxi-
mations of the eigenvalues of Ĥ. Moreover, the extreme eigenvalues converge very fast.
Thus P ⌧ M iterations are su�cient to obtain the extreme eigenvalues. Since the
Lanczos matrix is tridiagonal, we can use all the e�cient computational approaches
discussed in the previous Chapter to find both its eigenvalues and eigenvectors.

In practice, the Lanczos method can be already found implemented in all lin-
ear algebra solvers for sparse matrices, for example in scipy. For Python users, we
strongly suggest to use SciPy (in particular scipy.sparse.linalg) which performs Lanc-
zos/Arnoldi calling an e�cient, C-coded backend. These routines allow to diagonalize
directly sparse matrices defined within scipy. Alternatively, and in order to avoid stor-
ing the sparse matrix, one can also define its own Matrix-Vector multiplication using
scipy.sparse.linalg.LinearOperator, and then obtain the eigenvalues and eigenvectors
with a call to scipy.sparse.linalg.eigsh.

A more detailed discussion of the Lanczos algorithm and the issue of ghost eigen-
values can be found in Appendix 4.5.

4.2.3 Implementation

From the practical implementation point of view, the main requirement to use the
simple power method or the more refined Lanczos algorithm is to provide a function
that computes the product of the Hamiltonian with an arbitrary vector |vi:

Ĥ|vi = |v0i. (4.25)

29

There are two main approaches to implement this e�ciently. One one hand, we can
form and store the hamiltonian Ĥ as a sparse matrix. This approach is very elegant and
can be readily implemented, for example, in Python with scipy. The only requirement,
for spin hamiltonians, is to explicitly use and form the Kronecker products for spin
operators, as seen before:

�̂↵

i
= Î(2i�1)⌦ �̂↵ ⌦ Î(2N�i), (4.26)

and then construct interactions terms as simple products of these matrices. For example,
spin-spin interaction terms �̂↵

i
�̂�

j
can be readily obtained as a sparse matrix-matrix

multiplication.
In addition of being very elegant and compactly implemented, this approach has also

the advantage that computing products of sparse matrices with vectors is a typically
highly optimized operation in dedicated software libraries, thus the resulting scheme
will be automatically highly e�cient. The main drawback however is the memory
requirements, since we need to store all the non-zero matrix elements of the Hamiltonian,
and there are at least as many as N⇥2N of them, as we have seen before. This memory
requirement is added to the requirements due to the necessity of storing (at least) the
vectors |vi and |v0i, yielding an additional 2⇥ 2N coe�cients to be stored.

The main alternative approach is to never store the matrix Ĥ and provide instead
a function that computes the matrix-vector product “on the fly”. This allows to dras-
tically reduce the memory consumption to the bare minimum, namely to 2⇥2N , at the
expenses of, typically, a larger computational time. The latter approach is especially
suited for applications where reaching to the largest possible value of N is crucial, and
need specialized low-level implementations. In the exercises we will mostly focus on the
first approach.

4.3 Quantum Dynamics

In the previous discussion we have seen how to explicitly construct sparse represen-
tations of the Hamiltonian of quantum spin systems, and how to use them to obtain
the ground-state wave-function. We now focus on the problem of solving the time-
dependent Schrödinger equation for the many-spin system, a task which requires specific
techniques. For simplicity, we will analyze here the specific case of time-independent
Hamiltonians, and leave the straightforward extension to time-dependent Hamiltonians
as an exercise.

4.3.1 Taylor Expansion

To implement the time evolution we have to devise an e�cient way to numerically
compute the matrix exponential exp(�iĤt), since for a static Hamiltonian the time-
evolved state that satisfies Schrödinger equation reads :

| (t)i = e�iĤt | (0)i . (4.27)

The most straightforward way to do so is to take a small time step �t and consider a
truncated Taylor expansion of the exponential, such that

30

| (t+�t)i =
✓
1� i�tĤ � �2

t

2
Ĥ2 � i

�3

t

6
Ĥ3 + . . .

◆
| (t)i . (4.28)

Taking the first s orders in the Taylor expansion guarantees a scheme locally of order
O(�s

t
). This scheme can be e�ciently implemented recalling that the Hamiltonian Ĥ

is sparse, and that we can e�ciently compute products of Ĥ with a given vector:

| 0i = Ĥ | i . (4.29)

A simple iterative scheme that realizes the Taylor expansion numerically is given by the
following recursion formula:

|�ki =
�i�t

k
Ĥ |�k�1i (4.30)

|�ki = |�k�1i+ |�ki , (4.31)

for k = 1, 2, . . . s, up to the maximum truncation order chosen, and with zero-order
conditions |�0i = |�0i = | (t)i. Then we have

| (t+�t)i = |�si. (4.32)

This scheme is particularly memory friendly, because it needs to store at most two
vectors: |�ki and |�ki.

4.4 The Trotter-Suzuki decomposition

We now present an alternative numerical scheme which, at variance with the previous
Taylor series, explicitly preserves the unitary character of the Hamiltonian evolution.
To derive this scheme, we introduce one of the most important tools in computational
quantum physics: the Trotter-Suzuki decomposition.1

To do this we split the Hamiltonian into a sum of K non-commuting terms Ĥ =P
K

k=1
ĥk. The splitting is done in such a way that the exponential of the individual

terms, e�iĥk�t , can be easily computed. The time evolution operator exp(�iĤ�t) for
a small time step �t is then decomposed into multiple products of the non-commuting
terms in the Hamiltonian. To first order, the Trotter-Suzuki decomposition for a small
time step �t is

exp(�iĤ�t) = e�iĥ1�t . . . e�iĥK�t +O(�2

t
). (4.33)

The second order version of this formula reads

exp(�iĤ�t) = e�iĥ1
�t

2 . . . e�iĥK

�t

2 e�iĥK

�t

2 . . . e�iĥ1
�t

2 +O(�3

t
). (4.34)

For the special case with K = 2 terms this expression simplifies to

exp(�iĤ�t) = e�iĥ1�t/2e�iĥ2�te�iĥ1�t/2 (4.35)

1H. F. Trotter, On the product of semi-groups of operators, Proc. Amer. Math. Soc. 10, 545 (1959);
M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential operators and

inner derivations with applications to many-body problems, Commun. Math. Phys. 51, 183 (1976).

31

by combining the two terms e�iĥ2�t/2e�iĥ2�t/2 into e�iĥ2�t . By similarly combining the
terms e�iĥ1�t/2e�iĥ1�t/2 arising from two adjacent time steps into e�iĥ1�t one ultimately
needs only one single additional terms for the full time evolution, when compared to
the first order approximation. At second order, the full time evolution for K = 2 indeed
reads

exp(�iĤt) ' e�iĥ1�t/2e�iĥ2�te�iĥ1�t/2 ⇥ e�iĥ1�t/2e�iĥ2�te�iĥ1�t/2 . . . (4.36)

' e�iĥ1�t/2 . . . e�iĥ2�te�iĥ1�t . . . e�iĥ2�te�iĥ1�t/2. (4.37)

4.4.1 Time evolution for the transverse field Ising model

To implement time evolution in the transverse field Ising model we split the Hamiltonian
into K = 2 non-commuting terms. The first one is the the transverse field term

Ĥx = ��
X

l

�̂x

l
, (4.38)

and the second one is the Ising term

Ĥz =
X

hl,mi

Jlm�̂
z

l
�̂z

m
. (4.39)

We will now see that each of these terms can be easily exponentiated.
The transverse field term splits into N commuting terms for each of the spins:

e�iĤx�t = ei�t�
P

l
�̂
x

l =
Y

l

ei�t��̂
x

l . (4.40)

Each of the terms in the product above can be written explicitly in Kronecker product
form:

ei�t��̂
x

l = Î(2l�1)⌦
⇣
cos(�t�)Î(2) + i sin(�t�)�̂

x

⌘
⌦ Î(2N�l). (4.41)

The Ising term instead is diagonal, and the exponentiation is particularly simple, yield-
ing a diagonal matrix:

e�iĤz�t |s1s2 . . . sNi =
Y

hl,mi

e�i�tJlmslsm |s1s2 . . . sNi. (4.42)

We can further write this as a sum of Kronecker products, noticing that (the proof is
left as an exercise)

e�i✓�̂
z

l
�̂
z
m = cos ✓Î(2N)� i sin ✓�̂z

l
�̂z

m
, (4.43)

thus each term in the product
Q

hl,mi
e�i�tJlmslsm can be easily applied recalling the

explicit Kronecker product form of �̂z

l
and �̂z

m
.

Overall, then both the diagonal and the o↵ diagonal terms can easily be applied to
a wave function in a similar way as we did for the multiplication with the Hamiltonian
Ĥ. We will implement time evolution for the TFIM in the exercises.

32

Table 4.1: Time and memory complexity for operations on sparse and dense M ⇥ M
matrices
operation time memory
storage
dense matrix — M2

sparse matrix — O(M)
matrix-vector multiplication
dense matrix O(M2) O(M2)
sparse matrix O(M) O(M)
matrix-matrix multiplication
dense matrix O(M ln 7/ ln 2) O(N2)
sparse matrix O(M) . . .O(M2) O(M) . . .O(M2)
all eigen values and vectors
dense matrix O(M3) O(M2)
sparse matrix (iterative) O(M2) O(M2)
some eigen values and vectors
dense matrix (iterative) O(M2) O(M2)
sparse matrix (iterative) O(M) O(M)

4.5 Appendix: The Lanczos algorithm

Sparse matrices with only O(M) non-zero elements are very common in scientific sim-
ulations. We have seen in this Chapter that many-body quantum Hamiltonians belong
to the class of sparse matrices, and that for typical spin models one has M ⇠ 2NN↵,
for some small power ↵.

The importance of sparsity becomes obvious when considering the cost of matrix
operations as listed in table 4.1. For large M the sparsity leads to memory and time
savings of several orders of magnitude.

Here we will discuss the iterative calculation of a few of the extreme eigenvalues of
a matrix by the Lanczos algorithm. Similar methods can be used to solve sparse linear
systems of equations.

4.5.1 Finding eigenvectors

While finding the eigenvectors of the tridiagonal Lanczos matrix T̂ is a relatively easy
computational task, however these are not directly the eigenvectors of the original
matrix Ĥ, since they are given in the (much smaller) Krylov basis {v1, v2, . . . , vP}. To
obtain the eigenvectors in the original basis we need to perform a basis transformation.

Due to memory constraints we usually do not store all the vi, but only the last three
vectors. To transform the eigenvector to the original basis we have to do the Lanczos
iterations a second time. Starting from the same initial vector v1 we construct the
vectors vi iteratively and perform the basis transformation as we go along.

33

4.5.2 Roundo↵ errors and ghosts in the Lanczos algorithm

In exact arithmetic the vectors {vi} are orthogonal and the Lanczos iterations stop after
at most M � 1 steps. The eigenvalues of T̂ are then the exact eigenvalues of Ĥ.

Roundo↵ errors in finite precision however cause a loss of orthogonality. There are
two ways to deal with that:

• Re-orthogonalization of the vectors after every step. This requires storing all of
the vectors {vi} and is memory intensive.

• Control of the e↵ects of roundo↵.

We will discuss the second solution as it is faster and needs less memory. The main
e↵ect of roundo↵ errors is that the matrix T̂ contains extra spurious eigenvalues, called
“ghosts”. These ghosts are not real eigenvalues of Â. However they converge towards
real eigenvalues of Â over time and increase their multiplicities.

A simple criterion distinguishes ghosts from real eigenvalues. Ghosts are caused by
roundo↵ errors. Thus they do not depend on on the starting vector v1. As a consequence
these ghosts are also eigenvalues of the matrix Q̂(n), which can be obtained from T̂ by
deleting the first row and column:

Q̂(n) :=

2

6666664

↵2 �3 0 · · · 0

�3 ↵3

.
...

0
. 0

...
. �n

0 · · · 0 �n ↵n

3

7777775
. (4.44)

From these arguments we derive the following heuristic criterion to distinguish ghosts
from real eigenvalues:

• All multiple eigenvalues are real, but their multiplicities might be too large.

• All single eigenvalues of T which are not eigenvalues of T̃ are also real.

4.5.3 Open-source implementations

Numerically stable and e�cient implementations of the Lanczos algorithm can be ob-
tained as part of open-source packages.

For Python users, we strongly suggest to use SciPy (in particular scipy.sparse.linalg)
which performs Lanczos/Arnoldi calling an e�cient, C-coded backend. These routines
allow to diagonalize directly sparse matrices defined within scipy. Alternatively, and
in order to avoid storing the sparse matrix, one can also define its own Matrix-Vector
multiplication using scipy.sparse.linalg.LinearOperator, and then obtain the eigenvalues
and eigenvectors with a call to scipy.sparse.linalg.eigsh.

For C++ users, we strongly suggest the use of the EIGEN library2 in conjunction
with SPECTRA3. Both libraries are header-only, require almost no installation e↵ort

2http://eigen.tuxfamily.org/
3http://yixuan.cos.name/spectra/

34

(apart from downloading it), and are very e�cient. SPECTRA handles the Lanc-
zos/Arnoldi algorithm, and just needs the user to implement a function implementing
the Matrix-Vector multiplication, with minor modifications with respect to the one
previously discussed in the Lecture.

35

