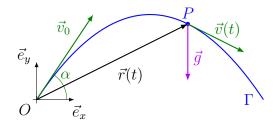
Exemple de mouvement uniformément accéléré : tir au canon

A l'instant $t_0 = 0$, on tire depuis le sol un obus avec une vitesse \vec{v}_0 faisant un angle α avec le sol. L'origine O est choisie à l'endroit du tir.

En négligeant les frottements dans l'air, l'obus tiré est en chute libre :



$$\vec{a}(t) = \vec{g}$$
 $\vec{v}(t) = \vec{g}t + \vec{v}_0$
 $\vec{r}(t) = \frac{1}{2}\vec{g}t^2 + \vec{v}_0t$.

- Projections
 - selon \vec{e}_x :

• selon
$$\vec{e}_y$$
:

$$a_x(t) = 0$$

$$v_x(t) = v_{0x}$$

$$x(t) = v_{0x}t$$

$$a_y(t) = -g$$

 $v_y(t) = -gt + v_{0y}$
 $y(t) = -\frac{1}{2}gt^2 + v_{0y}t$.

• Montrons que la trajectoire est alors une parabole d'axe parallèle à \vec{g} . De x(t), nous tirons $t(x) = \frac{x}{v_{0x}}$ et obtenons

$$y(x) = -\frac{g}{2v_{0x}^2} x^2 + \frac{v_{0y}}{v_{0x}} x.$$

Cette expression du second degré décrit bien une parabole.

• Hauteur maximale h: critère $v_y(t_h) = 0$

$$v_y(t_h) = -gt_h + v_{0y} = 0 \implies t_h = \frac{v_{0y}}{g} = \frac{v_0 \sin \alpha}{g}$$

$$h = y(t_h) = -\frac{1}{2}gt_h^2 + v_{0y}t_h = \frac{v_{0y}^2}{2g} = \frac{v_0^2\sin^2\alpha}{2g}.$$

• Temps de vol t_v : critère $y(t_v) = 0$

$$y(t_v) = t_v \left(-\frac{1}{2}gt_v + v_{0y} \right) = 0 \implies t_v = 0 \text{ ou } t_v = \frac{2v_{0y}}{g} = \frac{2v_0 \sin \alpha}{g}.$$

 \bullet Distance horizontale d:

$$d = x(t_v) = v_{0x}t_v = \frac{2v_0^2 \cos \alpha \sin \alpha}{q} = \frac{v_0^2 \sin(2\alpha)}{q}.$$

• Angle de tir et parabole de sécurité : disposant d'une vitesse initiale de norme v_0 fixée, on se demande quelle doit être la valeur de l'angle α pour que l'obus atteigne un point $P(x_P, y_P)$. Critère : P est sur la parabole Γ

$$\Gamma: \quad y(x) = \frac{a_0}{2v_{0x}^2} x^2 + \frac{v_{0y}}{v_{0x}} x = -\frac{g}{2v_0^2 \cos^2 \alpha} x^2 + \operatorname{tg} \alpha x.$$

Avec $\frac{1}{\cos^2 \alpha} = 1 + \operatorname{tg}^2 \alpha$, nous avons

$$y_P = -\frac{g}{2v_0^2} (1 + \lg^2 \alpha) x_P^2 + \lg \alpha x_P.$$

C'est une équation du second degré en $\operatorname{tg} \alpha$:

$$\frac{gx_P^2}{2v_0^2} \operatorname{tg}^2 \alpha - x_P \operatorname{tg} \alpha + \frac{gx_P^2}{2v_0^2} + y_P = 0.$$

L'existence de solution dépend du signe du discriminant

$$\Delta = x_P^2 \left(1 - \frac{2g}{v_0^2} \left(\frac{gx_P^2}{2v_0^2} + y_P \right) \right) .$$

Ce discriminant est fonction des coordonnées de ${\cal P}$:

- Pour $\Delta > 0$, il y a deux angles de tir possibles. P est à portée du canon.
- Pour $\Delta = 0$, il y a un unique angle de tir possible. Tous les points P vérifiant $\Delta = 0$ se trouvent sur une parabole, dite de sécurité, d'équation

$$y = -\frac{gx^2}{2v_0^2} + \frac{v_0^2}{2g} \,,$$

et représentée en rouge ci-dessous.

• Pour $\Delta < 0$, il n'y a aucun angle de tir possible. Le point P est au-delà de la parabole de sécurité.

