Série 2

Exercice 1. Sachant que \vec{u} et \vec{v} mesurent respectivement 3 et 5 et forment entre eux un angle de 60° :

- a. Calculer $\vec{u} \cdot \vec{v}$ puis déterminer le projeté orthogonal de \vec{u} sur \vec{v} .
- b. Quelle est la norme du vecteur $2\vec{u} + \vec{v}$? Indication : calculer le carré de cette norme.
- c. Déterminer $\alpha \in \mathbb{R}$ de sorte à ce que le vecteur $\vec{u} + \alpha \vec{v}$ soit orthogonal à \vec{u} .

Exercice 2. Sur une feuille de papier, dessiner deux vecteurs non colinéaires \vec{u} et \vec{v} . Dans chacun des cas suivants, représenter sur votre dessin les vecteurs \vec{w} du plan vérifiant la condition donnée. Justifier votre construction.

- a. $\vec{u} \cdot \vec{w} = 0$.
- b. $(2\vec{u} + \vec{v}) \cdot \vec{w} = 3\vec{u} \cdot \vec{w}$. Indication: se ramener à un produit scalaire nul.
- c. $\vec{v} \cdot \vec{w} = \vec{u} \cdot \vec{v}$. Indication: interpréter la condition en terme de projection orthogonale.

Exercice 3. Dans le plan, on donne deux vecteurs \vec{u} et \vec{v} tels que :

$$\|\vec{u}\| = \sqrt{2}, \quad \|\vec{v}\| = \sqrt{5}, \quad 2\vec{u} + \vec{v} \text{ et } 11\vec{u} - 7\vec{v} \text{ sont orthogonaux.}$$

- a. Calculer $\vec{u} \cdot \vec{v}$ et en déduire l'angle entre \vec{u} et \vec{v} .
- b. Déterminer $\alpha \in \mathbb{R}$ de sorte à ce que la projection orthogonale de $\vec{u} + \alpha \vec{v}$ sur \vec{u} soit de norme 2.
- c. Existe-t-il un vecteur \vec{w} tel que $\vec{w} \cdot \vec{u} = 1$ et $\vec{w} \cdot \vec{v} = 3$? Si oui, décrire ce vecteur en fonction de \vec{u} et \vec{v} .

Exercice 4. Dans un parallélogramme ABCD, les côtés AB et AD mesurent 6 et $\sqrt{13}$ et la diagonale AC mesure 5.

- a. Combien mesure l'autre diagonale?
- b. Quel est le lieu des points M tels que $\overrightarrow{AC} \cdot \overrightarrow{CM} = 0$?
- c. Calculer $\overrightarrow{DA} \cdot \overrightarrow{DB}$. Quel est le lieu des points M tels que $\overrightarrow{DB} \cdot \overrightarrow{DM} = 25$?

Exercice 5. Dans le plan, on donne deux points A et B distants de $\delta > 0$.

a. En faisant intervenir le milieu du segment AB, montrer que, pour tout point M du plan, on a :

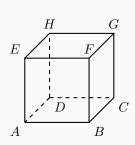
$$\|\overrightarrow{MA}\|^2 + \|\overrightarrow{MB}\|^2 \geqslant \tfrac{1}{2}\delta^2 \quad \text{ et } \quad \overrightarrow{MA} \cdot \overrightarrow{MB} \geqslant -\tfrac{1}{4}\delta^2.$$

- b. Montrer que le lieu des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ est un cercle. En donner le centre et le rayon.
- c. Plus généralement, quel est le lieu des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB}$ est une constante fixée?

Exercice 6.

La figure ci-contre représente un cube de côté 2.

- a. Quels sont les points M de l'espace qui vérifient $\overrightarrow{HG} \cdot \overrightarrow{CM} = 0$?
- b. Calculer le produit scalaire $\overrightarrow{AC} \cdot \overrightarrow{EB}$.
- c. Sachant que M appartient au plan (BDF), calculer $\overrightarrow{AC} \cdot \overrightarrow{EM}$. Indication : que peut-on dire des vecteurs \overrightarrow{AC} et \overrightarrow{BM} ?



Éléments de réponse :

 $\begin{array}{l} \mathbf{Ex.\ 1:} \text{ a. } \frac{15}{2},\, \frac{3}{10}\vec{v} \text{ b. } \sqrt{91} \text{ , c. } \alpha = -\frac{6}{5}. \\ \mathbf{Ex.\ 3:} \text{ a. } \vec{u} \cdot \vec{\underline{v}} = 3,\, \theta \simeq 18, 4^{\circ}. \end{array}$

Ex. 4 : a. $\sqrt{73}$.

Ex. 5: b. centre I, rayon $\frac{1}{2}\delta$, c. c'est l'ensemble vide ou un cercle. **Ex. 6**: b. 4, c. $\overrightarrow{AC} \cdot \overrightarrow{EM} = 4$.