Physique

Semestre d'automne 2024

Roger Sauser Guido Burmeister

https://moodle.epfl.ch/course/view.php?id=14848

Série 1

Exercice 1

Exprimez

- un m^3 en ℓ ,
- un $m\ell$ en mm^3 ,
- un cm³ en m ℓ ,
- un cm en km,
- un g ℓ^{-1} en kg m⁻³.

Exercice 2

La Terre est approximativement une boule de rayon $R=6370\,\mathrm{km}$. Quel est son volume en m³ ?

Exercice 3

Calculer le rayon de la terre en-dessous duquel elle serait un trou noir de même masse $M_T = 5.97 \cdot 10^{24}$ kg. Ce rayon, appelé rayon de Schwarzschild, est donné par

$$r_{\rm S} = \frac{2GM_T}{c^2} \,,$$

avec

 $G=6.67\cdot 10^{-11}\,\rm N\,m^2\,kg^{-2}$, constante de la gravitation universelle $c=3\cdot 10^8\,\rm m\,s^{-1}$, vitesse de la lumière où $1\,\rm N=1\,kg\,m\,s^{-2}$.

Exercice 4

Calculez

- la masse de $0.6 \,\mathrm{m}^3$ d'air $(\rho_{\rm air} = 1.3 \,\mathrm{kg}\,\mathrm{m}^{-3})$,
- le volume de 65 g de chlore ($\rho_{\rm Cl} = 3.21 \,\mathrm{kg}\,\mathrm{m}^{-3}$).

Exercice 5

On connaît la masse d'un bijou : $m=25.50\,\mathrm{g}$. On plonge ce dernier dans une éprouvette graduée contenant de l'eau. On observe que le bijou déplace $2.3\,\mathrm{cm}^3$ de liquide. Ce bijou est-il en or ? ($\rho_{\mathrm{Au}}=1.93\cdot10^4\,\mathrm{kg\,m}^{-3}$)

Exercice 6

Une feuille d'or a une épaisseur de 10 micromètres (1 micromètre $\equiv 1 \mu m \equiv 10^{-6} m$). Que vaut la masse d'un carré ayant 10 cm de côté?

(Kane & Sternheim, ex. 3.16)

Exercice 7

Calculer la masse volumique des alliages obtenus en fondant

(a) 40 g d'or (
$$\rho_{\rm Au} = 1.93 \cdot 10^4 \, \rm kg \, m^{-3}$$
) et 60 g d'argent ($\rho_{\rm Ag} = 1.05 \cdot 10^4 \, \rm kg \, m^{-3}$);

(b) $40 \,\mathrm{cm}^3$ d'or et $60 \,\mathrm{cm}^3$ d'argent.

Préciser les hypothèses émises pour le calcul.

Exercice 8

A partir de leur distance à la terre et de leur rayon, calculer le diamètre apparent (angle de vue) de la lune et du soleil.

$$R_{\rm S} = 6.95 \cdot 10^8 \, \mathrm{m}, \, d_{\rm T-S} = 1.50 \cdot 10^{11} \, \mathrm{m}, \, R_{\rm L} = 1.74 \cdot 10^6 \, \mathrm{m}, \, d_{\rm T-L} = 3.84 \cdot 10^8 \, \mathrm{m}.$$

Exercice 9

Un câble d'acier ($\rho = 7.85 \cdot 10^3 \,\mathrm{kg} \,\mathrm{m}^{-3}$) de section circulaire (diamètre 5 cm) et de longueur 250 m doit être enroulé autour d'une bobine (diamètre 2 m).

- (a) Quelle est la masse du câble?
- (b) Combien de fois le câble s'enroule-t-il autour de la bobine?

Préciser les hypothèses faites pour justifier les calculs.

Réponses

Ex. 1
$$10^3 \ell$$
, $10^3 \,\mathrm{mm}^3$, $1 \,\mathrm{m}\ell$, $10^{-5} \,\mathrm{km}$, $1 \,\mathrm{kg} \,\mathrm{m}^{-3}$.

Ex. 2
$$1.08 \cdot 10^{21} \,\mathrm{m}^3$$
.

$$\mathbf{Ex.4} \ \ M_{\rm air} = 0.78\,{\rm kg}\,, \, V_{\rm Cl} = 2.02\cdot 10^{-2}\,{\rm m}^3.$$

Ex. 6
$$m = 1.93 \,\mathrm{g}$$
.

Ex. 7 (a)
$$\rho_{\rm all} \cong 12.84 \cdot 10^3 \, \rm kg \, m^{-3}$$
 (b) $\rho_{\rm all} = 14.02 \cdot 10^3 \, \rm kg \, m^{-3}$.

Ex. 9 (a)
$$M = 3.85 \cdot 10^3 \,\mathrm{kg}$$
 (b) $N_{\text{tours}} = 38.82$.