Informatique et Calcul Scientifique

Résumé du cours

Dans ce cours, on a vu...

- Spécification d'un algorithme : entrée et sortie
- Correctitude d'un algorithme
 - Invariants de boucles pour les boucles for et while
 - ► Terminaison des boucles while
- ► Temps de parcours d'un algorithme
 - Notation asymptotique $\mathcal{O}(\cdot)$, $\Theta(\cdot)$, $\Omega(\cdot)$
 - Comparaison de la vitesse de croissance de fonctions données en notation asymptotique
 - Expression du temps de parcours d'un algorithme en notation asymptotique en fonction de la taille de l'entrée
 - Comparaison du temps de parcours d'algorithmes résolvant le même problème.

Dans ce cours, on a vu...

- Algorithmes récursifs
- ► Algorithmes de recherche :
 - ► Recherche linéaire dans une liste
 - ► Recherche binaire dans une liste triée
- ► Algorithmes de tri :
 - Tri par insertion
 - Tri par sélection
 - Tri par fusion
 - Tri à bulles
- Algorithmes de graphes :
 - Représentation de graphes avec des matrices et des listes d'adjacence
 - Parcours de graphes en largeur et en profondeur
 - Structures de données élémentaires et leur temps de parcours

Algorithmes de recherche dans une liste

Algorithme	Temps de parcours ¹
Recherche linéaire	$\Theta(n)$
Recherche binaire (liste triée)	$\Theta(\log_2(n))$

Ghid Maatouk, Luc Testa ICS - recap 4

^{1.} pour une liste de taille n, au pire des cas

Algorithmes de tri d'une liste

Algorithme	Temps de parcours ²
Tri par sélection	$\Theta(n^2)$
Tri par insertion	$\Theta(n^2)$
Tri par fusion	$\Theta(n\log_2(n))$

Ghid Maatouk, Luc Testa ICS - recap 5 / 6

^{2.} pour une liste de taille n, au pire des cas

Algorithmes de graphes

Algorithme	Temps de parcours ³
Parcours en largeur (BFS)	$\Theta(n+m)$
Parcours en profondeur (DFS)	$\Theta(n+m)$

Ghid Maatouk, Luc Testa ICS - recap 6,

^{3.} pour un graphe à n sommets et m arêtes, représenté par listes d'adjacence, au pire des cas