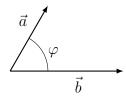
Deux intermèdes

1 Produit scalaire $\vec{a} \cdot \vec{b} = ||\vec{a}|| \, ||\vec{b}|| \, \cos \varphi$



$$\vec{a} \cdot \vec{b} = ||\vec{a}|| \, ||\vec{b}|| \, \cos \varphi$$

où φ est l'angle formé par \vec{a} et \vec{b} .

Le produit scalaire est une mesure du parallélisme de deux vecteurs.

Rem.:

- $\bullet \ \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- \vec{a} et \vec{b} sont plutôt du même côté $\Leftrightarrow \vec{a} \cdot \vec{b} > 0$ en particulier, $\vec{a} \parallel \vec{b}$ et de même sens $\Leftrightarrow \vec{a} \cdot \vec{b} = ||\vec{a}|| \, ||\vec{b}||$
- \vec{a} et \vec{b} sont plutôt opposés $\Leftrightarrow \vec{a} \cdot \vec{b} < 0$ en particulier, $\vec{a} \parallel \vec{b}$ et de sens opposé $\Leftrightarrow \vec{a} \cdot \vec{b} = -||\vec{a}|| \, ||\vec{b}||$
- \vec{a} et \vec{b} sont orthogonaux (ou l'un ou l'autre nul) $\Leftrightarrow \vec{a} \cdot \vec{b} = 0$
- $\vec{a} \cdot \vec{a} = ||\vec{a}||^2$
- $||\vec{b}|| = 1 \Rightarrow \vec{a} \cdot \vec{b} = ||\vec{a}|| \cos \varphi$ est la projection algébrique (avec signe) de \vec{a} sur \vec{b} .

Ex.: nous pouvons ainsi obtenir les composantes d'un vecteur \vec{b} dans un repère orthonormé $(\vec{e_x}, \vec{e_y})$ par produit scalaire : $b_x = \vec{b} \cdot \vec{e_x}$ et $b_y = \vec{b} \cdot \vec{e_y}$.

2 Taux de variation d'un produit

Le taux de variation d'un produit (algébrique, scalaire ou vectoriel) se calcule comme suit :

$$\begin{split} \frac{d}{dt}(AB) &= \lim_{\Delta t \to 0} \frac{\Delta(AB)}{\Delta t} \\ \Delta(AB) &= A(t + \Delta t) B(t + \Delta t) - A(t) B(t) \\ &= A(t + \Delta t) B(t + \Delta t) - A(t) B(t + \Delta t) \\ &\quad + A(t) B(t + \Delta t) - A(t) B(t) \\ &= (A(t + \Delta t) - A(t)) B(t + \Delta t) + A(t) (B(t + \Delta t) - B(t)) \\ &= \Delta A B(t + \Delta t) + A(t) \Delta B \\ \frac{d}{dt}(AB) &= \dot{A}B + A\dot{B} \,. \end{split}$$

Pour un vecteur $\vec{v} = v\vec{e}_t$:

$$\frac{d}{dt}(v\vec{e}_t) = \dot{v}\vec{e}_t + v\dot{\vec{e}}_t.$$

Pour le carré de sa norme :

$$\frac{d}{dt}(v^2) = \frac{d}{dt}(\vec{v}\cdot\vec{v}) = 2\,\vec{v}\cdot\dot{\vec{v}}\,.$$