
Exercise set

Exercise 1:

We want to analyze the following circuit using LTspice:

a) Draw the circuit and use the following values for the components:

R_1	$15 k\Omega$
R_2	$15 \ k\Omega$
R_L	$50~\Omega$
C_1	225~pF
C_2	$115 \ pF$
U1	Universal Opamp2
V_{pos}	5 V
V_{neg}	-5 V

- b) Simulate the circuit and plot V_{out} as a function of time, when V_{in} is a sinusoidal signal with an amplitude of 1 V, a DC offset of 0 V and frequency $f = 10 \; kHz$.
- c) Repeat the simulation for $f=5\ kHz,\ f=50\ kHz,\ f=100\ kHz$ and $f=500\ kHz.$ What does the circuit do?
 - d) Find f_C for which the amplitude of V_{out} is 3 dB lower than V_{in} .
 - e) Repeat d) for $C_2=65~pF,\,C_2=200~pF$ and $C_2=250~pF.$
 - f) Find a value for C_2 such that $f_C = 30 \ kHz$.
- g) Simulate the circuit and plot V_{out} as a function of time, when V_{in} is a rectangular signal with an amplitude of 1 V, a DC offset of 0 V and frequency $f = 20 \ kHz$. What do you observe?
 - h) Plot the spectrum of V_{out} .