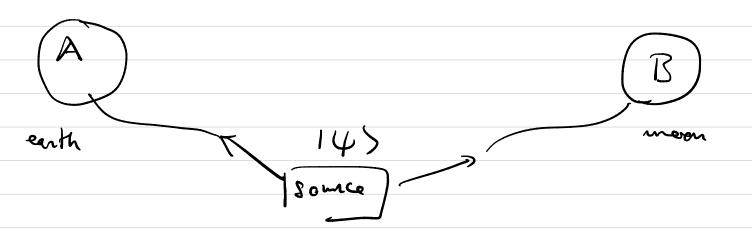
CHSH/Bell inequality and application to The Ekert 1981 QKD probocol.

CHSH inequality.

Bell proved an inequality that can be experimentally tested to decide if two parties share "correlations" only explainable by the entangled states of QH or explainable by more mundame correlations coming from a common classical hidden cause (or varieble).

Later Clauser, Horne, Shi mony and Holf derived an inequality better suited for experiments. The CHSH inequality. We briefly review it here. There exist by mon a whole 2006est of

"Bell inequalibie".


Let Alice and Bob he reparehed by a

great distance and assume May cannot communicate.

A source distribute a pair of gulis in

same arbitrary state 14) & C² & C² and

They perform local independent measurements

Alice performs measurements in one of two
possible orthonormal hasis { | \pi\}, |\pi\} or
{ | \pi'\}, |\pi'\} where { | \pi'\} = conx |0\} + six |1\)
| \pi'\} = six |\pi'\} = six |\pi'\} = six |\pi'\}

Similarly Boh perform, measurement, in one of two possible athonormal basis $\{13\}$, 13, 13, 13, 13, 13, 13, 13, where $\{13\} = \{13\} = \{13\} + \{12\} = \{13\} = \{13\} = \{12\} = \{13\} = \{12\} = \{13\} = \{12\} = \{13\} = \{12\} = \{13\} = \{12\} = \{13\} = \{12\} = \{14\} = \{13\} = \{14\} = \{$

This is repeated at each time instant.

Analysis of experiment within classical local hidden variable frame work:

Each measurement result of Alice is recorded as a variable $A(\alpha, \lambda) \in \{\pm 1\}$ on $A(\alpha', \lambda) \in \{\pm 1\}$. Each measurement result of Bob is recorded an a variable $B(\beta, \lambda)$ on $B(\beta', \lambda) \in \{\pm 1\}$.

Here I is a "hidden vanieble" Mat charecterises

The pair distributed. This can be a deterministic

variable or more generally a random vaniable

aith distribution h(d) >0, siddh(d)=1.

It is also assumed here Not A(.,1)

and B(.,d) are local descriptions of the results of Alice and Bob as they depend only on a (a x') and p(n p') and not (x, p)

simultaneously. (Of course Alice and Bob should not communicate on these should not be any so per le minal hidden communication between them.)

One all results of measurements are collected Alice end Bob get to jether and compute the averages;

 $E(\alpha,\beta) = \int dA h(A) A(\alpha,A) B(\beta,A)$ $E(\alpha,\beta') = \int dA h(A) A(\alpha,A) B(\beta,A)$ $E(\alpha',\beta) = \int dA h(A) A(\alpha',A) B(\beta,A)$ $E(\alpha',\beta') = \int dA h(A) A(\alpha',A) B(\beta',A)$

and Then The correlation coefficient:

 $S = E(\alpha, \beta) - E(\alpha', \beta) + E(\alpha', \beta) + E(\alpha', \beta').$

The onem CHSH inequality for local hidden van Thory

-2 & S & +2

Proof.

 $S = \int dd h(d) \left\{ A(\alpha, l) B(\beta, l) - A(\alpha, l) B(\beta, l) + A(\alpha, l) B(\beta, l) \right\}$

= Jah h(1) { A(x,1) (B(3,1) - B(3,1))

+ A(x',1) (B(3,1)+B(3',1))}

Since Me A & B Janctions take values in $\{\pm 1\}$ we have B(3,1) - B(3,1) = -2,0,2and B(3,1) + B(1,1) = -2,0,2Note also not one of the two must vanishe! There for

A(a, s) (B(3, s) - B(3, s)) + A(a, s) (B(3, s) + B(3, s)) $\in \{-2, 0, 2\}$

Sinu S is an average of there values, it must be in the interval [-2, +2]. =0 -2 (S { 2

In summery if the world is described by some local hidden variable theory we should find 15152 in experiments (this is famously mot the case for)
snitable a, p, x! p!

7

Analysis of experiment in the framework of QH:

According to QM Alie measures the observables

$$A = (+1) |a\rangle \langle a| + (-1) |a| \rangle \langle a| |$$
 $A' = (+1) |a'\rangle \langle a'| + (-1) |a'| \rangle \langle a'| |$

and Boh measure

If the some distributes a state 14) & C2 or C2 we have according to the QH:

$$E(\alpha, \beta) = \langle 4 | A B | 4 \rangle$$

$$E(\alpha, \beta') = \langle 4 | A B' | 4 \rangle$$

$$E(\alpha', \beta') = \langle 4 | A'B' | 4 \rangle$$

$$E(\alpha', \beta') = \langle 4 | A'B' | 4 \rangle$$

is an EPR-pair a compretation shows (exercise!)

$$E(\alpha, \beta) = \omega s (2(\alpha - \beta))$$
, $E(\alpha, \beta') = \omega s (2(\alpha - \beta'))$
 $E(\alpha', \beta) = \omega s (2(\alpha' - \beta))$, $E(\alpha', \beta') = \omega s (2(\alpha' - \beta'))$

Thus for the correlation coefficient me have

$$S = (65 \ 2(\alpha - \beta) - \cos 2(\alpha - \beta') + \cos 2(\alpha' - \beta) + \cos 2(\alpha' - \beta')$$

If we maximize this over &, &', &, &' we find

he max for
$$\alpha = \frac{\pi}{2}, \alpha' = 0$$
, $\beta = \frac{\pi}{8}, \beta' = \frac{\pi}{8}$.

$$= \int S = \cos \frac{\pi}{4} - \cos \frac{3\pi}{4} + \cos \frac{\pi}{4} + \cos \frac{\pi}{4} = 4.65 \frac{\pi}{4} = 2\sqrt{2}.$$

$$= \int \int S_{max} = 2\sqrt{2} > 2.$$

Thus the CHSHFBell inequality is violated. Experimetally this is indeed the case! So QH wins over local hidden wanth.

Application: Etent 1951 QKD protocol.

- pairs in state 14th for each time instant.
- a basis with $\alpha_1 = -\frac{\pi}{4}$, $\alpha_2 = -\frac{\pi}{8}$, $\alpha_3 = 0$ and she record the clanical bit $\alpha_1 = +1$ if the outcome is $|\alpha_1| > 1$.
- Bob measure his substrate by choosing bandonly a bests with $\beta_1 = -\frac{\pi}{8}$, $\beta_2 = 0$, $\beta_3 = \frac{\pi}{8}$ and he reach the clanical bit $y = \pm i$ of the outcome is $1\beta_1$) and y = -i of the outcome is $1\beta_1$.
- Alice & Bob communicate publicly their basis

 choices. They relect the time instants such that

 their choices were (\$\pi_3\$ p_3\$), (\$\pi_3\$ p_1\$), (\$\pi_1\$ p_3), (\$\pi_1\$ p_3).

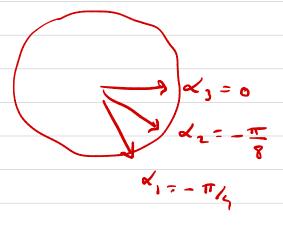
 [There are the "CFISH" anyles].

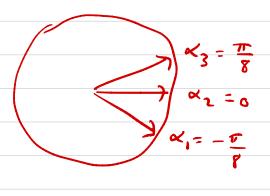
and they compute a correlation coefficient

 $S = E(\alpha_3, \beta_3) + E(\alpha_3, \beta_1) - E(\alpha_1, \beta_3) + E(\alpha_1, \beta_1)$

If there is no caverdropper they should find

S = 2 /2 (an with a small amount of main 2 < S<2/2)


· For the senet key (one-time pad) Alice and Bob


take the measurement remots X = y when their hasis

choicer au identical (x3, 32) or (x3, 3,).

Alice basis doices:

1306's besis choices;

What is the effect of an Ecreschopper?

- of If Eve capture the two guts. is of 14th and does some measurement and leaves them in a product state them there is no entanglement left and the correlation coefficient will be 151 < 2.

 A & B will notice during their security check.
- If Ere sends an entangled state to A&B

 (say she expire the EPR pair) and maits until the

 public communication phase to perform the same

 measurement than A&B. Some Thought shows that

 she gets the same results than A&B andy half of the time,