Série 9

1. Déterminer le domaine de définition, puis résoudre l'équation suivante :

$$2 \arccos\left(\frac{x}{4}\right) + \arcsin\left(\frac{x^2 - 2}{x^2}\right) = \frac{3\pi}{2}.$$

2. Résoudre dans \mathbb{R} les trois équations suivantes :

a)
$$\frac{\pi}{4} + \arctan(2x) = \frac{\pi}{2} - \arctan(3x)$$

b)
$$2 \arctan(x + \frac{1}{2}) + \arctan(2x - 1) = \frac{\pi}{2}$$

c)
$$\arcsin x + \arcsin(2x) - \arccos(\sqrt{3}x) = \frac{\pi}{2}$$

3. Soit la fonction f de $A \subset \mathbb{R}$ dans $B \subset \mathbb{R}$ définie par $f(x) = \sin x + \cos x$.

Déterminer A et B de sorte que f soit une bijection.

Déterminer alors la fonction réciproque de $\ f$.

4. Calculer $\arctan(x) + \arctan(\frac{1}{x})$, $x \in \mathbb{R}^*$.

En déduire la représentation graphique de la fonction $f(x) = \arctan\left(\frac{1}{x}\right)$ à partir de celle de la fonction $\arctan(x)$.

5. Dans un triangle ABC les angles α , β , γ sont définis par

$$\alpha = \arccos(4x)$$
 $\beta = \arccos(-3x)$ $\gamma = \arccos(24x^2)$.

On connaît aussi le rayon R de son cercle circonscrit R=25.

- a) Déterminer la valeur de x ainsi que les valeurs de $\sin \alpha$, $\sin \beta$ et $\sin \gamma$.
- b) Calculer le rayon $\ r$ du cercle inscrit du triangle $\ ABC$.

Réponses de la série 9

1.
$$S = \{-2\}$$

2. a)
$$S = \{\frac{1}{6}\}$$

b)
$$S = \{\frac{1}{2}\}$$

c)
$$S = \{\frac{1}{2}\}$$

3. Il y a plusieurs solutions à ce problème. En voici une :

$$A = \left[-\frac{3\pi}{4} \,,\, \frac{\pi}{4} \,\right], \qquad B = \left[-\sqrt{2} \,,\, \sqrt{2} \,\right],$$

$$f^{-1}(x) = -\frac{\pi}{4} + \arcsin\left(\frac{x}{\sqrt{2}}\right), \quad \forall x \in B.$$

Consultez Moodle pour en découvrir deux autres.

- 4. $\arctan x + \arctan \frac{1}{x} = -\frac{\pi}{2}$ si x < 0
 - $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$ si x > 0
- **5.** a) $x = \frac{1}{5}$, $\sin \alpha = \frac{3}{5}$, $\sin \beta = \frac{4}{5}$, $\sin \gamma = \frac{7}{25}$.
 - b) r = 4.