Informatique et Calcul Scientifique

Cours 9 : Recherche dans une liste, introduction au logarithme

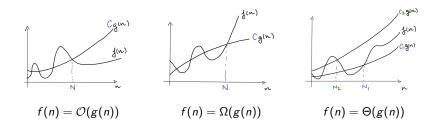
Aujourd'hui on verra

- ▶ Rappel notations $\mathcal{O}(\cdot)$, $\Omega(\cdot)$ et $\Theta(\cdot)$ et étude de la croissance asymptotique du temps de parcours d'un algorithme
- Recherche d'un élément dans une liste quelconque
- Recherche d'un élément dans une liste triée
- Logarithme de base 2.

Rappel - la semaine passée

- Notation $\mathcal{O}(\cdot)$, $\Omega(\cdot)$ et $\Theta(\cdot)$ pour comparer les vitesses de croissance de deux fonctions tendant vers l'infini
- Expression de l'ordre de croissance du temps de parcours d'un algorithme en notation $\mathcal{O}(\cdot)$, $\Omega(\cdot)$ et $\Theta(\cdot)$.

Rappel



Soit $n \in \mathbb{N}$, et f, g des fonctions positives ¹ de n.

$$f(n) = \mathcal{O}(g(n)) \Longleftrightarrow \exists C, N > 0 \text{ t.q. } \forall n > N \text{ } f(n) \leq C \cdot g(n).$$

4 / 38

^{1.} Elles n'ont en fait besoin d'être qu'asymptotiquement positives, càd positives à partir d'un certain rang.

Rappel - Remarque sur la notation

▶ Plus précisément : $\mathcal{O}(g(n))$ est **l'ensemble** des fonctions f(n) telles que

$$\exists C, N > 0 \text{ t.q. } \forall n > N \text{ } f(n) \leq C \cdot g(n).$$

La notation correcte serait $f \in \mathcal{O}(g)$, mais on emploie communément la terminologie "f est $\mathcal{O}(g)$ " et " $f = \mathcal{O}(g)$ ", qui sont des abus de notation.

Rappel - Notation $\mathcal{O}(\cdot)$

- Pour des puissances rationnelles $p \le q$, $n^p = \mathcal{O}(n^q)$.
 - $ightharpoonup n = \mathcal{O}(n^2), \ n = \mathcal{O}(n), \ \sqrt{n} = \mathcal{O}(n), \dots$
 - ▶ Si p < q, n^p est $\mathcal{O}(n^q)$ mais n^q n'est pas $\mathcal{O}(n^p)$.
- ▶ Si f est un polynôme 2 de degré p et g un polynôme de degré q avec $p \le q$, alors $f(n) = \mathcal{O}(g(n))$.
 - $n+1=\mathcal{O}(n^2), n^2+n+2=\mathcal{O}(n^3+n),...$
 - (plus général) $100n + \sqrt{n} = \mathcal{O}(n^2 + 3\sqrt{n})$

^{2.} ou si f et g sont des sommes de puissances rationnelles dont les termes dominants sont respectivement an^p et bn^q . Par abus de notation, à partir de maintenant, "polynôme" indiquera aussi des sommes de puissances rationnelles.

Rappel - Notation $\Theta(\cdot)$

- Si f et g sont deux polynômes de même degré, alors $f(n) = \Theta(g(n))$
 - $n^2 + n + 1 = \Theta(3n^2 + 2n + 5)$
 - ightharpoonup (plus général) $n + \sqrt{n} = \Theta(30n)$
- Pour des puissances p < q, n^p est $\mathcal{O}(n^q)$ mais n^p n'est pas $\Theta(n^q)$.
- La notation $\Theta(\cdot)$ permet de négliger les termes d'ordre inférieur et la constante multiplicative (positive) du terme dominant.

Rappel : temps de parcours d'algorithmes en notation asymptotique

Soit T(n) le temps de parcours d'un algorithme pour une entrée de taille n au pire des cas.

- Si on donne une fonction $f_1(n)$ telle que $T(n) = \mathcal{O}(f_1(n))$, f_1 est une **borne supérieure** sur le temps de parcours de l'algorithme.
- Si on donne une fonction $f_2(n)$ telle que $T(n) = \Omega(f_2(n))$, f_2 est une **borne inférieure** sur le temps de parcours de l'algorithme.
- Si on donne une fonction f(n) telle que $T(n) = \Theta(f(n))$, f est à la fois une borne supérieure et une borne inférieure sur le temps de parcours de l'algorithme : elle décrit le comportement asymptotique du temps de parcours.

8 / 38

Rappel : temps de parcours d'algorithmes en notation asymptotique

- Soit T(n) le temps de parcours d'un algorithme pour une entrée de taille n au pire des cas. Comment exprimer T(n) en fonction de n?
- ► En regardant le code!
- Selon notre modèle de computation, la plupart des instructions usuelles prennent un temps de parcours constant (plus précisément, borné par une constante)
- ▶ Le temps de parcours de l'algorithme dépendra du nombre d'instructions exécutées.

Rappel : temps de parcours d'algorithmes en notation asymptotique

```
for i in range(n):  
#TEMPS CONSTANT

for i in range(n):  
for j in range(i+1, n):  
#TEMPS CONSTANT

for i in range(n):  
for j in range(i+1, n):  
for k in range(j+1, n):  
#TEMPS CONSTANT

temps \Theta(n^2)
```

Recherche dans une liste

- Etant donnés une liste L de nombres et un nombre x , trouver x dans L .
 - ▶ Retourner un indice i tel que L[i] = x si x apparaît dans L , sinon retourner None .
 - Sans utiliser l'instruction if x in L, dont on ne connaît pas le temps de parcours ³!

^{3.} en fait, son temps de parcours est linéaire en n et son implémentation est équivalente à notre algorithme de recherche.

Correctitude (idée de preuve)

```
def recherche(L, x):
    n = len(L)
    for i in range(n):
        if L[i] == x:
            return i
```

- Si l'algorithme retourne i , ce i satisfait L[i] = x .
- ➤ Si l'algorithme retourne None , x n'apparaît pas dans la liste :
 - Invariant de boucle : au début de la i ème itération de la boucle for , on sait que x n'est pas dans L[0:i].

Recherche dans une liste - temps de parcours

```
def recherche(L, x):
    n = len(L)
    for i in range(n):
        if L[i] == x:
            return i
```

- ▶ Si x est en tête de liste, $\Theta(1)$ (temps constant)
- Si x est en fin de liste ou n'apparaît pas dans la liste, $\Theta(n)$
- ▶ RAPPEL : le temps de parcours est défini dans le pire des cas : le temps de parcours de cet algorithme est $\Theta(n)$ (linéaire en n).

- ► Et si la liste était triée?
- Exemple: recherche de l'élément 17 dans la liste
 -7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

[.] Un autre exemple

- ► Et si la liste était triée?
- Exemple : recherche de l'élément 17 dans la liste

```
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
```

- ► Et si la liste était triée?
- Exemple : recherche de l'élément 17 dans la liste

```
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
```

[.] Un autre exemple

- ► Et si la liste était triée?
- Exemple : recherche de l'élément 17 dans la liste

```
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
```

[.] Un autre exemple

- ► Et si la liste était triée?
- Exemple : recherche de l'élément 17 dans la liste

```
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
```

Trouvé à l'index 14 de la liste!

[.] Un autre exemple

Exemple : recherche de l'élément 31 dans la liste -7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

```
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
```

```
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
```

```
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
```

```
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
```

```
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
```

► Exemple : recherche de l'élément 31 dans la liste

```
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
```

Pas trouvé!

Recherche par dichotomie

Cet exemple présente un type d'algorithme par **dichotomie**, auquel nous serons de nouveau confrontés dans la suite de ce cours. Il fonctionne de la manière suivante :

- Rechercher si une propriété est vérifiée dans un certain ensemble. Si oui,
- Diviser cet ensemble par deux, et contrôler dans quel sous-espace la propriété est vérifiée
- Répéter jusqu'à trouver le sous-espace le plus petit dans lequel celle-ci est vérifiée.

Un tel algorithme peut être implémenté de manière récursive et itérative.

Recherche binaire (recherche par dichotomie)

```
def recherche_binaire(L, x):
    Entree: nombre x, liste L de nombres triee
    Sortie: i t.q. L[i]=x s'il existe, None sinon
    n = len(L)
    bas = 0
    haut = n-1
    while haut >= bas:
        milieu = (bas + haut)//2
        if L[milieu] == x:
            return milieu
        elif L[milieu] > x:
            haut = milieu - 1
        else:
            bas = milieu + 1
```

Correctitude (idée)

- L'algorithme termine car :
 - Avant le début de la boucle while , haut bas est positif (ou alors on ne rentre pas dans la boucle)
 - ► A chaque itération de la boucle, haut bas décroît d'au moins 1 (ou alors on sort de la boucle)
 - ► La boucle termine lorsque haut bas < 0.
- L'algorithme rend la valeur correcte car :
 - ► S'il retourne la valeur i , i satisfait bien L[i] = x
 - S'il retourne la valeur None, c'est qu'on est sorti de la boucle avec haut < bas . Or a chaque itération de la boucle, on maintient la propriété

Si x est dans L, alors il est dans L[bas:haut+1]

A la sortie de la boucle, L[bas:haut+1] est une liste vide et donc x n'est pas dans L.

Recherche binaire : temps de parcours

- Chaque itération de la boucle while prend un temps constant.
- ▶ Pour une entrée de taille n, quel est le nombre d'itérations de la boucle while ?
- La taille de la liste qu'on considère est à peu près coupée en deux à chaque itération.
- Lorsqu'on arrive à une liste de taille 1 (ou avant si l'élément est trouvé), l'algorithme s'arrête après cette itération.

19 / 38

Combien de fois faut-il diviser un entier n par 2 (division entière) pour arriver jusqu'à 1?

Décomposition en puissances de 2

```
def decomposition(N):
    co = 0
    x = N/2
    while x >= 1:
        co +=1
        x /= 2
    return co
```

```
decomposition(1)=0
decomposition(3)=1
decomposition(4)=2
decomposition(8)=3
decomposition(13)=3
decomposition(16)=4
decomposition(25)=4
decomposition(32)=5
```

- ► Cet algorithme continue de diviser un nombre *n* par 2 tant que le résultat est supérieur à 1.
- ▶ Autrement dit, il permet d'obtenir k tel que $2^k \le n < 2^{k+1}$.

Introduction à la fonction log

Cet algorithme donne une première représentation de la fonction mathématique log qui apparaît souvent en informatique.

- ► En analyse, la fonction logarithme (de base e) sera définie de manière géométrique commme l'aire sous la courbe de la fonction $f(x) = \frac{1}{x}$.
- Dans ce cours, on définit le logarithme de base entière ⁴ de manière combinatoire.

^{4.} Usuellement base 2 ou 10

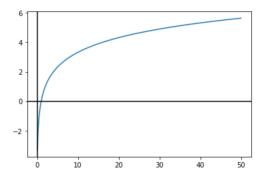
Introduction à la fonction log

- Soit *n* un entier strictement positif. On suppose d'abord que *n* est une puissance de 2, i.e., il existe *k* in \mathbb{N} tel que $n = 2^k$.
- Par définition, k est le **logarithme** en base 2 de n. On le dénote par $k = \log_2(n)$. Donc par définition, $n = 2^{\log_2(n)}$.
- ▶ $log_2(n)$ est le nombre de fois qu'il faut diviser n par 2 pour arriver jusqu'à 1.

n	$\log_2(n)$
1	0
2	1
4	2
8	3
16	4

Propriétés de la fonction log

La fonction $\log_2(x)$ est en fait définie sur $\mathbb{R}_+^* =]0, \infty[$



Propriétés de la fonction log

▶ $log_2(x)$ est **strictement croissante** : pour tous $x_1, x_2 \in]0, \infty[$

$$x_1 < x_2 \Leftrightarrow log_2(x_1) < log_2(x_2)$$

Pour tous $x, x_1, x_2 \in]0, \infty[$, pour toute puissance p rationnelle :

$$\log_2(x_1 \cdot x_2) = \log_2(x_1) + \log_2(x_2)$$

$$\log_2(x_1/x_2) = \log_2(x_1) - \log_2(x_2)$$

$$\log_2(x^p) = p \log_2(x)$$

Propriétés de la fonction log

- On s'intéressera aux valeurs de $log_2(n)$ uniquement pour n entier, et en particulier pour n tendant vers l'infini.
- Pour *n* puissance de 2, $\log_2(n)$ a un sens combinatoire.
- Pour n entier positif qui n'est pas une puissance de 2, soit k la plus grande puissance de 2 telle que $2^k < n$. On a donc

$$2^k < n < 2^{k+1}$$
.

Puisque log₂ est croissante, on a

$$\log_2(2^k) < \log_2(n) < \log_2(2^{k+1})$$

et donc

$$k < \log_2(n) < k + 1.$$

Par exemple, $10 < \log_2(2000) < 11$ (puisque 1024 < 2000 < 2048).

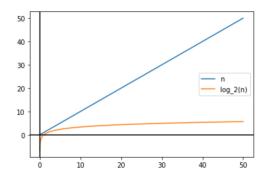
Comportement de la fonction log à l'infini

- $\log_2(n)$ croît vers l'infini quand n tend vers l'infini, mais beaucoup plus lentement que n:

$$\lim_{n\to\infty}\frac{\log_2(n)}{n}=0.$$

▶ En particulier, $log_2(n) = \mathcal{O}(n)$.

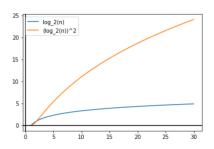
n	$\log_2(n)$
1 024	10
1 048 576	20
1 073 741 824	30
$1.099511628 \times 10^{12}$	40



Pour des puissances rationnelles $p \le q$,

$$(\log_2(n))^p = \mathcal{O}((\log_2(n))^q).$$

 $\triangleright \log_2(n) = \mathcal{O}((\log_2(n))^2)$



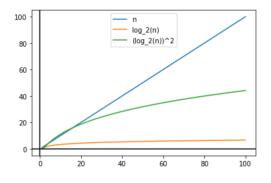
Pour toute puissance p, et pour toute puissance strictement positive q,

$$\lim_{n\to\infty}\frac{(\log_2(n))^p}{n^q}=0.$$

- ▶ En particulier $(\log_2(n))^p = \mathcal{O}(n^q)$. Par exemple,
 - $(\log_2(n))^2 = \mathcal{O}(n)$
 - $(\log_2(n))^{10} = \mathcal{O}(n)$
 - $(\log_2(n))^{10} = \mathcal{O}(\sqrt{n})$
- ▶ log₂(n) et ses puissances ont une croissance logarithmique, qui est dominée par la croissance polynomiale des puissances de n.

Ghid Maatouk, Luc Testa ICS - Cours 9 29 / 38

[.] si $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$, on dira que f est o(g) ("f est petit o de g").



```
def recherche_binaire(L, x):
    n = len(L)
    bas = 0
    haut = n-1

while haut >= bas:
    milieu = (bas + haut) // 2
    if L[milieu] == x:
        return milieu
    elif L[milieu] > x:
        haut = milieu - 1
    else:
        bas = milieu + 1
```

- ► Temps de parcours dans le pire des cas : lorsque l'élément n'est pas trouvé ou est trouvé lorsqu'on est arrivé à une liste de taille 1.
- ▶ Dans ce cas, la boucle while termine après $\Theta(\log(n))$ itérations.
- L'algorithme de recherche binaire a donc temps de parcours $\Theta(\log(n))$ dans le pire des cas.

Recherche binaire - nombre d'itérations (idée de preuve)

```
while haut >= bas:
    milieu = (bas + haut)//2
    if L[milieu] == x:
        return milieu
    elif L[milieu] > x:
        haut = milieu - 1
    else:
        bas = milieu + 1
```

La boucle while termine après $\Theta(\log(n))$ itérations.

► Idée de preuve : Si la tranche de liste considérée (L[bas:haut+1]) à une itération donnée est de taille ℓ, alors la tranche de liste considérée à la prochaine itération est de taille ≤ ℓ/2.

Liste non triée

- Etant donné une liste non triée, comment la trier pour pouvoir la donner en entrée à recherche binaire ?
- Quel est le coût de trier une liste? A partir de combien d'appels à recherche_binaire sur une liste est-ce que cela vaut la peine de trier la liste auparavant?
- Questions à méditer jusqu'à la semaine prochaine...

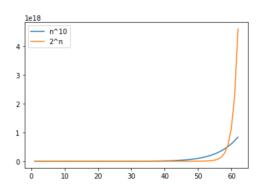
Croissance exponentielle

Pour toute puissance rationnelle p, pour tout réel a > 1,

$$\lim_{n\to\infty}\frac{n^p}{a^n}=0.$$

- ► En particulier, $n^p = O(a^n)$ (et a^n n'est pas $O(n^p)$). Par exemple,
 - $n = O(2^n)$
 - $n^{100} = O(2^n)$
 - **.**.
- Pour tout polynôme f(n), la **croissance polynomiale** de f est dominée par la **croissance exponentielle** de a^n .
 - $n^2 + n\sqrt{n} + 1 = O(2^n)$
 - $n^{10} + n^8 + 3n^4 = O(2^n)$
 - **.**..

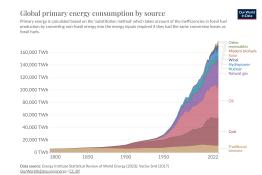
Croissance exponentielle



Croissance exponentielle

Une multitude de situations physiques et sociales ont en réalité une croissance exponentielle. On peut citer ⁵ :

- La croissance d'une population
- La propagation d'une maladie (covid)
- L'utilisation de ressources naturelles



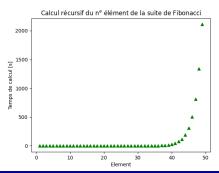
f(1 + ...)n

Mathématiquement, $f(n) = f_0 \cdot (1+r)^n$

Algorithmes exponentiels

Certains algorithmes ont un temps de parcours T(n) exponentiel en la taille n de l'entrée : $T(n) = \Theta(a^n)$ (ou $T(n) = \Omega(a^n)$ et $T(n) = \mathcal{O}(b^n)$ pour des constantes a, b).

Exemple : on peut prouver que l'algorithme récursif fib() vu au Cours 7 pour calculer le neme nombre de Fibonacci a un temps de parcours exponentiel en n. On observe empiriquement la croissance de ce temps de parcours :



Algorithmes exponentiels - somme de sous-ensembles

- ▶ Un autre exemple : le problème de la somme de sous-ensembles ⁶ : étant donné une liste L de *n* nombres et une valeur cible V , existe-t-il un sous-ensemble des indices de L tel que la somme des éléments correspondants de L vaut V ?
 - ► Input: L = [11, 2, 9, -5, 2, 7, -2, -3] et V = 1
 - Output : oui car 2 + 2 3 = 1.
- L'algorithme naïf parcourt tous les sous-ensembles d'indices de L et vérifie la somme des éléments.
- ▶ Il y a 2^n tels sous-ensembles! Le temps de parcours de cet algorithme a une borne inférieure de $\Omega(2^n)$.

Ghid Maatouk, Luc Testa ICS - Cours 9 38 / 38

^{6.} https://en.wikipedia.org/wiki/Subset_sum_problem