Informatique et Calcul Scientifique

Cours 10 : Algorithmes de tri

La fois passée, on a vu..

- Un algorithme de recherche linéaire dans une liste
- Un premier exemple des méthodes de dichotomie
- La fonction logarithme et son utilisation en informatique
- Un algorithme de recherche binaire dans une liste triée

Aujourd'hui, on verra...

Plusieurs algorithmes de tri et leurs temps de parcours

- Le tri par sélection
- Le tri par insertion
- Le tri par fusion.

Algorithmes de tri

▶ Problème : étant donnée une liste (de nombres, de strings...) de taille n, trier les éléments de cette liste dans l'ordre croissant.

L =
$$[0, -3, 2, 4, 2] \rightarrow L = [-3, 0, 2, 2, 4]$$

- Ce problème peut être résolu par une multitude d'algorithmes...
- On présente plusieurs algorithmes qui, étant donnée une liste L, la modifient pour en trier les éléments (comme le fait la méthode sort() de la classe list en Python).

Algorithmes de tri

- ► Pourquoi trier?
 - Par exemple, trier une liste sur laquelle on va souvent appeler l'opération recherche.
 - Dictionnaires (les vrais) ordonnés par ordre alphabétique des mots, annuaires ordonnés par ordre alphabétique des noms, listes d'étudiants au SAC ordonnés (par Sciper?)...
- D'habitude on associe à une clé de recherche des données satellites :
 - Mot dans un dictionnaire, définition correspondante
 - Nom dans un annuaire, numéro et adresse associés
- Dans ce cours on ne s'intéressera pas à la représentation et à la copie de données satellites.

Tri par sélection

- Idée : dans une liste triée, le premier élément est le plus petit, le deuxième est le deuxième plus petit, etc.
- Pour trier la liste, on va rechercher le plus petit élément et le mettre à la bonne place (en première position); puis rechercher le deuxième plus petit élément (le plus petit parmi ceux qui restent) et le mettre à la bonne place en deuxième position, etc.
- ➤ On fait donc grandir une sous-liste triée, en insérant à chaque fois le minimum des éléments restants à la fin de cette sous-liste. ^a

 <sup>3
 1
 5
 2

 1
 3
 5
 2

 1
 2
 5
 3</sup>

a. Exemple interactif: https://visualgo.net/bn/sorting

Tri par sélection

```
def tri_par_selection(L):
    , , ,
    Entree: liste L de nombres
    Trie I
    , , ,
    n = len(L)
    for i in range(n):
        m = L[i]
        m index = i
        for j in range(i+1,n):
            if L[j] < m:
                 m = L[j]
                 m_index = j
        L[i], L[m\_index] = L[m\_index], L[i]
```

Tri par sélection : correctitude

Invariant de boucle (boucle extérieure) :

Au début de l'itération i , la sous-liste L[0:i] consiste des *i* plus petits éléments de la liste L donnée en entrée. **triés**.

 $\begin{tabular}{ll} \textbf{Initialisation}: au début de l'itération 0, L[0:0] est vide et consiste donc bien des 0 plus petits éléments de L . \\ \end{tabular}$

Tri par sélection : correctitude (idée)

```
def tri_par_selection(L):
    n = len(L)
    for i in range(n):
        m = L[i]
        m_index = i
    for j in range(i+1,n):
        if L[j] < m:
            m = L[j]
        m_index = j
    L[i], L[m_index] = L[m_index], L[i]</pre>
```

Invariant de boucle (boucle extérieure) :

Au début de l'itération i, la sous-liste L[0:i] consiste des i plus petits éléments de la liste L donnée en entrée, **triés**.

Maintenance : l'itération i consiste à mettre le *i*ème plus petit élément à la *i*ème position dans la liste.

- ▶ Pour le prouver, il faut prouver que la boucle for intérieure sélectionne bien le minimum de L[i:n]
- Et donc il faut formuler et prouver un invariant de boucle pour la boucle for dans la ième itération de la boucle extérieure :

Au début de l'itération j de la boucle, m contient le minimum de L[i:j] et m_index l'index de ce minimum.

Tri par sélection : correctitude

Invariant de boucle (boucle extérieure) :
Au début de l'itération i ,
la sous-liste L[0:i]
consiste des i plus petits
éléments de la liste L
donnée en entrée, triés.

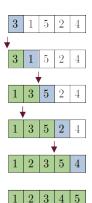
Terminaison: à la sortie de la boucle, donc au début de l'itération n (qui n'aura pas lieu), L[0:n] consiste des n éléments de la liste L, **triés**. Donc la liste entière est triée.

Tri par sélection : temps de parcours

- Les deux boucles for imbriquées impliquent un temps de parcours qui est $\Theta(n^2)$.
- Y a-t-il une distinction entre le pire des cas et d'autres cas?

Tri par insertion

- Idée : trier une liste comme on trie une main à un jeu de cartes.
- On fait grandir une sous-liste triée, en insérant un élément à la fois à la bonne place dans cette sous-liste.



Ghid Maatouk, Luc Testa ICS - Cours 10 12 / 37

[.] Exemple interactif : https://www.hackerearth.com/practice/ algorithms/sorting/insertion-sort/visualize/

Tri par insertion

Tri par insertion: correctitude

```
def tri_par_insertion(L):
    n = len(L)
    for i in range(n):
        j = i
        while j > 0 and L[j] < L[j-1]:
        L[j], L[j-1] = L[j-1], L[j]
        j -= 1</pre>
```

Invariant de boucle (boucle extérieure) :

Au début de l'itération i, la sous-liste L[0:i] consiste des mêmes i éléments initialement dans L[0:i], mais **triés**.

Tri par insertion : temps de parcours

- Le temps de parcours au pire des cas est lorsque à l'itération i de la boucle for , la boucle while itère i fois,
- c'est-à-dire lorsque la liste est triée dans l'ordre décroissant.
- Dans ce cas, les instructions aux lignes 6 et 7 s'exécutent au total

$$1+2+\cdots+(n-1)=\frac{n(n-1)}{2}$$
 fois.

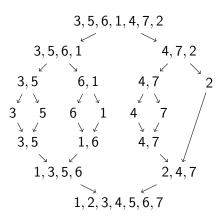
▶ Le temps de parcours au pire des cas est $\Theta(n^2)$.

Un algorithme de tri récursif

- ▶ Peut-on faire mieux que $\Theta(n^2)$?
 - ⇒ Oui, en utilisant un algorithme **récursif** : le tri par fusion.
- Paradigme "diviser pour régner" : Pour une instance de taille n du problème du tri, càd une liste de taille n, tri_par_fusion :
 - Divise la liste en deux sous-listes de taille (approximativement)
 n/2
 - Trie récursivement chaque sous-liste
 - Fusionne les sous-listes triées pour obtenir une version triée de la liste initiale.
- ▶ Le tri des sous-listes se fait récursivement et les appels récursifs s'arrêtent pour les listes de taille 1 (cas de base).

Tri par fusion - idée

On suppose qu'on a accès à un algorithme de **fusion**, qui, étant donnée une liste L dont les deux moitiés sont triées, trie tous les éléments de L.



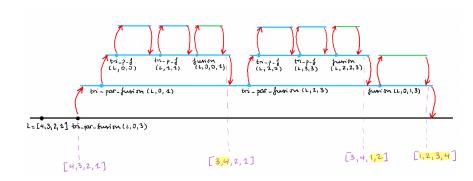
Tri par fusion

L'algorithme de tri par fusion est donc implémenté de manière récursive pour une instance L :

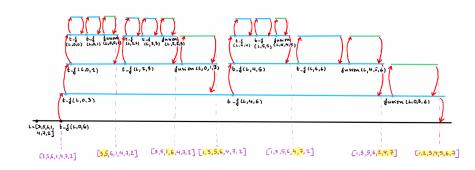
18 / 37

```
def fusion(L, bas, milieu, haut):
    ''Entree: liste L t.g. L[bas:milieu+1] et
            L[milieu+1:haut+1] sont triees
   Trie L[bas:haut+1]'''
    L1 = L[bas:milieu+1]
    L2 = L[milieu+1:haut+1]
    L1.append(float('inf'))
    L2.append(float('inf'))
   L1 index = 0
    L2_index = 0
    for i in range(bas, haut+1):
        if L1[L1_index] <= L2[L2_index]:</pre>
            L[i] = L1[L1\_index]
            L1 index += 1
        else:
            L[i] = L2[L2 index]
            L2 index += 1
```

Tri par fusion : exemple

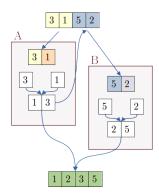


Tri par fusion : exemple



Tri par fusion : Remarques

- L'efficacité du tri par fusion dépend du temps de parcours de l'algorithme de fusion de deux listes
- Les différentes opérations ne sont pas effectuées en parallèle.
 L'algorithme trie entièrement et récursivement la première sous-liste (A) avant de trier la seconde (B).



Correctitude (idée)

- La correctitude de tri_par_fusion(L, bas, haut) découle, par un argument inductif, de la correctitude de fusion et de la correctitude de tri_par_fusion sur des instances plus petites (cas de base : une liste de taille 1 est déjà triée).
- La correctitude de fusion est impliquée par l'invariant de boucle suivant pour la boucle for :

Au début de l'itération i de la boucle, L[bas:i] contient les (i - bas) plus petits éléments parmi ceux de L1 et L2, triés; et L1[L1_index] et L2[L2_index] sont les plus petits éléments de leurs listes respectives qui n'ont pas encore été copiés dans L.

23 / 37

```
def fusion(L, bas, milieu, haut):
    L1 = L[bas:milieu+1] → stoing: ∂(milleu - bas)
L2 = L[milieu+1:haut+1] → ∂(haut - milleu)
     L1.append(float('inf'))
     L2.append(float('inf'))
    L1_index = 0
    L2_index = 0
    for i in range(bas, haut+1):

if L1[L1_index] <= L2[L2_index]:
              L[i] = L1[L1\_index]
              L1_index += 1
          else:
              L[i] = L2[L2\_index]
               L2\_index += 1
```

Temps de parcours : $\Theta(n)$, où n est la taille de L[bas:haut+1] , càd n = haut - bas + 1.

Tri par fusion : temps de parcours

- Soit T(n) le temps de parcours, au pire des cas, de tri_par_fusion pour une entrée de taille n (= haut - bas + 1).
- On suppose que *n* est une puissance de 2.

Pour $n \ge 2$, on a

$$T(n) = 2T(n/2) + f(n),$$

où $f(n) = \Theta(n)$ est le temps de parcours de l'appel à fusion.

Temps de parcours : récurrence

Le temps de parcours satisfait la récurrence

$$T(n) = \begin{cases} 2T(n/2) + \Theta(n) & \text{si } n \ge 2\\ \Theta(1) & \text{si } n = 1. \end{cases}$$
 (1)

C'est-à-dire qu'il existe des fonctions

$$T_1(n) = \begin{cases} 2T(n/2) + c_1 n & \text{si } n \ge 2\\ c'_1 & \text{si } n = 1 \end{cases}$$

$$T_2(n) = \begin{cases} 2T(n/2) + c_2n & \text{si } n \ge 2\\ c_2' & \text{si } n = 1 \end{cases}$$

telles que

$$T_1(n) \leq T(n) \leq T_2(n)$$

pour n assez grand.

Résolution de récurrences

▶ Il existe un théorème (the master theorem) qu'on peut appliquer pour trouver l'ordre de croissance d'une fonction T(n) qui satisfait une récurrence de la forme

$$T(n) = aT(n/b) + f(n),$$

pour des constantes $a \ge 1$ et b > 1 (et avec un ou des cas de base appropriés).

- Cette récurrence modélise le temps de parcours pour un algorithme où on divise un problème de taille n en a sous-problèmes de taille (approximativement) n/b chacun. f(n) représente le coût de créer/recombiner les sous-instances.
- Il existe aussi des théorèmes pour résoudre des récurrences plus compliquées, par exemples lorsque les tailles des sous-problèmes sont inégales.

Résolution de récurrences

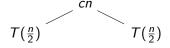
- ▶ On peut également prouver l'ordre de croissance de T(n) par récurrence sur n, en partant d'une hypothèse sur cet ordre de croissance.
- Une des méthodes pour formuler une bonne hypothèse est de dessiner un arbre de récurrence.
- ▶ Pour obtenir une idée de l'ordre de croissance de T(n), on va dessiner un arbre de récurrence pour la récurrence (1) qu'on se permet de récrire comme

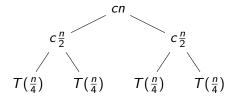
$$T(n) = \begin{cases} 2T(n/2) + cn & \text{si } n \ge 2\\ c' & \text{si } n = 1, \end{cases}$$

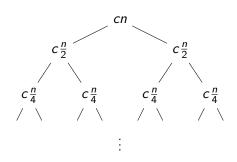
et on va toujours supposer que n est une puissance de 2.

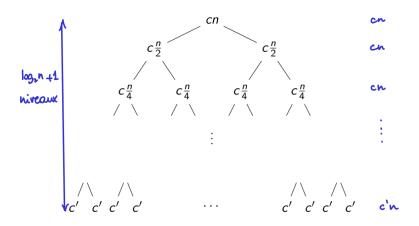
► Ce qui suit n'est pas une preuve mais un argument informel.

T(n)









Tri par fusion - temps de parcours

La somme des temps de parcours à tous les sommets de l'arbre est

$$cn\log_2(n) + c'n$$

► On en déduit le temps de parcours de tri_par_fusion :

$$T(n) = \Theta(n \log_2(n)).$$

Comparaison des algorithmes de tri

- Pour une entrée de taille n, tri_par_selection et tri_par_insertion ont temps de parcours $\Theta(n^2)$ alors que tri_par_fusion a temps de parcours $\Theta(n \log_2(n))$.
- Par contre, tri_par_selection et tri_par_insertion trient sur place, alors que tri_par_fusion a besoin de $\Theta(n)$ espace de travail en mémoire.
- La constante qui se cache dans la notation $\Theta(\cdot)$ pour tri_par_fusion est assez grande. En pratique, pour de petites valeurs de n, tri_par_insertion est l'algorithme à préférer.
- L'algorithme implémenté par la méthode sort et la fonction native sorted en Python est timsort : c'est un algorithme hybride basé sur le tri par fusion et le tri par insertion.

Comparaison des algorithmes de tri

- Un autre algorithme de tri répandu est le tri rapide ou tri pivot (quicksort).
- ▶ Le tri rapide choisit un élément de la liste comme pivot, et en comparant chaque autre élément de la liste au pivot, crée deux sous-listes : la liste des éléments plus petits que le pivot et la liste des éléments plus grand que le pivot. Puis il trie récursivement ces deux sous-listes.
- Le tri rapide trie sur place.
- ▶ Si le pivot est choisi aléatoirement à chaque étape, le temps de parcours de tri rapide est $\Theta(n^2)$ au pire des cas mais $\Theta(n \log n)$ en moyenne (avec une plus petite constante que celle du tri par fusion).

Comparaison des algorithmes de tri

- ► Tous les algorithmes que nous avons vus sont basés sur la comparaison de paires d'éléments.
- On peut prouver que tout algorithme basé sur la comparaison de paires d'éléments a un temps de parcours qui est $\Omega(nlog_2(n))$.
- Le tri par fusion est donc asymptotiquement optimal parmi les algorithmes qui comparent des paires d'éléments.
- Si on a plus d'information sur les données de la liste, par exemple si on sait que tous les éléments sont entre 0 et une constante K, on peut trier en $\Theta(n)$ (sans effectuer de comparaisons d'éléments).